Chapter 23 : Bipolar and Tetrapolar Mating Systems in the Ustilaginales

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Bipolar and Tetrapolar Mating Systems in the Ustilaginales, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap23-2.gif


This chapter discusses species that include in particular, that have provided useful comparative information leading to insights into the genetic basis of bipolar versus tetrapolar mating systems in the smut fungi as a group. It first discusses the importance of smut fungi and the interactions of these pathogens with host plants to provide context for appreciating the role of mating in disease. The chapter then focus on the details of the mating system in , including the structure and function of the mating-type loci, the genomic organization of these elements, and the sequence of the 527-kb locus. The cloning and analysis of the b genes from revealed that they are very similar in structure to those in , consisting of a gene complex with divergently transcribed and genes. The large size of the MAT region and the suppression of recombination in this area prompted the authors to propose that the region might function to maintain a set of genes that function together in sexual development and, potentially, in pathogenesis. They therefore characterized t.

Citation: Bakkeren G, Kronstad J. 2007. Bipolar and Tetrapolar Mating Systems in the Ustilaginales, p 389-404. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch23
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 23.1
Figure 23.1

Examples of mating interactions on charcoal medium. Aliquots of cultures of haploid basidiospores having the mating genotype indicated are cospotted on complete medium plates supplemented with activated charcoal ( ). When both the and the loci are of different allelic specificity, a straight-growing, dikaryotic hypha is produced (inset) and the ensuing colony will have a white “fuzzy” appearance. Note that for there are only two mating-type alleles ( and ) in nature but that for and specificities can assort in all combinations among progeny from genetic crosses.

Citation: Bakkeren G, Kronstad J. 2007. Bipolar and Tetrapolar Mating Systems in the Ustilaginales, p 389-404. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 23.2
Figure 23.2

Genomic organization of the mating-type loci in and . In the locus is defined as the region delimited by the known and mating-type gene complexes, a distance of 526,707 bp for . The five BAC clones, yielding a total of 625,845 bp of sequence, are indicated ( ). In both and (430 kb) strains, the locus sits roughly in the middle of the largest chromosome (chromosome I). Note that the region has not been sequenced but that its length and the orientation of the complexes have been determined ( ). In , the gene complexes are found on two different chromosomes: the locus on contig 1.83 (scaffold 4; Broad Institute http://www.broad.mit.edu/annotation/fungi/ustilago_maydis/) harbored by chromosome V, and the locus on contig 1.13 (scaffold 1) on chromosome I; contig 1.12 is likely linked to contig 1.13 based on the synteny found with (represented by the solid black lines). Gene names are as follows: , mating pheromone gene; , pheromone receptor gene; , pantoate b-alanine ligase gene; , bWest1 gene; , bEast1 gene ( ). Drawing is not to scale. Reprinted from (reference , Fig. 1) © 2006, with permission from Elsevier.

Citation: Bakkeren G, Kronstad J. 2007. Bipolar and Tetrapolar Mating Systems in the Ustilaginales, p 389-404. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 23.3
Figure 23.3

Strategy to prove linkage and recombination suppression, and to measure the physical distance between the mating-type gene complexes in . The two thick lines represent the chromosomes with the respective locations of the and mating-type gene complexes for (A) and (B). The organization of the mating-type gene complexes is enlarged (compare with Fig. 23.2 ) and the positions of the integrated constructs used to tag them are indicated (boxes). I-SceI represents the 18-bp recognition sequence for the rare-cutting, intron-homing enzyme from which was linked to the selectable markers for phleomycin (phleo) to tag the complex, and for hygromycin B (hyg) to tag the complex. Digestion with the enzyme I-SceI led to the estimate of the respective distances as indicated by the double-headed arrows (see the text for details) ( ). See the legend to Fig. 23.2 for explanation of gene names.

Citation: Bakkeren G, Kronstad J. 2007. Bipolar and Tetrapolar Mating Systems in the Ustilaginales, p 389-404. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Anderson, C. M.,, D. A. Willits,, P. J. Kosted,, E. J. Ford,, A. D. Martinez-Espinoza, and J. E. Sherwood. 1999. Molecular analysis of the pheromone and pheromone receptor genes of Ustilago hordei. Gene 240: 8997.
2. Arkhipova, I., and, M. Meselson. 2005. Deleterious transposable elements and the extinction of asexuals. Bioessays 27: 7685.
3. Bakkeren, G.,, B. Gibbard,, A. Yee,, E. Froeliger,, S. Leong, and, J. Kronstad. 1992. The a and b loci of Ustilago maydis hybridize with DNA sequences from other smut fungi. Mol. Plant-Microbe Interact. 5: 347355.
4. Bakkeren, G., and, J. W. Kronstad. 1993. Conservation of the b mating-type gene complex among bipolar and tetrapolar smut fungi. Plant Cell 5: 123136.
5. Bakkeren, G., and, J. W. Kronstad. 1994. Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi. Proc. Natl. Acad. Sci. USA 91: 70857089.
6. Bakkeren, G., and, J. W. Kronstad. 1996. The pheromone cell signaling components of the Ustilago a mating-type loci determine intercompatibility between species. Genetics 143: 16011613.
7. Bakkeren, G.,, J. W. Kronstad, and, C. A. Lévesque. 2000. Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilaginomycetes. Mycologia 92: 510521.
8. Bakkeren, G., G. Jiang, R. Warren, Y. Butterfield, H. Shin, R. Chiu, R. Linning, J. Schein, N. Lee, G. Hu, D. M. Kupfer, Y. Tang, B. A. Roe, S. Jones, M. Marra, and J. W. Kronstad. 2006. Mating factor linkage and genome evolution in basidiomycetous pathogens of cereals. Fungal Genet. Biol. 43: 655666.
9. Berbee, M. L., B. P. Payne, G. Zhang, R. G. Roberts, and B. G. Turgeon. 2003. Shared ITS DNA substitutions in isolates of opposite mating type reveal a recombining history for three presumed asexual species in the filamentous ascomycete genus Alternaria. Mycol. Res. 107: 169182.
10. Carris, L. M., L. A. Castlebury, and B. J. Goates. 2006. Nonsystemic bunt fungi— Tilletia indica and T. horrida: a review of history, systematics, and biology. Annu. Rev. Phytopathol. 44: 113133.
11. Castlebury, L. A., and L. M. Carris. 1999. Tilletia walk-eri, a new species on Lolium multiflorum and L. perenne. Mycologia 91: 121131.
12. Charlesworth, B., and C. H. Langley. 1989. The population genetics of Drosophila transposable elements. Annu. Rev. Genet. 23: 251287.
13. Chisholm, S. T., G. Coaker, B. Day, and B. J. Staskawicz. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803814.
14. Christensen, J. J. 1963. Corn Smut Caused by Ustilago maydis. Monograph no. 2. American Phytopathological Society, St. Paul, MN.
15. Chung, S., M. Karos, Y. C. Chang, J. Lukszo, B. L. Wickes, and K. J. Kwon-Chung. 2002. Molecular analysis of CPRalpha, a MATalpha-specific pheromone receptor gene of Cryptococcus neoformans. Eukaryot. Cell 1: 432439.
16. Feldbrugge, M., J. Kamper, G. Steinberg, and R. Kahmann. 2004. Regulation of mating and pathogenic development in Ustilago maydis. Curr. Opin. Microbiol. 7: 666672.
17. Ferris, P. J., and U. W. Goodenough. 1994. The mating-type locus of Chlamydomonas reinhardtii contains highly rearranged DNA sequences. Cell 76: 11351145.
18. Fischer, G. W. 1951. Induced hybridization in graminicolous smut fungi. I. Ustilago hordei X U. bullata. Phytopathology 41: 839853.
19. Fischer, G. W., and C. S. Holton. 1957. Biology and Control of the Smut Fungi. Ronald Press, New York, NY.
20. Flor, H. H. 1942. Inheritance of pathogenicity in Melampsora lini. Phytopathology 32: 653669.
21. Fraser, J. A., S. Diezmann, R. L. Subaran, A. Allen, K. B. Lengeler, F. S. Dietrich, and J. Heitman. 2004. Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol. 2:e384.
22. Fraser, J. A., and J. Heitman. 2005. Chromosomal sex-determining regions in animals, plants and fungi. Curr. Opin. Genet. Dev. 15: 645651.
23. Froeliger, E. H., and S. A. Leong. 1991. The a mating-type alleles of Ustilago maydis are idiomorphs. Gene 100: 113122.
24. Gallegos, A., D. J. Jacobson, N. B. Raju, M. P. Skupski, and D. O. Natvig. 2000. Suppressed recombination and a pairing anomaly on the mating-type chromosome of Neurospora tetrasperma. Genetics 154: 623633.
25. Gaudet, D. A., and R. L. Kiesling. 1991. Variation in aggressiveness among and within races of Ustilago hordei on barley. Phytopathology 81: 13851390.
26. Gillissen, B., J. Bergemann, C. Sandmann, B. Schroeer, M. Boelker, and R. Kahmann. 1992. A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68: 647657.
27. Hoffmann, J. A., and E. L. Kendrick. 1968. Phytopathology 59: 7983.
28. Holliday, R. 1961. The genetics of Ustilago maydis. Genet. Res. 2: 204230.
29. Holliday, R. 1965. Induced mitotic crossing-over in relation to genetic replication in synchronously dividing cells of Ustilago Maydis. Genet Res. 10: 104120.
30. Holton, C. S., J. A. Hoffmann, and R. Duran. 1968. Variation in the smut fungi. Annu. Rev. Phytopathol. 6: 213242.
31. Hood, M. E. 2002. Dimorphic mating-type chromosomes in the fungus Microbotryum violaceum. Genetics 160: 457461.
32. Hood, M. E., J. Antonovics, and B. Koskella. 2004. Shared forces of sex chromosome evolution in haploid-mating and diploid-mating organisms: Microbotryum violaceum and other model organisms. Genetics 168: 141146.
33. Hood, M. E. 2005. Repetitive DNA in the automictic fungus Microbotryum violaceum. Genetica 124: 110.
34. Hood, M. E., M. Katawczik, and T. Giraud. 2005. Repeat-induced point mutation and the population structure of transposable elements in Microbotryum violaceum. Genetics 170: 10811089.
35. Hu, G.-G., R. Linning, and G. Bakkeren. 2003. Ultra-structural comparison of a compatible and incompatible interaction triggered by the presence of an avirulence gene during early infection of the smut fungus, Ustilago hordei, in barley. Physiol. Mol. Plant Pathol. 62: 155166.
36. Hu, G. G., R. Linning, and G. Bakkeren. 2002. Sporidial mating and infection process of the smut fungus, Ustilago hordei, in susceptible barley. Can. J. Bot. 80: 11031114.
37. Huang, H. Q., and J. Nielsen. 1984. Hybridization of the seedling-infecting Ustilago spp. pathogenic on barley and oats, and a study of the genotypes conditioning the morphology of their spore walls. Can. J. Bot. 62: 603608.
38. Huff, D. R., D. Zagory, and L. Wu. 1987. Report of buffalograss bunt ( Tilletia buchloeana) in Oklahoma. Plant Dis. 71: 651.
39. Koltin, Y., J. Stamberg, and P. A. Lemke. 1972. Genetic structure and evolution of the incompatibility factors in higher fungi. Bacteriol. Rev. 36: 156171.
40. Kosted, P. J., S. A. Gerhardt, C. M. Anderson, A. Stierle, and J. E. Sherwood. 2000. Structural requirements for activity of the pheromones of Ustilago hordei. Fungal Genet. Biol. 29: 107117.
41. Kosted, P. J., S. A. Gerhardt, and J. E. Sherwood. 2002. Pheromone-related inhibitors of Ustilago hordei mating and Tilletia tritici teliospore germination. Phytopathology 92: 210216.
42. Kronstad, J. W., and S. A. Leong. 1989. Isolation of two alleles of the b locus of Ustilago maydis. Proc. Natl. Acad. Sci. USA 86: 978982.
43. Kubisiak, T. L., and M. G. Milgroom. 2006. Markers linked to vegetative incompatibility (vic) genes and a region of high heterogeneity and reduced recombination near the mating type locus ( MAT) in Cryphonectria parasitica. Fungal Genet. Biol. 43: 453463.
44. Kues, U., and L. A. Casselton. 1992. Molecular and functional analysis of the A mating type genes of Coprinus cinereus. Genet. Eng. (NY) 14: 251268.
45. Kumar, S., and S. Subramanian. 2002. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. USA 99: 803808.
46. Lahn, B. T., and D. C. Page. 1999. Four evolutionary strata on the human X chromosome. Science 286: 964967.
47. Lee, N., G. Bakkeren, K. Wong, J. E. Sherwood, and J. W. Kronstad. 1999. The mating-type and pathogenicity locus of the fungus Ustilago hordei spans a 500-kb region. Proc. Natl. Acad. Sci. USA 96: 1502615031.
48. Lengeler, K. B., and E. Kothe. 1999. Mated: a putative peptide transporter of Schizophyllum commune expressed in dikaryons. Curr. Genet. 36: 159164.
49. Lengeler, K. B., D. S. Fox, J. A. Fraser, A. Allen, K. Forrester, F. S. Dietrich, and J. Heitman. 2002. Mating-type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryot. Cell 1: 704718.
50. Linning, R., D. Lin, N. Lee, M. Abdennadher, D. Gaudet, P. Thomas, D. Mills, J. W. Kronstad, and G. Bakkeren. 2004. Marker-based cloning of the region containing the UhAvr1 avirulence gene from the basidiomycete barley pathogen Ustilago hordei. Genetics 166: 99111.
51. Loftus, B. J., E. Fung, P. Roncaglia, D. Rowley, P. Amedeo, D. Bruno, J. Vamathevan, M. Miranda, I. J. Anderson, J. A. Fraser, J. E. Allen, I. E. Bosdet, M. R. Brent, R. Chiu, T. L. Doering, M. J. Donlin, C. A. D’Souza, D. S. Fox, V. Grinberg, J. Fu, M. Fukushima, B. J. Haas, J. C. Huang, G. Janbon, S. J. Jones, H. L. Koo, M. I. Krzywinski, J. K. Kwon-Chung, K. B. Lengeler, R. Maiti, M. A. Marra, R. E. Marra, C. A. Mathewson, T. G. Mitchell, M. Pertea, F. R. Riggs, S. L. Salzberg, J. E. Schein, A. Shvartsbeyn, H. Shin, M. Shumway, C. A. Specht, B. B. Suh, A. Tenney, T. R. Utterback, B. L. Wickes, J. R. Wortman, N. H. Wye, J. W. Kronstad, J. K. Lodge, J. Heitman, R. W. Davis, C. M. Fraser, and R. W. Hyman. 2005. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307: 13211324.
52. Martinez, E. A. D., S. A. Gerhardt, and J. E. Sherwood. 1993. Morphological and mutational analysis of mating in Ustilago hordei. Exp. Mycol. 17: 200214.
53. McClelland, C. M., J. Fu, G. L. Woodlee, T. S. Seymour, and B. L. Wickes. 2002. Isolation and characterization of the Cryptococcus neoformans MATa pheromone gene. Genetics 160: 935947.
54. Menzies, J.-G., G. Bakkeren, F. Matheson, J.-D. Procunier, and S. Woods. 2003. Use of inter-simple sequence repeats and amplified fragment length polymorphisms to analyze genetic relationships among small grain-infecting species of Ustilago. Phytopathology 93: 167175.
55. Merino, S. T., M. A. Nelson, D. J. Jacobson, and D. O. Natvig. 1996. Pseudohomothallism and evolution of the mating-type chromosome in Neurospora tetrasperma. Genetics 143: 789799.
56. Nielsen, J. 1968. Isolation and culture of monokaryotic haplonts of Ustilago nuda, the role of proline in their metabolism, and the inoculation of barley with resynthesized dikaryons. Can. J. Bot. 46: 11931200.
57. Oort, A. J. P. 1944. Onderzoekingen over stuifbrand II. Overgevoeligheid van tarwe voor stuifbrand, Ustilago tritici. [Hypersensitiveness of wheat to loose smut.] Tijdschrift over plantenziekten 50: 73106.
58. Pardo, E. H., S. F. O’Shea, and L. A. Casselton. 1996. Multiple versions of the A mating-type locus of Coprinus cinereus are generated by three paralogous pairs of multiallelic homeobox genes. Genetics 144: 8794.
59. Paterson, A. H., J. E. Bowers, D. G. Peterson, J. C. Estill, and B. A. Chapman. 2003. Structure and evolution of cereal genomes. Curr. Opin. Genet. Dev. 13: 644650.
60. Piepenbring, M., and R. Bauer. 1997. Erratomyces, new genus of Tilletiales with species on Leguminosae. Mycologia 89: 924936.
61. Piepenbring, M., M. Stoll, and F. Oberwinkler. 2002. The generic position of Ustilago maydis, Ustilago scitaminea, and Ustilago esculenta (Ustilaginales). Mycol. Prog. 1: 7180.
62. Puhalla, J. E. 1970. Genetic studies of the b incompatibility locus of Ustilago maydis. Genet. Res. 16: 229232.
63. Raper, J. R., and A. S. Flexer. 1971. Mating systems and evolution of the basidiomycetes, p. 149–167 In R. H. Petersen (ed.), Evolution in the Higher Basidiomycetes; an International Symposium. University of Tennessee Press, Knoxville.
64. Riquelme, M., M. P. Challen, L. A. Casselton, and A. J. Brown. 2005. The origin of multiple B mating specificities in Coprinus cinereus. Genetics 170: 11051119.
65. Rostoks, N., Y. J. Park, W. Ramakrishna, J. Ma, A. Druka, B. A. Shiloff, P. J. SanMiguel, Z. Jiang, R. Brueggeman, D. Sandhu, K. Gill, J. L. Bennetzen, and A. Kleinhofs. 2002. Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Funct. Integr. Genomics 2: 5159.
66. Rowell, J. B., and J. E. DeVay. 1954. Genetics of Ustilago zeae in relation to basic problems of its pathogenicity. Phytopathology 44: 356362.
67. Rowell, J. B. 1955. Functional role of compatibility factors and an in vitro test for sexual compatibility with haploid lines of Ustilago zeae. Phytopathology 45: 370374.
68. Schirawski, J., B. Heinze, M. Wagenknecht, and R. Kahmann. 2005. Mating-type loci of Sporisorium reilianum: novel pattern with three a and multiple b specificities. Eukaryot. Cell 4: 13171327.
69. Sherwood, J. E., P. J. Kosted, C. M. Anderson, and S. A. Gerhardt. 1998. Production of a mating inhibitor by Ustilago hordei. Phytopathology 88: 456464.
70. Sidhu, G., and C. Person. 1972. Genetic control of virulence in Ustilago hordei. II. Identification of genes for host resistance and demonstration of gene-for-gene relations. Can. J. Genet. Cytol. 14: 209213.
71. Smith, I. M. 1988. Basidiomycetes I, Ustilaginales, p. 462–472. In I. M. Smith, J. Dunez, D. H. Phillips, R. A. Lelliott, and S. A. Archer (ed.), European Handbook of Plant Diseases. Blackwell Scientific Publications, Oxford, United Kingdom.
72. Snetselaar, K. M., and C. W. Mims. 1992. Sporidial fusion and infection of maize seedlings by the smut fungus Ustilago maydis. Mycologia 84: 193203.
73. Snetselaar, K. M., and C. W. Mims. 1993. Infection of maize stigmas by Ustilago maydis: light and electron microscopy. Phytopathology 83: 843850.
74. Snetselaar, K. M., and C. W. Mims. 1994. Light and electron microscopy of Ustilago maydis hyphae in maize. Mycol. Res. 98: 347355.
75. Stankis, M. M., C. A. Specht, H. Yang, L. Giasson, R. C. Ullrich, and C. P. Novotny. 1992. The A alpha mating locus of Schizophyllum commune encodes two dissimilar multiallelic homeodomain proteins. Proc. Natl. Acad. Sci. USA 89: 71697173.
76. Stoll, M., M. Piepenbring, D. Begerow, and F. Oberwinkler. 2003. Molecular phytogeny of Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences. Can. J. Bot. 81: 976984.
77. Stoll, M., D. Begerow, and F. Oberwinkler. 2005. Molecular phylogeny of Ustilago, Sporisorium, and related taxa based on combined analyses of rDNA sequences. Mycol. Res. 109: 342356.
78. Tamura, K., S. Subramanian, and S. Kumar. 2004. Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol. Biol. Evol. 21: 3644.
79. Tapke, V. F. 1937. Physiologic races of Ustilago hordei. J. Agric. Res. 55: 683692.
80. Tapke, V. F. 1945. New physiologic races of Ustilago hordei. Phytopathology 35: 970976.
81. Thomas, P. L. 1976. Interaction of virulence genes in Ustilago hordei. Can. J. Genet. Cytol. 18: 141149.
82. Thomas, P. L., and H. Q. Huang. 1985. Inheritance of virulence on barley in the hybrids Ustilago aegilopsidis times Ustilago hordei and Ustilago aegilopsidis times Ustilago nigra. Can. J. Genet. Cytol. 27: 312317.
83. Thon, M. R., S. L. Martin, S. Goff, R. A. Wing, and R. A. Dean. 2004. BAC end-sequences and a physical map reveal transposable element content and clustering patterns in the genome of Magnaporthe grisea. Fungal Genet. Biol. 41: 657666.
84. Thrall, P. H., A. Biere, and J. Antonovics. 1993. Plant life-history and disease susceptibility; the occurrence of Ustilago violacea on different species within the Caryophyllaceae. J. Ecol. 81: 489498.
85. Vanky, K. 1987. Illustrated Genera of Smut Fungi. Cryptogamic Studies, vol. 1. Gustav Fisher Verlag, New York, NY.
86. Vanky, K. 2003. Taxonomical studies on Ustilaginales. XXIII. Mycotaxon 85: 165.
87. Voegele, R. T., and K. Mendgen. 2003. Rust haustoria: nutrient uptake and beyond. New Phytol. 159: 93100.
88. Wendland, J., L. J. Vaillancourt, J. Hegner, K. B. Lengeler, K. J. Laddison, C. A. Specht, C. A. Raper, and E. Kothe. 1995. The mating-type locus B alpha 1 of Schizophyllum commune contains a pheromone receptor gene and putative pheromone genes. EMBO J. 14: 52715278.
89. Whitelaw, C. A., W. B. Barbazuk, G. Pertea, A. P. Chan, F. Cheung, Y. Lee, L. Zheng, S. van Heeringen, S. Karamycheva, J. L. Bennetzen, P. SanMiguel, N. Lakey, J. Bedell, Y. Yuan, M. A. Budiman, A. Resnick, S. Van Aken, T. Utter-back, S. Riedmuller, M. Williams, T. Feldblyum, K. Schubert, R. Beachy, C. M. Fraser, and J. Quackenbush. 2003. Enrichment of gene-coding sequences in maize by genome filtration. Science 302: 21182120.
90. Wilson, J. M., and R. A. Frederiksen. 1970. Histopathology of the interaction of Sorghum bicolor and Sphacelotheca reilianum. Phytopathology 60: 828832.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error