Chapter 11 : Experimental Models of Superantigen-Mediated Neuropathology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Experimental Models of Superantigen-Mediated Neuropathology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815844/9781555814243_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555815844/9781555814243_Chap11-2.gif


There have been different attempts with superantigen to modify experimental allergic encephalomyelitis (EAE), which is taken as an animal model for multiple sclerosis (MS). MS is not simply an inflammatory disease like EAE. It is well established that in MS chronic degeneration runs in parallel to outbreaks of inflammation. The portions of inflammation and degeneration may vary so that different types of disease course can be distinguished. Recent studies indicate that the degenerative process MS is not always secondary to but may also precede neuroinflammation. The chapter presents experiments which demonstrate that superantigen expressed in the brain or spinal cord is capable of inducing neuroinflammation as in MS. Horizontal sections of the cerebral hemispheres at the corpus callosum and at the level of the lateral ventricles were stained with hematoxylin/eosin. It is well known that relapsing-remitting MS patients with frequent relapses progress faster than patients with less frequent relapses. HLA associations identified in patients with a relapsing-remitting course of MS may be due to major histocompatibility complex (MHC)-specific binding properties of T-cell superantigens. Different so-called autoimmune diseases involve nerves or muscles. Pathogens like bacteria or viruses are involved in part of them. Although it is likely that true autoimmune phenomena following molecular mimicry are of pathogenetic relevance in some of these diseases, it seems possible that superantigens are involved in parallel or alone in a subgroup of patients with autoimmune neuritis or myositis.

Citation: Kornhuber M, Emmer A, Gerlach K, Staege M. 2007. Experimental Models of Superantigen-Mediated Neuropathology, p 169-182. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

The figure illustrates the effects of intracerebral superantigen alone. Frontal sections of the rat brain at the level of the corpus callosum (cc), hematoxylin and eosin stain. The interhemispheric cleft has been marked by a star. (A) Five days after intracerebral SEA (bar, 1 mm). (B) Part of A at higher magnification. (C, D) Seven days after intracerebral SEB injection (SEB does not activate T cells in rats) and 4 days after intravenous ConA-blast injection; no reactive vessels are observed. The injection canal is surrounded by a few brownish macrophages, presumably containing blood degeneration products.

Citation: Kornhuber M, Emmer A, Gerlach K, Staege M. 2007. Experimental Models of Superantigen-Mediated Neuropathology, p 169-182. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Each data point represents the mean value obtained from at least two animals. All data sets were supplied with a linear fit. (a) The number of reactive blood vessels per tissue section rises linearly with the number of activated splenocytes injected intravenously. (b) The number of vessel cuffs on representative brain sections is displayed over the SEA concentration. SEA per se, open upward triangles; SEA plus ConA blasts, open circles (see text).

Citation: Kornhuber M, Emmer A, Gerlach K, Staege M. 2007. Experimental Models of Superantigen-Mediated Neuropathology, p 169-182. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Babbe, H.,, A. Roers,, A. Waisman,, H. Lassmann,, N. Goebels,, R. Hohlfeld,, M. Friese,, R. Schroeder,, M. Deckert,, S. Schmidt,, R. Ravid, and, K. Rajewski. 2000. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192: 393404.
2. Barnett, M. H., and, J. W. Prineas. 2004. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55: 458468.
3. Bieber, A. J.,, D. R. Ure, and, M. Rodriguez. 2005. Genetically dominant spinal cord repair in a murine model of chronic progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 64: 4657.
4. Brocke, S.,, A. Gaur,, C. Piercy,, A. Gautam,, K. Gijbels,, C. G. Fathman, and L. Steinman. 1993. Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature 365: 642 644.
5. Cabre, P.,, A. Signate,, S. Olindo,, H. Merle,, D. Caparros–Lefebvre,, O. Bera, and, D. Smadja. 2005. Role of return migration in the emergence of multiple sclerosis in the French West Indies. Brain 128: 28992910.
6. Confavreux, C.,, S. Vukusic,, T. Moreau, and, P. Adeleine. 2000. Relapses and progression of disability in multiple sclerosis. N. Engl. J. Med. 343: 14301438.
7. Das, M. R.,, A. Cohen,, S. S. Zamvil,, H. Offner, and, V. K. Kuchroo. 1996. Prior exposure to superantigen can inhibit or exacerbate autoimmune encephalomyelitis: T–cell repertoire engaged by the autoantigen determines clinical outcome. J. Neuroimmunol. 71: 310.
8. De Stefano, N.,, S. Narayanan,, S. J. Francis,, S. Smith,, M. Mortilla,, M. C. Tartaglia,, M. L. Bartolozzi,, L. Guidi,, A. Federico, and, D. L. Arnold. 2002. Diffuse axonal and tissue injury in patients with multiple sclerosis with low lesion load and no disability. Arch. Neurol. 59: 15651571.
9. Filippi, M.,, M. Bozzali,, M. Rovaris,, O. Gonen,, C. Kasevadas,, A. Ghezi,, V. Martinelli,, R. I. Grossman,, G. Scotti,, G. Comi, and, A. Falini. 2003. Evidence for widespread axonal damage at the earliest clinic stage of multiple sclerosis. Brain 126: 433437.
10. Filippi, M.,, A. Campi,, V. Dousset,, C. Baratti,, V. Martinelli,, N. Canal,, G. Scotti, and, G. Comi. 1995. A magnetization transfer imaging study of normal–appearing white matter in multiple sclerosis. Neurology 45: 478482.
11. Filippi, M.,, M. A. Rocca,, G. Martino,, M. A. Horsfield, and, G. Comi. 1998. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann. Neurol. 43: 809814.
12. Franklin, R. J. 2002. Why does remyelination fail in multiple sclerosis. Nat. Rev. Neurosci. 3: 705714.
13. Jelinsky, S. A.,, J. S. Miyashiro,, K. A. Saraf,, C. Tunkey,, P. Reddy,, J. Newcombe,, J. L. Oesreicher,, E. Brown,, W. L. Trepicchio,, J. P. Leonard, and, S. Marusic. 2005. Exploiting genotypic differences to identify genes important for EAE development. J. Neurol. Sci. 239: 8193.
14. Kaiser, R.,, M. Obert,, R. Kaufmann, and, M. Czygan. 1997. IgG–antibodies to CNS proteins in patients with multiple sclerosis. Eur. J. Med. Res. 2: 169172.
15. Kornhuber, M. E.,, C. Ganz,, R. Lang,, T. Brill, and, W. Schmahl. 2002. Focal encephalitis in the Lewis rat induced by intracerebral superantigen and amplified by activated intravenous splenocytes. Neurosci. Lett. 324: 9396.
16. Kornhuber, M. E., and, S. Zierz. 2003. Possibilities and limitations of immunotherapy in multiple sclerosis. Inflammatory and degenerative parts of the disease require a new pathogenetic effect. Nervenarzt 74: 537538.
17. Lee, S. J.,, K. W. Wucherpfennig,, S. A. Brod,, D. Benjamin,, H. L. Weiner, and, D. A. Hafler. 1991. Common T–cell receptor V beta usage in oligoclonal T lymphocytes derived from cerebrospinal fluid and blood of patients with multiple sclerosis. Ann. Neurol. 29: 3340.
18. Lennon, V. A.,, D. M. Wingerchuk,, T. J. Kryzer,, S. J. Pittock,, C. F. Jucchinetti,, K. Fujihara,, I. Nakashima, and, B. G. Weinshenker. 2004. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364: 21062112.
19. Lock, C.,, G. Hermans,, R. Pedotti,, A. Brendolan,, E. Schadt,, H. Garren,, A. Langer–Gould,, S. Strober,, B. Canella,, J. Allard,, P. Klonowski,, A. Austin,, N. Lad,, N. Kaminski,, S. J. Galli,, J. R. Oksenberg,, C. S. Raine,, R. Heller, and, L. Steinman. 2002. Gene–microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8: 500508.
20. Lucchinetti, C.,, W. Brück,, J. Parisi,, B. Scheithauer,, M. Rodriguez, and, H. Lassmann. 2000. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47: 707717.
21. Meyer, 0. 1995. Superantigens and their implications in autoimmune diseases. Presse Med. 24: 11711177.
22. Parry, A.,, R. Corkill,, A. M. Blamire,, J. Palace,, S. Narayanan,, D. Arnold,, P. Styles, and, P. M. Mathews. 2003. Beta–Interferon treatment does not always slow the progression of axonal injury in multiple sclerosis. J. Neurol. 250: 171178.
23. Perron, H.,, J. A. Garson,, F. Bedin,, F. Beseme,, G. Paranhos–Baccala,, F. Komurian–Pradel,, F. Mallet,, P. W. Tuke,, C. Voisset,, J. L. Blond,, B. Lalande,, J. M. Seigneurin, and, B. Mandrand. 1997. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc. Natl. Acad. Sci. USA 94: 75837588.
24. PRISMS Study Group. 1998. Randomized double–blind placebo–controlled study of interferon–1a in relapsing/remitting multiple sclerosis. Lancet 352: 14981504.
25. Reiber, H.,, S. Ungefehr, and, C. Jacobi. 1998. The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult. Scler. 4: 111117.
26. Rott, O.,, H. Wekerle, and, B. Fleischer. 1992. Protection from experimental allergic encephalomyelitis by application of a bacterial superantigen. Int. Immunol. 4: 347353.
27. Rudge, P. 1991. Does a retrovirally encoded superantigen cause multiple sclerosis? J. Neurol. Neurosurg. Psychiatry 54: 853855.
28. Schiffenbauer, J.,, H. M. Johnson,, E. J. Butfiloski,, L. Wegrzyn, and, J. M. Soos. 1993. Staphylococcal su–perantigens can reactivate experimental allergic encephalomyelitis. Proc. Natl. Acad. Sci. USA 90: 85438546.
29. Skulina, C.,, S. Schmidt,, K. Dornmair,, H. Babbe,, A. Roers,, K. Rajewski,, H. Wekerle,, R. Hohlfeld, and, N. Goebels. 2004. Multiple sclerosis: brain–infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc. Natl. Acad. Sci. USA 101: 24282433.
30. Soos, J. M.,, J. Schiffenbauer, and, H. M. Johnson. 1993. Treatment of PL/J mice with the superantigen, staphylococcal enterotoxin B, prevents development of experimental allergic encephalomyelitis. J. Neuroimmunol. 43: 3943.
31. Torres, B. A.,, S. Kominsky,, G. Q. Perrin,, A. C. Hobeika, and, H. M. Johnston. 2001. Superantigens: the good, the bad, and the ugly. Exp. Biol. Med. 226: 164176.
32. Vandevelde, M., and, A. Zurbriggen. 2005. Demyelination in canine distemper virus infection: a review. Acta Neuropathol. 109: 5658.
33. Wekerle, H.,, C. Linington,, H. Lassmann, and, R. Meyermann. 1986. Cellular immune reactivity within the CNS. Trends Neurosci. 9: 271277.
34. Wingerchuk, D. M.,, W. F. Hogancamp,, P. C. O’Brien, and, B. G. Weinshenker. 1999. The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 53: 11071114.
35. Yoshimoto, T.,, H. Nagase,, H. Nakano,, A. Matsuzuwa, and, H. Nariuchi. 1996. Deletion of CD4+ T cells by mouse mammary tumor virus (FM) superantigen with broad specificity of T cell receptor beta–chain variable region. Virology 223: 387391.


Generic image for table
Table 1.

Gene expression of superantigen encephalitis (amplified by 10 ConA-blast i.v.) in CNS 7 days after SEA injection, at least 2-fold increase

Citation: Kornhuber M, Emmer A, Gerlach K, Staege M. 2007. Experimental Models of Superantigen-Mediated Neuropathology, p 169-182. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error