Chapter 31 : Ploidy and the Sexual Yeast Genome in Theory, Nature, and Experiment

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Ploidy and the Sexual Yeast Genome in Theory, Nature, and Experiment, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap31-1.gif /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap31-2.gif


Saccharomyces cerevisiae is a supermodel organism in the exploding field of genomics. This chapter provides an understanding of the molecular biology by which a genome is converted into phenotypes— the roles played by each gene, mechanisms of gene regulation, responses to stress, the developmental processes of gamete formation, mating, and sporulation, and so on. The mating system of establishes the potential for extensive inbreeding. A haploid yeast individual is one of two mating types, or that mate spontaneously on contact with each other. The signature of recombination is seen in the evolutionary ancestries of different segments of the genome. In an asexual population, the evolutionary histories of all the genes are the same, and phylogenetic trees drawn from different genes are usually the same. Adaptation to organic phosphate limitation in two independent chemostat experiments occurred by chromosomal rearrangements. Retrotransposition is the mechanism by which Ty elements achieve their biased transmission and infective spread (there is another type of nuclear mobile element, transposons, which use a different, DNA-mediated mechanism, but they are not found in yeast genomes). Ploidy is one of the most fundamental features of genome structure, but as with sex, there is still no widely accepted explanation for the observed variation in ploidy. heterozygosity is certainly more than just an indicator of diploidy.

Citation: Zeyl C. 2007. Ploidy and the Sexual Yeast Genome in Theory, Nature, and Experiment, p 507-525. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch31
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 31.1
Figure 31.1

Nuclear-mitochondrial epistasis for fitness. Dashed lines and circles represent ancestral nuclear and mitochondrial genomes, respectively; solid lines and circles represent evolved genomes.

Citation: Zeyl C. 2007. Ploidy and the Sexual Yeast Genome in Theory, Nature, and Experiment, p 507-525. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 31.2
Figure 31.2

Schematic depiction of the population dynamics of parasitic DNA. (A) In asexual populations, selection opposes the increase in frequency of parasitic DNA. (B) In sexual populations, cycles of mating and meiosis enable parasitic DNA to spread despite selection, by infecting new lineages.

Citation: Zeyl C. 2007. Ploidy and the Sexual Yeast Genome in Theory, Nature, and Experiment, p 507-525. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 31.3
Figure 31.3

Tolerable fitness costs for genetic parasites () as a function of their rates of transmission by both mating types or genders ( + α)

Citation: Zeyl C. 2007. Ploidy and the Sexual Yeast Genome in Theory, Nature, and Experiment, p 507-525. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aa, E.,, J. P. Townsend,, R. I. Adams,, K. M. Nielsen, and, J. W. Taylor. 2006. Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Res. 6: 702715.
2. Adams, J.,, S. Puskas-Rosza,, J. Simlar, and, C. M. Wilke. 1992. Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. Curr. Genet. 22: 1319.
3. Adams, J., and, P. E. Hansche. 1974. Population studies in microorganisms I. Evolution of diploidy in Saccharomyces cerevisiae. Genetics 76: 327338.
4. Barraclough, T. G.,, C. W. Birky,, Jr., and A. Burt. 2003. Diversification in sexual and asexual organisms. Evolution 57: 21662172.
5. Bell, G. 1982. The Masterpiece of Nature: the Evolution and Genetics of Sexuality. University of California, Berkeley.
6. Bell, G. 1993. The sexual nature of the eukaryote genome. J. Hered. 84: 351359.
7. Bell,, G. 1994. The comparative biology of the alternation of generations. Lect. Math. Life Sci. 25: 125.
8. Bell, G. 1997. Selection: the Mechanism of Evolution. Chapman & Hall, New York, NY.
9. Bell, G. 2005. Experimental sexual selection in Chlamydomonas. J. Evol. Biol. 18: 722734.
10. Bilanchone,, E. W., J. A. Claypool,, P. T. Kinsey, and, S. B. Sandmeyer. 1993. Positive and negative regulatory elements control expression of the yeast retrotransposon Ty3. Genetics 134: 685700.
11. Birdsell, J., and, C. Wills. 1996. Significant competitive advantage conferred by meiosis and syngamy in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93: 908912.
12. Blanc, V. M., and, J. S. Adams. 2003. Identification of mutations increasing fitness in laboratory populations. Genetics 165: 975983.
13. Boeke, J. D. 1989. Transposable elements in Saccharomyces cerevisiae, p. 335–374. In D. E. Berg and, M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, DC.
14. Boeke, J. D., and, S. B. Sandmeyer. 1991. Yeast transposable elements, p. 193-261. In The Molecular and Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis, and Energetics, vol. I. Cold Spring Harbor, Plainview, NY.
15. Bradshaw, V. A., and, K. McEntee. 1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol. Gen. Genet. 218: 465474.
16. Brodie, E. D. I. 2000. Why evolutionary genetics does not always add up, p. 3–19. In J. B. Wolf,, E. D. Brodie III, and, M. J. Wade (ed.), Epistasis and the Evolutionary Process. Oxford University Press, New York, NY.
17. Brown, M. J. F.,, R. Loosli, and, P. Schmid-Hempel. 2000. Condition-dependent expression of virulence in trypanosomes infecting bumblebees. Oikos 91: 421427.
18. Bulmer, M. 1994. Theoretical Evolutionary Ecology. Sinauer, Sunderland, MA.
19. Burt, A., and, R. Trivers. 2006. Genes in Conflict. Harvard University Press, Cambridge, MA.
20. Butler, G.,, C. Kenny,, A. Fagan,, C. Kurischko,, C. Gaillardin, and, K. H. Wolfe. 2004. Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc. Natl. Acad. Sci. USA 101: 16321637.
21. Cech, T. R. 1986. The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44: 207210.
22. Cech,, T. R. 1987. The chemistry of self-splicing RNA and RNA enzymes. Science 236: 15321539.
23. Chalker, D. L., and, S. B. Sandmeyer. 1990. Transfer RNA genes are genomic targets for de novo transposition of the yeast retrotransposon Ty3. Genetics 126: 837850.
24. Crow, J., and, M. Kimura. 1965. Evolution in sexual and asexual populations. Am. Nat. 99: 439450.
25. Crow, J. F., and, M. J. Simmons. 1983. The mutation load in Drosophila, p. 1–35. In M. Ashburner,, H. L. Carson, and, J. N. Thompson (ed.), The Genetics and Biology of Drosophila, vol. 3. Academic Press, London, United Kingdom.
26. Cullen, P. J., and, G. F. Sprague, Jr. 2000. Glucose depletion causes haploid invasive growth in yeast. Proc. Natl. Acad. Sci. USA 97: 1361913624.
27. Da Silva, J., and, G. Bell. 1992. The ecology and genetics of fitness in Chlamydomonas VI. Antagonism between natural selection and sexual selection. Proc. R. Soc. Lond. B 249: 227283.
28. David, P. 1998. Heterozygosity-fitness correlations: new perspectives on old problems. Heredity 80: 531537.
29. Deutschbauer,, A. M., R. M. Williams,, A. M. Chu, and, R. W. Davis. 2002. Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 99: 1553015535.
30. Dieckmann, U., and, M. Doebeli. 1999. On the origin of species by sympatric speciation. Nature 400: 354357.
31. Dietrich, F. S.,, S. Voegeli,, S. Brachat,, K. G. A. Lerch,, S. Steiner,, C. Mohr,, P. L. R. Pohlmann,, S. Choi,, R. A. Wing,, A. Flavier,, T. D. Gaffney, and, P. Philippsen. 2004. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304: 304307.
32. Dujon, B. 1989. Group I introns as mobile genetic elements: facts and mechanistic speculations—a review. Gene 82: 91114.
33. Dujon,, B. 1996. The yeast genome project: what did we learn? Trends Genet. 12: 263270.
34. Dujon, B.,, D. Sherman,, G. Fischer,, P. Durrens,, S. Casaregola,, I. Lafontaine,, J. de Montigny,, C. N. C. Marck,, E. Talla,, N. Goffard,, L. Frangeul,, M. Aigle,, V. Anthouard,, V. B. A. Babour,, S. Barnay,, S. Blanchin,, J.-M. Beckerich,, E. Beyne,, C. Bleykasten,, J. B. A. Boisrame,, L. Cattolico,, F. Confanioleri,, A. de Daruvar,, L. Despons,, E. Fabre,, H. F.-D. C. Fairhead,, A. Groppi,, F. Hantraye,, C. Hennequin,, N. Jauniaux,, P. Joyet,, A. K. R. Kachouri,, R. Koszul,, M. Lemaire,, I. Lesur,, L. Ma,, H. Muller,, J.-M. Nicaud,, S. O. M. Nikolski,, O. Ozier-Kalogeropoulos,, S. Pellenz,, S. Potier,, G.-F. Richard,, M.-L. Straub,, D. S. A. Suleau,, F. Tekaia,, M. Wesolowski-Louvel,, E. Westhof,, B. Wirth,, I. Z. M. Zeniou-Meyer,, M. Bolotin-Fukuhara,, A. Thierry,, C. Bouchier,, B. Caudron, and, C. G. C. Scarpelli,, J. Weissenbach,, P. Wincker, and, J.-L. Souciet. 2004. Genome evolution in yeasts. Nature 430: 3544.
35. Dunham, M. J.,, H. Badrane,, T. Ferea,, J. Adams,, P. O. Brown,, F. Rosenzweig, and, D. Botstein. 2002. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 99: 1614416149.
36. Ferea, T. L.,, D. Botstein,, P. O. Brown, and, R. F. Rosenzwieg. 1999. Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc. Natl. Acad. Sci. USA 96: 9721- 9726.
37. Fingerman, E. G.,, P. G. Dombrowski,, C. A. Francis, and, P. D. Sniegowski. 2003. Distribution and sequence analysis of a novel Ty3-like element in natural Saccharomyces paradoxus isolates. Yeast 20: 761770.
38. Finnegan, D. J. 1989. Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103107.
39. Fraser,, J. A., and J. Heitman. 2004. Evolution of fungal sex chromosomes. Mol. Microbiol. 51: 299306.
40. Futcher, B.,, E. Reid, and, D. A. Hickey. 1988. Maintenance of the 2 micron circle plasmid of Saccharomyces cerevisiae by sexual transmission: an example of a selfish DNA. Genetics 118: 411415.
41. Galitski, T.,, A. J. Saldanha,, C. A. Styles,, E. S. Lander, and, G. R. Fink. 1999. Ploidy regulation of gene expression. Science 285: 251254.
42. Gancedo, J. M. 2001. Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25: 107123.
43. Gingold,, E. B. 1988. The replication and segregation of yeast mitochondrial DNA, p. 149-170. In S. A. Boffey and, D. Lloyd (ed.), The Division and Segregation of Organelles. Cambridge Univ. Press, New York, NY.
44. Glazunov, A. V.,, A. V. Boreiko, and, A. Esser. 1989. Relative competitiveness of haploid and diploid yeast cells growing in a mixed population. Mikrobiologiia 68: 769777.
45. Goddard, M. R., and, A. Burt. 1999. Recurrent invasion and extinction of a selfish gene. Proc. Natl. Acad. Sci. USA 96: 1388013885.
46. Goldstein, A. L., and, J. H. McCusker. 2001. Development of Saccharomyces cerevisiae as a model pathogen: a system for the genetic identification of gene products required for survival in the mammalian host environment. Genetics 159: 499513.
47. Goodnight, C. J. 1988. Epistasis and the effect of founder events on the additive genetic variance. Evolution 42: 441454.
48. Green,, R. F., and D. L. G. Noakes. 1995. Is a little bit of sex as good as a lot? J. Theor. Biol. 174: 8796.
49. Grimberg, B., and, C. Zeyl. 2005. The effects of sex and mutation rate on adaptation in test tubes and to mouse hosts by Saccharomyces cerevisiae. Evolution 59: 431438.
50. Haldane, J. B. S. 1924. A mathematical theory of natural and artificial selection. I. Trans. Camb. Phil. Soc. 23: 1941.
51. Hansche,, P. E., V. Beres, and, P. Lange. 1978. Gene duplication in Saccharomyces cerevisiae. Genetics 88: 673687.
52. Hansen, L. J.,, D. L. Chalker, and, S. B. Sandmeyer. 1988. Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol. Cell. Biol. 8: 52455246.
53. Helling, R. B.,, C. N. Vargas, and, J. Adams. 1987. Evolution of Escherichia coli during growth in a constant environment. Genetics 116: 349358.
54. Herskowitz, I.,, J. Rine, and, J. Strathern. 1992. Mating-type determination and mating-type interconversion in Saccharomyces cerevisiae, p. 583–656. In E. W. Jones,, J. R. Pringle, and, J. R. Broach (ed.), The Molecular and Cellular Biology of the Yeast Saccharomyces, vol. II. Gene Expression. Cold Spring Harbor Laboratory Press, Plainview, NY.
55. Hickey, D. A. 1982. Selfish DNA: a sexually transmitted nuclear parasite. Genetics 101: 519531.
56. Hickey,, D. A., and M. R. Rose. 1988. The role of gene transfer in the evolution of eukaryotic sex, p. 161-175. In R. E. Michod and, B. R. Levin (ed.), The Evolution of Sex. Sinauer, Sunderland, MA.
57. Jenkins, C. D., and, M. Kirkpatrick. 1995. Deleterious mutation and the evolution of genetic life cycles. Evolution 49: 512520.
58. Ji, H.,, D. P. Moore,, M. A. Blomberg,, L. T. Braiterman,, D. F. Voytas,, G. Natsoulis, and, J. D. Boeke. 1993. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73: 10071018.
59. Johnson, L. J.,, V. Koufopanou,, M. R. Goddard,, R. Hetherington,, S. M. Schafer, and, A. Burt. 2004. Population genetics of the wild yeast Saccharomyces paradoxus. Genetics 166: 4352.
60. Joshi, N. V. 1990. Transposable-mediated evolution of sex: a population genetic model. J. Genet. 69: 127139.
61. Kalz,, O., and C. Koella. 2003. Host growth conditions regulate the plasticity of horizontal and vertical transmission in Holospora undulata, a bacterial parasite of the protozoan Paramecium caudatum. Evolution 57: 15351542.
62. Keeling, P. J., and, A. J. Roger. 1995. The selfish pursuit of sex. Nature 375: 283.
63. Kellis, M.,, B. W. Birren, and, E. S. Lander. 2004. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428: 617624.
64. Kennell, J. C.,, J. V. Moran,, P. S. Perlman,, R. A. Butow, and, A. C. Lambowitz. 1993. Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria. Cell 73: 133146.
65. Kim, J. M.,, S. Vanguri,, J. D. Boeke,, A. Gabriel, and, D. F. Voytas. 1998. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8: 464478.
66. Kinsey, P. T., and, S. B. Sandmeyer. 1995. Ty3 transposes in mating populations of yeast: a novel transposition assay for Ty3. Genetics 139: 8194.
67. Kirchner, J.,, S. B. Sandmeyer, and, D. Forrest. 1992. Transposition of a Ty3 GAGS-POL3 fusion mutant is limited by availability of capsid protein. J. Virol. 66: 60816092.
68. Knop, M. 2006. Evolution of the hemiascomycete yeasts: on life styles and the importance of inbreeding. Bioessays 28: 696708.
69. Kondrashov,, A. S., and J. F. Crow. 1991. Haploidy or diploidy: which is better ? Nature 351: 314315.
70. Korona, R. 1999. Unpredictable fitness transitions between haploid and diploid strains of genetically loaded yeast Saccharomyces cerevisiae. Genetics 151: 7785.
71. Koufopanou,, V., M. R. Goddard, and, A. Burt. 2002. Adaptation for horizontal transfer in a homing endonuclease. Mol. Biol. Evol. 19: 239246.
72. Landry, C. R.,, J. P. Townsend,, D. L. Hartl, and, D. Cavalieri. 2006. Ecological and evolutionary genomics of Saccharomyces cerevisiae. Mol. Ecol. 15: 575591.
73. Lengeler, K. B.,, R. C. Davidson,, C. D’Souza,, T. Harashima,, W. C. Shen,et al. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. 64: 746785.
74. Lewis, W. M. 1985. Nutrient scarcity as an evolutionary cause of haploidy. Am. Nat. 125: 692701.
75. Lewontin,, R. C. 1974. The Genetic Basis of Evolutionary Change. Columbia University Press, New York, NY.
76. Lo, H. J.,, J. R. Kohler,, B. DiDomenico,, D. Loebenberg,, A. Cacciapuoti, et al. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939949.
77. Lynch, M.,, J. Blanchard,, D. Houle,, T. Kibota,, S. Schultz,, L. Vassilieva, and, J. Willis. 1999. Perspective: spontaneous deleterious mutation. Evolution 53: 645663.
78. Mable, B. K. 2001. Ploidy evolution in the yeast Saccharomyces cerevisiae: a test of the nutrient limitation hypothesis. J. Evol. Biol. 14: 157170.
79. Mable,, B. K., and S. P. Otto. 2001. Masking and purging mutations following EMS treatment in haploid, diploid and tetraploid yeast ( Saccharomyces cerevisiae). Genet. Res. 77: 926.
80. Marsischky, G. T.,, N. Filosi,, M. F. Kane, and, R. Kolodner. 1996. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10: 407420.
81. Mayer, V. W., and, A. Aguilera. 1990. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat. Res. 231: 177186.
82. McCusker, J. H.,, K. V. Clemons,, D. A. Stevens, and, R. W. Davis. 1994. Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics 136: 12611269.
83. Metzenberg, R. L., and, N. L. Glass. 1990. Mating type and mating strategies in Neurospora. Bioessays 12: 5359.
84. Moran, J. V.,, S. Zimmerly,, R. Eskes,, J. C. Kennell,, A. M. Lambowitz,, R. A. Butow, and, P. S. Perlman. 1995. Mobile group II introns of yeast mitochondrial DNA are novel site-specific retroelements. Mol. Cell. Biol. 15: 28282838.
85. Mortimer, R. K. 2000. Evolution and variation of the yeast (Saccharomyces) genome. Genome Res. 10: 403409.
86. Mueller,, M. W., M. Allmaler,, R. Eskes, and, R. J. Schweyen. 1993. Transposition of group II intron al1 in yeast and invasion of mitochondrial genes at new locations. Nature 366: 174178.
87. Muller, H. J. 1932. Some genetic aspects of sex. Am. Nat. 66: 118138.
88. Naidkhardt,, K., and A. V. Glasunov. 1991. Competition of isogenic haploid and diploid cells of the yeast Saccharomyces cerevisiae and Pichia pinus growing in mixed populations. Mikrobiologiia 60: 686692. (In Russian.)
89. Naumov, G. I.,, E. S. Naumova, and, P. Sniegowski. 1998. Saccharomyces paradoxus and Saccharomyces cerevisiae are associated with exudates of North American oaks. Can. J. Microbiol. 44: 10451050.
90. Nelson, M. A. 1996. Mating systems in ascomycetes: a romp in the sac. Trends Genet. 12: 6974.
91. Ohno,, S. 1970. Evolution by Gene Duplication. George Allen and Unwin, London, United Kingdom.
92. Orr, H. A., and, S. P. Otto. 1994. Does diploidy increase the rate of adaptation? Genetics 136: 14751480.
93. Otto, S. P. 1994. The role of deleterious and beneficial mutations in the evolution of ploidy levels, p. 69–96. In M. Kirkpatrick (ed.), Theories for the Evolution of Haploid-Diploid Life Cycles. American Mathematical Society, Providence, RI.
94. Otto, S. P., and, T. Lenormand. 2002. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 3: 252261.
95. Otto, S. P., and, D. B. Goldstein. 1992. Recombination and the evolution of diploidy. Genetics 131: 745751.
96. Otto, S. P., and, J. C. Marks. 1996. Mating systems and the evolutionary transition between haploidy and diploidy. Biol. J. Linn. Soc. 57: 197218.
97. Paquin, C., and, J. Adams. 1983. Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations. Nature 302: 495500.
98. Philippsen, P. H.,, J. Eibel,, J. Gafner, and, A. Stotz. 1983. Ty elements and the stability of the yeast genome. In M. Korhola and, E. Vaisanen (ed.), Gene Expression in Yeast. Foundation for Biotechnical and Industrial Fermentation Research, Helsinki, Finland.
99. Piskur, J. 2001. Origin of the duplicated regions in the yeast genomes. Trends Genet. 17: 302303.
100. Querol,, A., M. T. Fernández-Espinar,, M. del Olmo, and E. Barrio. 2003. Adaptive evolution of wine yeast. Int. J. Food Microbiol. 86: 310.
101. Rainey, P. B., and, M. Travisano. 1998. Adaptive radiation in a heterogeneous environment. Nature 394: 6972.
102. Rose, M. R. 1983. The contagion mechanism for the evolution of sex. J. Theo. Biol. 101: 137146.
103. Rozen,, D. E., and R. E. Lenski. 2000. Long-term experimental evolution in Escherichia coli. VIII. Dynamics of a balanced polymorphism. Am. Nat. 155: 2435.
104. Ruderfer, D. M.,, S. C. Pratt,, H. S. Seidel, and, L. Kruglyak. 2006. Population genomic analysis of out-crossing and recombination in yeast. Nat. Genet. 38: 10771081.
105. Sniegowski, P.,, P. G. Dombrowski, and, E. Fingerman. 2002. Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Res. 1: 299306.
106. Syvanen, M. 1984. The evolutionary implications of mobile genetic elements. Trends Genet. 18: 271293.
107. Taylor,, D., C. Zeyl, and, E. Cooke. 2002. Conflicting levels of selection in the accumulation of mitochondrial defects in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 99: 36903694.
108. Thomas, F.,, S. P. Brown,, M. Sukhedo, and, F. Renaud. 2002. Understanding parasite strategies: a state-dependent approach? Trends Parasitol. 18: 387390.
109. Tsong, A.,, B. T. Tuch,, H. Li, and, A. D. Johnson. 2006. Evolution of alternative transcriptional circuits with identical logic. Nature 443: 415420.
110. Van der Sand, S. T.,, W. Greenhalf,, D. C. Gardner, and, S. G. Oliver. 1995. The maintenance of self-replicating plasmids in Saccharomyces cerevisiae: mathematical modeling, computer simulations, and experimental tests. Yeast 11: 641658.
111. Weiss, R. L.,, J. R. Kukora, and, J. Adams. 1975. The relationship between enzyme activity, cell geometry, and fitness in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 72: 794798.
112. Wilke, C., and, J. Adams. 1992. Fitness effects of Ty transposition in Saccharomyces cerevisiae. Genetics 131: 3142.
113. Wilke, C. M.,, E. Maimer, and, J. Adams. 1992. The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae. Genetics 86: 155173.
114. Winzeler, E. A.,, D. D. Shoemaker,, A. Astromoff,, H. Liang,, K. Anderson,, B. Andre,, R. Bangham,, R. Benito,, J. D. Boeke,, H. Bussey,, A. M. Chu,, C. Connelly,, K. Davis,, F. Dietrich,, S. W. Dow,, M. El Bakkoury,, F. Foury,, S. H. Friend,, E. Gentalen,, G. Giaever,, J. H. Hegemann,, T. Jones,, M. Laub,, H. Liao,, N. Liebundguth,, D. J. Lockhart,, A. Lucau-Danila,, M. Lussier,, N. M’Rabet,, P. Menard,, M. Mittmann,, C. Pai,, C. Rebischung,, J. L. Revuelta,, L. Riles,, C. J. Roberts,, P. Ross-MacDonald,, B. Scherens,, M. Snyder,, S. Sookhai-Mahadeo,, R. K. Storms,, S. Veronneau,, M. Voet,, G. Volckaert,, T. R. Ward,, R. Wysocki,, G. S. Yen,, K. Yu,, K. Zimmermann,, P. Philippsen,, M. Johnston, and, R. W. Davis. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901906.
115. Wolfe, K. H., and, D. C. Shields. 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708713.
116. Xu, J. 2002. Estimating the spontaneous mutation rate of loss of sex in the human pathogenic fungus Cryptococcus neoformans. Genetics 162: 11571167.
117. Zeyl,, C., G. Bell, and, D. M. Green. 1996. Sex and the spread of retrotransposon Ty3 in experimental populations of Saccharomyces cerevisiae. Genetics 143: 15671577.
118. Zeyl, C., and, J. A. G. M. DeVisser. 2001. Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae. Genetics 157: 5361.
119. Zeyl, C.,, B. Andreson, and, E. Weninck. 2005. Nuclear-mitochondrial epistasis for fitness in Saccharomyces cerevisiae. Evolution 59: 910914.
120. Zeyl, C.,, C. Curtin,, K. Karnap, and, E. Beauchamp. 2005. Tradeoffs between sexual and vegetative fitness in Saccharomyces cerevisiae. Evolution 59: 21092115.
121. Zeyl, C.,, T. Vanderford, and, M. Carter. 2003. An evolutionary advantage of haploidy in large yeast populations. Science 299: 555558.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error