Chapter 27 : Sexual Reproduction in Plant Pathogenic Oomycetes: Biology and Impact on Disease

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Sexual Reproduction in Plant Pathogenic Oomycetes: Biology and Impact on Disease, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap27-2.gif


The relative importance of the sexual cycle in each pathosystem can vary depending on factors that include climate, host, cropping practices, patterns of pathogen migration, and the inherent biology of each species. This chapter describes the biology of sexual reproduction in phytopathogenic oomycetes and its role in disease. These infect both mono- and dicotyledonous crops, ornamentals, and native plants, causing foliar blights or root, crown, or fruit rots. Plant pathogens infect both mono- and dicotyledonous crops, ornamentals, and native plants, causing foliar blights or root, crown, or fruit rots. Various factors are reported to stimulate germination including plant extracts, light, carbon dioxide, and alternating temperature and wetness regimes, but the requirements do not seem to have universal effects on different oomycetes. Potatoes, as well as tomatoes and several other spp., are hosts of the heterothallic species . Importantly, this inoculum would typically need to travel from their point of origin to distant potato fields before significant amounts of disease could occur, slowing epidemic progression. Nevertheless, there is evidence that sexual reproduction has occurred based on the appearance of recombinant genotypes. An interesting picture has emerged in which host, pathogen genotype, and environment interact to determine the importance of sexual reproduction. While sexual reproduction challenges efforts to control oomycete pathogens, better knowledge of the mechanisms of oospore formation and germination could lead to new management strategies. Soil populations of oospores might also be reduced by applying compounds stimulating oospore germination near the end of a growing season.

Citation: Judelson H. 2007. Sexual Reproduction in Plant Pathogenic Oomycetes: Biology and Impact on Disease, p 445-458. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch27
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 27.1
Figure 27.1

Simplified life cycle of homothallic oomycete plant pathogen.

Citation: Judelson H. 2007. Sexual Reproduction in Plant Pathogenic Oomycetes: Biology and Impact on Disease, p 445-458. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.2
Figure 27.2

Light and scanning electron microscopy of oospores. Note in the left image the thick inner oospore wall, which has retracted from the external layer of the oosphere, giving the appearance of an endospore. Shown are the antheridium (A), outer oospore wall (OOW), oogonial wall (OW), and ooplast (OP). Reprinted from ( ) and ( ) with permission of the publishers.

Citation: Judelson H. 2007. Sexual Reproduction in Plant Pathogenic Oomycetes: Biology and Impact on Disease, p 445-458. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.3
Figure 27.3

Selfing and outcrossing by homothallic oomycetes. Oospores produced within a lesion caused by a single strain are necessarily selfs, but hybrids can form when plants are coinfected by two strains. The structures shown are representative of , where both monoclinous and diclinous antheridia can form. Note that the oospores illustrated are “paragynous,” in which the antheridium (A) contacts the side of the oogonium (O). This contrasts with the “amphigynous” oospores shown in Fig. 27.2 for , in which the oogonium grows through the antheridium.

Citation: Judelson H. 2007. Sexual Reproduction in Plant Pathogenic Oomycetes: Biology and Impact on Disease, p 445-458. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.4
Figure 27.4

Phylogram of representative species, indicating whether mating behavior is heterothallic (one filled circle) or homothallic (two circles). Tree generated using data of Cooke et al. ( ).

Citation: Judelson H. 2007. Sexual Reproduction in Plant Pathogenic Oomycetes: Biology and Impact on Disease, p 445-458. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adenle, V. O., and, K. F. Cardwell. 2000. Seed transmission of maize downy mildew ( Peronosclerospora sorghi) in Nigeria. Plant Pathol. 49: 628634.
2. Agrios, G. N. 2004. Plant Pathology, 5th ed. Academic Press, San Diego, CA.
3. Al-Kherb, S. M.,, C. Fininsa,, R. C. Shattock, and, D. S. Shaw. 1995. The inheritance of virulence of Phytophthora infestans to potato. Plant Pathol. 44: 552562.
4. Anaso, A. B. 1989. Survival of downy mildew pathogen of maize in Nigerian guinea savanna. Appl. Agric. Res. 4: 258263.
5. Ayers,, W. A., and R. D. Lumsden. 1975. Factors affecting production and germination of oospores of 3 Pythium spp. Phytopathology 65: 1091100.
6. Baldauf, S. L.,, A. J. Roger,, I. Wenk-Siefert, and, W. F. Doolittle. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290: 972977.
7. Blaise, P.,, R. Dietrich, and, C. Gessler. 1999. Vinemild: an application oriented model of Plasmopara viticola epidemics on Vitis vinifera. Acta Hortic. 499: 187192.
8. Bock, C. H.,, M. J. Jeger,, B. D. L. Fitt, and, J. Sherington. 1997. Effect of wind on the dispersal of oospores of Peronosclerospora sorghi from sorghum. Plant Pathol. 46: 439449.
9. Bock, C. H.,, M. J. Jeger,, L. K. Mughogho,, K. F. Cardwell,, E. Mtisi,, G. Kaula, and, D. Mukansabimana. 2000. Variability of Peronosclerospora sorghi isolates from different geographic locations and hosts in Africa. Mycol. Res. 104: 6168.
10. Bonde, M. R. 1982. Epidemiology of downy mildew diseases of maize sorghum and pearl millet. Trop. Pest Manag. 28: 4960.
11. Brasier,, C. M. 1971. Induction of sexual reproduction in single A2 isolates of Phytophthora species by Trichoderma viride. Nat. New Biol. 231: 283.
12. Brasier, C. M.,, S. A. Kirk,, J. Delcan,, D. E. Cooke,, T. Jung, and, W. A. Man in’t Veld. 2004. Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycol. Res. 108: 11721184.
13. Butler, J. S. 2002. The yin and yang of the exosome. Trends Cell Biol. 12: 9096.
14. Cohen,, Y., S. Farkash,, Z. Reshit, and, A. Baider. 1997. Oospore production of Phytophthora infestans in potato and tomato leaves. Phytopathology 87: 191196.
15. Cooke, D. E. L.,, A. Drenth,, J. M. Duncan,, G. Wagels, and, C. M. Brasier. 2000. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet. Biol. 30: 1732.
16. Cooke, D. E. L.,, V. Young,, P. R. J. Birch,, R. Toth,, F. Gourlay,, J. P. Day,, S. F. Carnegie, and, J. M. Duncan. 2003. Phenotypic and genotypic diversity of Phytophthora infestans populations in Scotland (1995-97). Plant Pathol. 52: 181192.
17. Davidson, J. M.,, S. Werres,, M. Garbelotto,, E. M. Hansen, and, D. M. Rizzo. 2003. Sudden Oak Death and associated diseases caused by Phytophthora ramorum. Plant Health Prog. 1: 121.
18. Dorrance, A. E.,, S. A. McClure, and, A. DeSilva. 2003. Pathogenic diversity of Phytophthora sojae in Ohio soybean fields. Plant Dis. 87: 139146.
19. Drenth, A.,, E. M. Janssen, and, F. Govers. 1995. Formation and survival of oospores of Phytophthora infestans under natural conditions. Plant Pathol. 44: 8694.
20. Erwin, D. C., and, O. K. Ribeiro. 1996. Phytophthora diseases worldwide. APS Press, St. Paul, MN.
21. Fabritius, A.-L.,, C. Cvitanich, and, H. S. Judelson. 2002. Stage-specific gene expression during sexual development in Phytophthora infestans. Mol. Microbiol. 45: 10571066.
22. Fabritius, A.-L., and, H. S. Judelson. 1997. Mating-type loci segregate aberrantly in Phytophthora infestans but normally in Phytophthora parasitica: implications for models of mating-type determination. Curr. Genet. 32: 6065.
23. Fernandez-Pavia, S. P.,, N. J. Grunwald,, M. Diaz-Valasis,, M. Cadena-Hinojosa, and, W. E. Fry. 2004. Soilborne oospores of Phytophthora infestans in central Mexico survive winter fallow and infect potato plants in the field. Plant Dis. 88: 2933.
24. Flier, W. G.,, G. J. T. Kessel, and, H. T. A. M. Schepers. 2004. The impact of oospores of Phytophthora infestans on late blight epidemics. Plant Breed. Seed Sci. 50: 513.
25. Förster, H.,, B. M. Tyler, and, M. D. Coffey. 1994. Phytophthora sojae races have arisen by clonal evolution and by rare outcrosses. Mol. Plant-Microbe Interact. 7: 780791.
26. Francis, D. M., and, D. A. St. Clair. 1993. Outcrossing in the homothallic oomycete, Pythium ultimum, detected with molecular markers. Curr. Genet. 24: 100106.
27. Frinking, H. D.,, J. L. Harrewijn, and, C. F. Geerds. 1984. Factors governing oospore production by Peronospora farinosa f. sp. spinaciae in cotyledons of spinach [ Spinacia oleracea]. Neth. J. Plant Pathol. 91: 215224.
28. Fyfe, A. M., and, D. S. Shaw. 1992. An analysis of self-fertility in field isolates of Phytophthora infestans. Mycol. Res. 96: 390394.
29. Gallegly, M. E. 1968. Genetics of pathogenicity of Phytophthora infestans. Annu. Rev. Plant Pathol. 6: 375396.
30. Gallegly,, M. E. 1960. Genetics of Phytophthora. Phytopathology 60: 11351141.
31. Gavino, P. D.,, C. D. Smart,, R. W. Sandrock,, J. S. Miller,, P. B. Hamm,, T. Y. Lee,, R. M. Davis, and, W. E. Fry. 2000. Implications of sexual reproduction for Phytophthora infestans in the United States: generation of an aggressive lineage. Plant Dis. 84: 731735.
32. Gobbin, D.,, M. Jermini,, B. Loskill,, I. Pertot,, M. Raynal, and, C. Gessler. 2005. Importance of secondary inoculum of Plasmopara viticola to epidemics of grapevine downy mildew. Plant Pathol. 54: 522534.
33. Goodwin, S. 1997. The population genetics of Phytophthora. Phytopathology 87: 462473.
34. Goodwin,, S. B., and W. E. Fry. 1994. Genetic analyses of interspecific hybrids between Phytophthora infestans and Phytophthora mirabilis. Exp. Mycol. 18: 2032.
35. Goodwin, S. B.,, C. D. Smart,, R. W. Sandrock,, K. L. Deahl,, Z. K. Punja, and, W. E. Fry. 1998. Genetic charge within populations of Phytophthora infestans in the United States and Canada during 1994 to 1996: role of migration and recombination. Phytopathology 88: 939949.
36. Goodwin, S. B.,, L. S. Sujkowski, and, W. E. Fry. 1994. Metalaxyl-resistant clonal genotypes of Phytophthora infestans in the United States and Canada were probably introduced from northwestern Mexico. Phytopathology 84: 1079.
37. Groves, C. T., and, J. B. Ristaino. 2000. Commercial fungicide formulations induce in vitro oospore formation and phenotypic change in mating type in Phytophthora infestans. Phytopathology 90: 12011208.
38. Grunwald, N. J., and, W. G. Flier. 2005. The biology of Phytophthora infestans at its center of origin. Annu. Rev. Phytopathol. 43: 171190.
39. Hancock, J. G. 1981. Longevity of Pythium ultimum in moist soils. Phytopathology 71: 10331037.
40. Hausbeck,, M. K., and K. H. Lamour. 2004. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis. 88: 12921303.
41. Hemmes, D. E. 1983. Cytology of Phytophthora, p. 9–40. In D. C. Erwin,, S. Bartnicki-Garcia, and, P. H. Tsao (ed.), Phytophthora, Its Biology, Taxonomy, Ecology, and Pathology. APS Press, St. Paul, MN.
42. Inaba, T., and, T. Morinaka. 1983. The relationship between conidium and oospore production in soybean leaves infected with Peronospora manshurica. Ann. Phytopathol. Soc. Jpn. 49: 55557.
43. Ivors, K.,, M. Garbelotto,, I. D. E. Vries,, C. Ruyter-Spira,, B. T. Hekkert,, N. Rosenzweig, and, P. Bonants. 2006. Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Mol. Ecol. 15: 14931505.
44. Jarvis, W. R.,, J. L. Shipp, and, R. B. Gardiner. 1993. Transmission of Pythium aphanidermatum to greenhouse cucumber by the fungus gnat Bradysia impatiens (Diptera: Sciaridae). Ann. Appl. Biol. 122: 2329.
45. Jeger, M. J.,, E. Gilijamse,, C. H. Bock, and, H. D. Frinking. 1998. The epidemiology, variability and control of the downy mildews of pearl millet and sorghum, with particular reference to Africa. Plant Pathol. 47: 544569.
46. Judelson, H. S. 1997. Expression and inheritance of sexual preference and selfing potential in Phytophthora infestans. Fungal Genet. Biol. 21: 188197.
47. Judelson,, H. S. 1996. Genetic and physical variability at the mating type locus of the oomycete, Phytophthora infestans. Genetics 144: 10051013.
48. Judelson, H. S., and, F. A. Blanco. 2005. The spores of Phytophthora: weapons of the plant destroyer. Nat. Microbiol. Rev. 3: 4758.
49. Judelson, H. S., and, S. Roberts. 1999. Multiple loci determining insensitivity to phenylamide fungicides in Phytophthora infestans. Phytopathology 89: 75760.
50. Judelson, H. S.,, L. J. Spielman, and, R. C. Shattock. 1995. Genetic mapping and non-Mendelian segregation of mating type loci in the oomycete, Phytophthora infestans. Genetics 141: 503512.
51. Kennelly, M. M.,, C. Eugster,, D. M. Gadoury,, C. D. Smart,, R. C. Seem,, D. Gobbin, and, C. Gessler. 2004. Contributions of oosporic inoculum to epidemics of grapevine downy mildew ( Plasmopara viticola). Phytopathology 94: S50.
52. Killigrew, B. X.,, D. Sivasithamparam, and, E. S. Scott. 2005. Absence of oospores of downy mildew of grape caused by Plasmopara viticola as the source of primary inoculum in most western Australian vineyards. Plant Dis. 89: 777.
53. Knapova, G., and, U. Gisi. 2002. Phenotypic and genotypic structure of Phytophthora infestans populations on potato and tomato in France and Switzerland. Plant Pathol. 51: 641653.
54. Ko, W. H. 1998. Chemical stimulation of sexual reproduction in Phytophthora and Pythium. Bot. Bull. Acad. Sinica. 39: 8186.
55. Ko,, W. H. 1988. Hormonal heterothallism and homothallism in Phytophthora. Annu. Rev. Phytopathol. 26: 5773.
56. Koch, E., and, A. Slusarenko. 1990. Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2: 43745.
57. Kohn, L. M. 2005. Mechanisms of fungal speciation. Annu. Rev. Phytopathol. 43: 279308.
58. Lamour,, K. H., and M. K. Hausbeck. 2001. The dynamics of mefenoxam insensitivity in a recombining population of Phytophthora capsici characterized with amplified fragment length polymorphism markers. Phytopathology 91: 553557.
59. Lamour, K. H., and, M. K. Hausbeck. 2003. Effect of crop rotation on the survival of Phytophthora capsici in Michigan. Plant Dis. 87: 841845.
60. Lamour, K. H., and, M. K. Hausbeck. 2002. The spatiotemporal genetic structure of Phytophthora capsici in Michigan and implications for disease management. Phytopathology 92: 681684.
61. Langcake, P. 1974. Sterols in potato leaves and their effects on growth and sporulation of Phytophthora infestans. Trans. Br. Mycol. Soc. 63: 573586.
62. Leal,, J. A., M. E. Gallegly, and, V. G. Lilly. 1967. The relation of the carbon-nitrogen ratio in the basal medium to sexual reproduction in species of Phytophthora. Mycologia 59: 953964.
63. Leary, J. V.,, J. R. Roheim, and, G. A. Zentmyer. 1974. Ribosome content of various spore forms of Phytophthora spp. Phytopathology 64: 40408.
64. Leitz, R. A.,, G. L. Hartman,, W. L. Pedersen, and, C. D. Nickell. 2000. Races of Phytophthora sojae on soybean in Illinois. Plant Dis. 84: 487.
65. MacGregor, T.,, M. Bhattacharyya,, B. Tyler,, R. Bhat,, A. F. Schmitthenner, and, M. Gijzen. 2002. Genetic and physical mapping of Avr1a in Phytophthora sojae. Genetics 160: 949959.
66. Malajczuk, N. 1983. Microbial antagonism to Phytophthora, p. 197–218. In D. C. Erwin,, S. Bartnicki-Garcia, and, P. H. Tsao (ed.), Phytophthora, Its Biology, Taxonomy, Ecology, and Pathology. APS Press, St. Paul, MN.
67. Malcolmson, J. F. 1969. Races of Phytophthora infestans occurring in Great Britain. Trans. Br. Mycol. Soc. 53: 417423.
68. Martin,, F. N., and J. E. Loper. 1999. Soilborne plant diseases caused by Pythium spp: ecology, epidemiology, and prospects for biological control. Crit. Rev. Plant Sci. 18: 111181.
69. May, K. J., and, J. B. Ristaino. 2004. Identity of the mitochondrial DNA haplotype of Phytophthora infestans in historic specimens of the Irish potato famine. Mycol. Res. 108: 19.
70. Mayton, H.,, C. D. Smart,, B. C. Moravec,, E. S. G. Mizubuti,, A. E. Muldoon, and, W. E. Fry. 2000. Oospore survival and pathogenicity of single oospore recombinant progeny from a cross involving US-17 and US-8 genotypes of Phytophthora infestans. Plant Dis. 84: 11901196.
71. McKay, R. 1957. The longevity of the oospores of onion downy mildew Peronospora destructor (Berk.) Casp. Sci. Proc. Royal Dublin Soc. New Ser. 27: 295307.
72. McMorris,, T. C. 1978. Antheridiol and the oogoniols steroid hormones which control sexual reproduction in Achlya. Philos. Trans. R. Soc. Lond. B 284: 459470.
73. Michelmore, R. W.,, T. Ilott,, S. H. Hulbert, and, B. Farrara. 1988. The downy mildews. Adv. Plant Pathol. 6: 5379.
74. Michelmore, R. W., and, E. R. Sansome. 1982. Cytological studies of heterothallism and secondary homothallism in Bremia lactucae. Trans. Br. Mycol. Soc. 79: 291298.
75. Mooney, S. M. 1995. H. J. Muller and R. A. Fisher on the evolutionary significance of sex. J. Hist. Biol. 28: 133149.
76. Mortimer,, A. M., D. S. Shaw, and, E. R. Sansome. 1977. Genetical studies of secondary homothallism in Phytophthora dreschsleri. Arch. Microbiol. 111: 255259.
77. Muller, H. J. 1964. The relation of recombination to mutational advance. Mutat. Res. 1: 29.
78. Nelson,, E. B. 1990. Exudate molecules initiating fungal responses to seeds and roots. Plant Soil 129: 6174.
79. Oliva, R. F.,, L. J. Erselius,, N. E. Adler, and, G. A. Forbes. 2002. Potential of sexual reproduction among host-adapted populations of Phytophthora infestans sensu lato in Ecuador. Plant Pathol. 51: 710719.
80. Pegg, G. F., and, M. J. Mence. 1970. The biology of Peronospora viciae on pea: laboratory experiments on the effects of temperature, relative humidity and light on the production germination and infectivity of sporangia. Ann. Appl. Biol. 66: 417428.
81. Perumal, R.,, T. Isakeit,, M. Menz,, S. Katile,, E. G. No, and, C. W. Magill. 2006. Characterization and genetic distance analysis of isolates of Peronosclerospora sorghi using AFLP fingerprinting. Mycol. Res. 110: 471478.
82. Prakob, W., and, H. Judelson. 8 January 2007. Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genet. Biol. doi: 10.1016/j.fgb.206.11.011. [Epub ahead of print.]
83. Qi, J.,, T. Asano,, M. Jinno,, K. Matsui,, K. Atsumi,, Y. Sakagami, and, M. Ojika. 2005. Characterization of a Phytophthora mating hormone. Science 309: 1828.
84. Randall, T. A.,, A. Ah Fong, and, H. Judelson. 2003. Chromosomal heteromorphism and an apparent translocation detected using a BAC contig spanning the mating type locus of Phytophthora infestans. Fungal Genet. Biol. 38: 7584.
85. Reeves, R. J., and, R. M. Jackson. 1974. Stimulation of sexual reproduction in Phytophthora cinnamomi by damage. J. Gen. Microbiol. 84: 303310.
86. Ribeiro, O. K. 1983. Physiology of asexual sporulation and spore germination in Phytophthora, p. 55–70. In D. C. Erwin,, S. Bartnicki-Garcia, and, P. H. Tsao (ed.), Phytophthora, Its Biology, Taxonomy, Ecology, and Pathology. APS Press, St. Paul, MN.
87. Riethmuller, A.,, H. Voglmayr,, M. Göker, M. Weiss, and, F. Oberwinkler. 2002. Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia 94: 83849.
88. Ristaino, J. B. 2002. Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestans. Microbes Infect. 4: 13691377.
89. Romero, S., and, D. C. Erwin. 1969. Variation in pathogenicity among single oospore cultures of Phytophthora infestans. Phytopathology 59: 13101317.
90. Ruben, D. M., and, M. E. Stanghellini. 1978. Ultrastructure of oospore germination in Pythium aphanidermatum. Am. J. Bot. 65: 491501.
91. Rumbou, A., and, C. Gessler. 2004. Genetic dissection of Plasmopara viticola population from a Greek vineyard in two consecutive years. Eur. J. Plant Pathol. 110: 379392.
92. Sansome, E. 1980. Reciprocal translocation heterozygosity in heterothallic species of Phytophthora and its significance. Nature 241: 344345.
93. Schmitthenner,, A. F. 1999. Phytophthora rot of soybean, p. 39–42. In G. L. Hartman,, J. B. Sinclair, and, J. C. Rupe (ed.), Compendium of Soybean Diseases, 4th ed. APS Press, St. Paul, MN.
94. Schmitthenner, A. F.,, M. Hobe, and, R. G. Bhat. 1994. Phytophthora sojae races in Ohio over a 10-year interval. Plant Dis. 78: 269276.
95. Shang, H.,, C. R. Grau, and, R. D. Peters. 2000. Oospore germination of Aphanomyces euteiches in root exudates and on the rhizoplanes of crop plants. Plant Dis. 84: 99998.
96. Shattock, R. C.,, P. W. Tooley, and, W. E. Fry. 1986. Genetics of Phytophthora infestans: determination of recombination, segregation, and selling by isozyme analysis. Phytopathology 76: 410413.
97. Shaw, D. S. 1967. A method of obtaining single-oospore cultures of Phytophthora cactorum using live water snails. Phytopathology 57: 454.
98. Shaw,, D. S., and I. A. Khaki. 1971. Genetical evidence for diploidy in Phytophthora. Genet. Res. 17: 165167.
99. Smart, C. D., and, W. E. Fry. 2001. Invasions by the late blight pathogen: renewed sex and enhanced fitness. Biol. Invasions 3: 235243.
100. Sogin, M. L., and, J. D. Silberman. 1998. Evolution of the protists and protistan parasites from the perspective of molecular systematics. Int. J. Parasitol. 28: 1120.
101. Sussman, A. S., and, H. A. Douthit. 1973. Dormancy in microbial spores. Annu. Rev. Plant Physiol. 24: 311352.
102. Tooley, P. W., and, C. D. Therrien. 1987. Cytophotometric determination of the nuclear DNA content of 23 Mexican and 18 non-Mexican isolates of Phytophthora infestans. Exp. Mycol. 11: 1926.
103. Turkensteen, L. J.,, W. G. Flier,, R. Wanningen, and, A. Mulder. 2000. Production, survival and infectivity of oospores of Phytophthora infestans. Plant Pathol. 49: 688696.
104. Van Der Gaag, D., and, H. D. Frinking. 1997. Factors affecting germination of oospores of Peronospora viciae f. sp. pisi in vitro. Eur. J. Plant Pathol. 103: 573580.
105. van der Lee, T.,, A. Testa,, A. Robold,, J. W. van’t Klooster, and F. Govers. 2004. High density genetic linkage maps of Phytophthora infestans reveal trisomic progeny and chromosomal rearrangements. Genetics 157: 949956.
106. Van der Lee, T.,, A. Testa,, J. van’t Klooster,, G. van den Berg-Velthuis, and F. Govers. 2001. Chromosomal deletion in isolates of Phytophthora infestans correlates with virulence on R3, R10, and R11 potato lines. Mol. Plant-Microbe Interact. 14: 1441452.
107. Vercesi, A.,, R. Tornaghi,, S. Sant,, S. Burruano, and, F. Faoro. 1999. A cytological and ultrastructural study on the maturation and germination of oospores of Plasmopara viticola from overwintering vine leaves. Mycol. Res. 103: 193202.
108. Whisson, S. C.,, A. Drenth,, D. J. Maclean, and, J. A. Irwin. 1994. Evidence for outcrossing in Phytophthora sojae and linkage of a DNA marker to two avirulence genes. Curr. Genet. 27: 7782.
109. Whisson, S. C.,, A. Drenth,, D. J. MacLean, and, J. A. G. Irwin. 1995. Phytophthora sojae avirulence genes, RAPD, and RFLP markers used to construct a detailed genetic linkage map. Mol. Plant-Microbe Interact. 8: 988995.
110. Wickens, M.,, D. S. Bernstein,, J. Kimble, and, R. Parker. 2002. A PUF family portrait: 3 UTR regulation as a way of life. Trends Genet. 18: 150157.
111. Windels, C. E. 2000. Aphanomyces root rot on sugar beet. Plant Health Prog. doi:10.1094/PHP-2000-0720-01-DG.
112. Wong,, F. P., H. N. Burr, and, W. F. Wilcox. 2001. Heterothallism in Plasmopara viticola. Plant Pathol. 50: 427432.
113. Yun, S.-H.,, M. L. Berbee,, O. C. Yoder, and, B. G. Turgeon. 1999. Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc. Natl. Acad. Sci. USA 96: 55925597.
114. Zwankhuizen, M. J.,, F. Govers, and, J. C. Zadoks. 2000. Inoculum sources and genotypic diversity of Phytophthora infestans in Southern Flevoland, the Netherlands. Eur. J. Plant Pathol. 106: 667680.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error