Chapter 6 : Superantigen Architecture: Functional Decoration on a Conserved Scaffold

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Superantigen Architecture: Functional Decoration on a Conserved Scaffold, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815844/9781555814243_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555815844/9781555814243_Chap06-2.gif


This chapter outlines the details of the core three-dimensional structure of the superantigens (SAgs) and discusses precisely what is conserved among the family along with the evolutionary reasons for conservation. It then discusses the variation that has been grafted onto the conserved structure, allowing different members of the family to bind to major histocompatibility class II molecules (MHC-II) and the T-cell receptors (TCRs) in many different configurations, with different affinities and, in the case of TCR binding, different specificities. The interactions between SAgs and their target MHC-II molecules and TCRs cover virtually all permutations of the following binding modes: MHC-II α-chain binding; MHC-II β-chain binding; TCR Vα binding and restriction; TCR Vβ binding and restriction; SAg oligomerization; MHC-II cross-linking. For the purposes of discussion these variations are loosely divide into MHC-II α-chain binding and its associated TCR interactions, MHC-II α-chain binding and its associated TCR interactions, and SAg oligomerization and MHC-II cross-linking. As secreted proteins from two highly adapted human pathogens, and , SAgs and the related staphylococcal superantigen-like proteins (SSLs) must be subject to severe immune pressure due to their potent effects. Despite their notoriety, it is likely that, for the most part, the effects of SAg and SSL secretion are relatively benign, and that only when local concentrations rise, or synergistic relationships with other factors apply, do they trigger the severe invasive disease with which they are associated.

Citation: Arcus V, Baker E. 2007. Superantigen Architecture: Functional Decoration on a Conserved Scaffold, p 93-102. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Abrahmsen, L.,, M. Dohlsten,, S. Segren,, P. Bjork,, E. Jonsson, and, T. Kalland. 1995. Characterization of two distinct MHC class II binding sites in the superantigen staphylococcal enterotoxin A. EMBO J. 14: 29782986.
2. Al-Daccak, R.,, K. Mehindate,, F. Damdoumi,, P. Etongue-Mayer,, H. Nilsson,, P. Antonsson,, M. Sundstrom,, M. Dohlsten,, R. P. Sekaly, and, W. Mourad. 1998. Staphylococcal enterotoxin D is a promiscuous superantigen offering multiple modes of interactions with the MHC class II receptors. J. Immunol. 160: 225232.
3. Andersen, P. S.,, P. M. Lavoie,, R. P. Sekaly,, H. Churchill,, D. M. Kranz,, P. M. Schlievert,, K. Karjalainen, and, R. A. Mariuzza. 1999. Role of the T cell receptor alpha chain in stabilizing TCR-superantigen-MHC class II complexes. Immunity 10: 473483.
4. Arcus, V. L. 2002. OB-fold domains: a snapshot of the evolution of sequence, structure and function. Curr. Opin. Struct. Biol. 12: 794801.
5. Arcus, V. L.,, R. Langley,, T. Proft,, J. D. Fraser, and, E. N. Baker. 2002. The three-dimensional structure of a superantigen-like protein, SET3, from a pathogenicity island of the Staphylococcus aureus genome. J. Biol. Chem. 277: 3227432281.
6. Arcus, V. L.,, T. Proft,, J. A. Sigrell,, H. M. Baker,, J. D. Fraser, and, E. N. Baker. 2000. Conservation and variation in superantigen structure and activity highlighted by the three-dimensional structures of two new superantigens from Streptococcus pyogenes. J. Mol. Biol. 299: 157168.
7. Baker, H. M.,, T. Proft,, P. D. Webb,, V. L. Arcus,, J. D. Fraser, and, E. N. Baker. 2004. Crystallographic and mutational data show that the streptococcal pyrogenic exotoxin J can use a common binding surface for T-cell receptor binding and dimerization. J. Biol. Chem. 279: 3857138576.
8. Baker, M. D.,, I. Gendlina,, C. M. Collins, and, K. R. Acharya. 2004. Crystal structure of a dimeric form of streptococcal pyrogenic exotoxin A (SpeA1). Protein Sci. 13: 22852290.
9. deAlba, Y. B.,, P. N. Marche,, P. A. Cazenave,, I. Cloutier,, R. P. Sekaly, and, J. Thibodeau. 1997. V alpha domain modulates the multiple topologies of mouse T cell receptor V beta 20/staphylococcal enterotoxins A and E complexes. Eur. J. Immunol. 27: 9299.
10. Derrick, J. P., and, D. B. Wigley. 1994. The 3rd IgG-binding domain from Streptococcal protein-G–an analysis by X-ray crystallography of the structure alone and in a complex with Fab. J. Mol. Biol. 243: 906918.
11. Fields, B. A.,, E. L. Malchiodi,, H. M. Li,, X. Ysern,, C. V. Stauffacher,, P. M. Schlievert,, K. Karjalainen, and, R. A. Mariuzza. 1996. Crystal structure of a T-cell receptor beta-chain complexed with a superantigen. Nature 384: 188192.
12. Fitzgerald, J. R.,, S. D. Reid,, E. Ruotsalainen,, T. J. Tripp,, M. Y. Liu,, R. Cole,, P. Kuusela,, P. M. Schlievert,, A. Jarvinen, and, J. M. Musser. 2003. Genome diversification in Staphylococcus aureus: molecular evolution of a highly variable chromosomal region encoding the staphylococcal exotoxin-like family of proteins. Infect. Immun. 71: 28272838.
13. Geisbrecht, B. V.,, B. Y. Hamaoka,, B. Perman,, A. Zemla, and, D. J. Leahy. 2005. The crystal structures of EAP domains from Staphylococcus aureus reveal an unexpected homology to bacterial superantigens. FASEB J. 19: A313A314.
14. Haas, P. J.,, C. J. C. de Haas,, M. Poppelier,, K. P. M. van Kessel,, J. A. G. van Strijp,, K. Dijkstra,, R. M. Scheek,, H. Fan,, J. A. W. Kruijtzer,, R. M. J. Liskamp, and, J. Kemmink. 2005. The structure of the C5a receptor-blocking domain of chemotaxis inhibitory protein of Staphylococcus aureus is related to a group of immune evasive molecules. J. Mol. Biol. 353: 859872.
15. Hennecke, J., and, D. C. Wiley. 2002. Structure of a complex of the human alpha/beta T cell receptor (TCR) HA1.7, influenza hemagglutinin peptide, and major histocompatibility complex class II molecule, HLA-DR4 (DRA*0101 and DRB1*0401): Insight into TCR cross-restriction and alloreactivity. J. Exp. Med. 195: 571581.
16. Hudson, K. R.,, R. E. Tiedemann,, R. G. Urban,, S. C. Lowe,, J. L. Strominger, and, J. D. Fraser. 1995. Staphylococcal-enterotoxin-A has 2 cooperative binding-sites on major histocompatibility complex class-II. J. Exp. Med. 182: 711720.
17. Jardetzky, T. S.,, J. H. Brown,, J. C. Gorga,, L. J. Stern,, R. G. Urban,, Y. I. Chi,, C. Stauffacher,, J. L. Strominger, and, D. C. Wiley. 1994. 3-Dimensional structure of a human class-II histocompatibility molecule complexed with superantigen. Nature 368: 711718.
18. Kim, J. S.,, R. G. Urban,, J. L. Strominger, and, D. C. Wiley. 1994. Toxic shock syndrome toxin-1 complexed with a class-II major histocompatibility molecule HLA-DR1. Science 266: 18701874.
19. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi, and, K. Hiramatsu. 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357: 12251240.
20. Langley, R.,, B. Wines,, N. Willoughby,, I. Basu,, T. Proft, and, J. D. Fraser. 2005. The staphylococcal super-antigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc alpha RI binding and serum killing of bacteria. J. Immunol. 174: 29262933.
21. Leder, L.,, A. Llera,, P. M. Lavoie,, M. I. Lebedeva,, H. M. Li,, R. P. Sekaly,, G. A. Bohach,, P. J. Gahr,, P. M. Schlievert,, K. Karjalainen, and, R. A. Mariuzza. 1998. A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor beta chain and major histocompatibility complex class II. J. Exp. Med. 187: 823833.
22. Li, H. M.,, A. Llera,, D. Tsuchiya,, L. Leder,, X. Ysern,, P. M. Schlievert,, K. Karjalainen, and, R. A. Mariuzza. 1998. Three-dimensional structure of the complex between a T cell receptor beta chain and the super-antigen staphylococcal enterotoxin B. Immunity 9: 807816.
23. Li, P. L.,, R. E. Tiedemann,, S. L. Moffat, and, J. D. Fraser. 1997. The superantigen streptococcal pyrogenic exotoxin C (SPE-C) exhibits a novel mode of action. J. Exp. Med. 186: 375383.
24. Li, Y. L.,, H. M. Li,, N. Dimasi,, J. K. McCormick,, R. Martin,, P. Schuck,, P. M. Schlievert, and, R. A. Mar-iuzza. 2001. Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II. Immunity 14: 93103.
25. Murzin, A. G. 1993. OB (Oligonucleotide Oligosaccharide Binding)-fold–common structural and functional solution for nonhomologous sequences. EMBO J. 12: 861867.
26. Nilsson, H.,, P. Bjork,, M. Dohlsten, and, P. Antonsson. 1999. Staphylococcal enterotoxin H displays unique MHC class II-binding properties. J. Immunol. 163: 66866693.
27. Papageorgiou, A. C.,, R. D. Brehm,, D. D. Leonidas,, H. S. Tranter, and, K. R. Acharya. 1996. The refined crystal structure of toxic shock syndrome toxin-1 at 2.07 angstrom resolution. J. Mol. Biol. 260: 553569.
28. Papageorgiou, A. C.,, C. M. Collins,, D. M. Gutman,, J. B. Kline,, S. M. O’Brien,, H. S. Tranter, and, K. R. Acharya. 1999. Structural basis for the recognition of superantigen streptococcal pyrogenic exotoxin A (SpeA1) by MHC class II molecules and T-cell receptors. EMBO J. 18: 921.
29. Petersson, K.,, G. Forsberg, and, B. Walse. 2004. Interplay between superantigens and immunoreceptors. Scand. J. Immunol. 59: 345355.
30. Petersson, K.,, M. Hakansson,, H. Nilsson,, G. Forsberg,, L. A. Svensson,, A. Liljas, and, B. Walse. 2001. Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence. EMBO J. 20: 33063312.
31. Petersson, K.,, H. Pettersson,, N. J. Skartved,, B. Walse, and, G. Forsberg. 2003. Staphylococcal enterotoxin H induces V alpha-specific expansion of T cells. J. Immunol. 170: 41484154.
32. Petersson, K.,, M. Thunnissen,, G. Forsberg, and, B. Walse. 2002. Crystal structure of a SEA variant in complex with MHC class II reveals the ability of SEA to crosslink MHC molecules. Structure 10: 16191626.
33. Proft, T.,, S. L. Moffatt,, C. J. Berkahn, and, J. D. Fraser. 1999. Identification and characterization of novel superantigens from Streptococcus pyogenes. J. Exp. Med. 189: 89101.
34. Proft, T.,, S. L. Moffatt,, K. D. Weller,, A. Paterson,, D. Martin, and, J. D. Fraser. 2000. The streptococcal superantigen SMEZ exhibits wide allelic variation, mosaic structure, and significant antigenic variation. J. Exp. Med. 191: 17651776.
35. Qian, J.,, B. Stenger,, C. A. Wilson,, J. Lin,, R. Jansen,, S. A. Teichmann,, J. Park,, W. G. Krebs,, H. Y. Yu,, V. Alexandrov,, N. Echols, and, M. Gerstein. 2001. PartsList: a web-based system for dynamically ranking protein folds based on disparate attributes, including whole-genome expression and interaction information. Nucleic Acids Res. 29: 17501764.
36. Rabijns, A.,, H. L. DeBondt, and, C. DeRanter. 1997. Three-dimensional structure of staphylokinase, a plasminogen activator with therapeutic potential. Nat. Struct. Biol. 4: 357360.
37. Redpath, S.,, S. M. Alam,, C. M. Lin,, A. M. O’Rourke, and, N. R. J. Gascoigne. 1999. Cutting edge: Trimolecular interaction of TCR with MHC class II and bacterial superantigen shows a similar affinity to MHC:peptide ligands. J. Immunol. 163: 610.
38. Roussel, A.,, B. F. Anderson,, H. M. Baker,, J. D. Fraser, and, E. N. Baker. 1997. Crystal structure of the streptococcal superantigen SPE-C: dimerization and zinc binding suggest a novel mode of interaction with MHC class II molecules. Nat. Struct. Biol. 4: 635643.
39. Schuster-Boeckler, B.,, J. Schultz, and, S. Rahmann. 2004. HMM logos for visualization of protein families. BMC Bioinformatics 5: 7.
40. Sundberg, E., and, T. S. Jardetzky. 1999. Structural basis for HLA-DQ binding by the streptococcal superantigen SSA. Nat. Struct. Biol. 6: 123129.
41. Sundberg, E. J.,, H. M. Li,, A. S. Llera,, J. K. McCormick,, J. Tormo,, P. M. Schlievert,, K. Karjalainen, and, R. A. Mariuzza. 2002. Structures of two streptococcal superantigens bound to TCR beta chains reveal diversity in the architecture of T cell signaling complexes. Structure 10: 687699.
42. Sundberg, E. J.,, P. S. Andersen,, P. M. Schlievert,, K. Karjalainen, and, R. A. Mariuzza. 2003. Structural, energetic, and functional analysis of a protein-protein interface at distinct stages of affinity maturation. Structure 11: 11511161.
43. Sundberg, E. J.,, Y. L. Li, and, R. A. Mariuzza. 2002. So many ways of getting in the way: diversity in the molecular architecture of superantigen-dependent T-cell signaling complexes. Curr. Opin. Immunol. 14: 3644.
44. Tiedemann, R. E., and, J. D. Fraser. 1996. Cross-linking of MHC class II molecules by staphylococcal enterotoxin A is essential for antigen-presenting cell and T cell activation. J. Immunol. 157: 39583966.
45. Vonbonin, A.,, S. Ehrlich,, G. Malcherek, and, B. Fleischer. 1995. Major histocompatibility complex class II-associated peptides determine the binding of the superantigen toxic shock syndrome toxin-1. Eur. J. Immunol. 25: 28942898.
46. Wang, X. Q.,, X. L. Lin,, J. A. Loy,, J. Tang, and, X. J. C. Zhang. 1998. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 281: 16621665.
47. Williams, R. J.,, J. M. Ward,, B. Henderson,, S. Poole,, B. P. O’Hara,, M. Wilson, and, S. P. Nair. 2000. Identification of a novel gene cluster encoding staphylococcal exotoxin-like proteins: characterization of the prototypic gene and its protein product, SET1. Infect. Immun. 68: 44074415.
48. Zhang, C., and, S. H. Kim. 2000. A comprehensive analysis of the Greek key motifs in protein beta-barrels and beta-sandwiches. Proteins-Struct. Func. Genet. 40: 409419.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error