Chapter 3 : Pathogenesis of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Pathogenesis of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap03-2.gif


This chapter explores the genetic toolbox available for the study of physiology, the immunology relating to infection, and relevant animal models to probe the corresponding disease course. The development of better vaccines is contingent on an understanding of the mechanisms by which evades the innate and adaptive immune responses. A primary tuberculosis (TB) infection in humans generally results from the inhalation of a small number of bacilli. These bacteria are deposited in the lungs and are taken up by alveolar macrophages and dendritic cells (DC). is moderately resistant to many forms of reactive oxygen intermediates (ROI) due to the expression of typical detoxification enzymes, such as superoxide dismutase and catalase-peroxidase-peroxinitrase (KatG). Transmission electron microscopy experiments performed in the late 1960s by D’Arcy Hart suggested that resides within tightly associated membranous vacuoles that fail to fuse with lysosomes. Programmed cell death has a role in controlling mycobacterial replication, as decreases in the bacterial burden are correlated with macrophage cell death. Infected cells are detected by T cells through the recognition of antigens presented on major histocompatibility complex class II (MHC-II) molecules by the receptor on the CD4 T cells, leading to the initiation of the bactericidal activity of macrophages. The immune-system evasion mechanisms of are fundamental for the success of the pathogen, and a clearer understanding of these processes will advance vaccine and chemotherapy development.

Citation: Larsen M, Dao D, Baughn A, Jalapthy K, Jacobs, Jr. W. 2007. Pathogenesis of , p 31-50. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Immune-system evasion and persistence mechanisms of . For to establish a niche in macrophages, cellular antimicrobial pathways must be either disengaged or deactivated. Many macrophage bactericidal pathways are disrupted following infection with . These include killing by reactive nitrogen or oxygen radicals, killing by the acidification of phagosomes, and destruction by the acid hydrolases of the lysosome. Along with evading killing, ensures a reservoir for replication by preventing macrophage cell death and induces cell survival signaling pathways. Persistence in macrophages is mediated through the acquisition of nutrients from the host. Infected macrophages escape recognition by T cells as a result of the -mediated down regulation of class II molecules. The activation of CD8 CTLs is dampened by the -induced blockade of cellular apoptosis. Cytokines shape the development of the host immune response. interferes with the production of protective cytokines by macrophages. The progression of disease follows the dissemination of the tubercle bacteria as a result of -induced macrophage necrosis. TAP, transporters associated with antigen processing.

Citation: Larsen M, Dao D, Baughn A, Jalapthy K, Jacobs, Jr. W. 2007. Pathogenesis of , p 31-50. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, L. B.,, M. C. Dinauer,, D. E. Morgen-stern, and, J. L. Krahenbuhl. 1997. Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuber. Lung Dis. 78: 237246.
2. Algood, H. M.,, J. Chan, and, J. L. Flynn. 2003. Chemokines and tuberculosis. Cytokine Growth Factor Rev. 14: 467477.
3. Algood, H. M.,, P. L. Lin,, D. Yankura,, A. Jones,, J. Chan, and, J. L. Flynn. 2004. TNF influences chemokine expression of macrophages in vitro and that of CD11b+ cells in vivo during Mycobacterium tuberculosis infection. J. Immunol. 172: 68466857.
4. Anes, E.,, P. Peyron,, L. Staali,, L. Jordao,, M. G. Gutierrez,, H. Kress,, M. Hagedorn,, I. Maridonneau-Parini,, M. A. Skinner,, A. G. Wildeman,, S. A. Kalamidas,, M. Kuehnel, and, G. Griffiths. 2006. Dynamic life and death interactions between Mycobacterium smegmatis and J774 macrophages. Cell. Microbiol. 8: 939960.
5. Balcewicz-Sablinska, M. K.,, J. Keane,, H. Kornfeld, and, H. G. Remold. 1998. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J. Immunol. 161: 26362641.
6. Banaiee, N.,, E. Z. Kincaid,, U. Buchwald,, W. R. Jacobs, Jr., and, J. D. Ernst. 2006. Potent inhibition of macrophage responses to IFN-gamma by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2. J. Immunol. 176: 30193027.
7. Berthet, F. X.,, M. Lagranderie,, P. Gounon,, C. Laurent-Winter,, D. Ensergueix,, P. Chavarot,, F. Thouron,, E. Maranghi,, V. Pelicic,, D. Portnoi,, G. Marchal, and, B. Gicquel. 1998. Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene. Science 282: 759762.
8. Berthet, F. X.,, P. B. Rasmussen,, I. Rosenkrands,, P. Andersen, and, B. Gicquel. 1998. A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology 144: 31953203.
9. Bloch, H., and, W. Segal. 1956. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J. Bacteriol. 72: 132141.
10. Bloom, B., and, P. Fine. 1994. The BCG experience: implications for future vaccines against tuberculosis, p. 531557. In B. Bloom (ed.), Tuberculosis, Pathogenesis, Protection, and Control. American Society for Microbiology, Washington, DC.
11. Brown, C. A.,, P. Draper, and, P. D. Hart. 1969. Mycobacteria and lysosomes: a paradox. Nature 221: 658660.
12. Bryk, R.,, P. Griffin, and, C. Nathan. 2000. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407: 211215.
13. Bryk, R.,, C. D. Lima,, H. Erdjument Bromage,, P. Tempst, and, C. Nathan. 2002. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295: 10731077.
14. Campos, P. E.,, P. G. Suarez,, J. Sanchez,, D. Zavala,, J. Arevalo,, E. Ticona,, C. M. Nolan,, T. M. Hooton, and, K. K. Holmes. 2003. Multidrug-resistant Mycobacterium tuberculosis in HIV-infected persons, Peru. Emerg. Infect. Dis. 9: 15711578.
15. Caruso, A. M.,, N. Serbina,, E. Klein,, K. Triebold,, B. R. Bloom, and, J. L. Flynn. 1999. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J. Immunol. 162: 54075416.
16. Chan, J.,, Y. Xing,, R. S. Magliozzo, and, B. R. Bloom. 1992. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med. 175: 11111122.
17. Clemens, D. L., and, M. A. Horwitz. 1995. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J. Exp. Med. 181: 257270.
18. Clemens, D. L.,, B. Y. Lee, and, M. A. Horwitz. 2000. Mycobacterium tuberculosis and Legionella pneumophila phagosomes exhibit arrested maturation despite acquisition of Rab7. Infect. Immun. 68: 51545166.
19. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M. A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead, and, B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537544.
20. Collins, D. M.,, R. P. Kawakami,, G. W. de Lisle,, L. Pascopella,, B. R. Bloom, and, W. R. Jacobs, Jr. 1995. Mutation of the principal sigma factor causes loss of virulence in a strain of the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. USA 92: 80368040.
21. Couture, M.,, S. R. Yeh,, B. A. Wittenberg,, J. B. Wittenberg,, Y. Ouellet,, D. L. Rousseau, and, M. Guertin. 1999. A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 96: 1122311228.
22. Cox, J. S.,, B. Chen,, M. McNeil, and, W. R. Jacobs, Jr. 1999. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402: 7983.
23. Czech, M. P. 2003. Dynamics of phosphoinositides in membrane retrieval and insertion. Annu. Rev. Physiol. 65: 791815.
24. Daniel, J.,, C. Deb,, V. S. Dubey,, T. D. Sirakova,, B. Abomoelak,, H. R. Morbidoni, and, P. E. Kolattukudy. 2004. Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J. Bacteriol. 186: 50175030.
25. Dao, D. N.,, L. Kremer,, Y. Guerardel,, A. Molano,, W. R. Jacobs, Jr.,, S. A. Porcelli, and, V. Briken. 2004. Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages. Infect. Immun. 72: 20672074.
26. Darwin, K. H.,, S. Ehrt,, J. C. Gutierrez Ramos,, N. Weich, and, C. F. Nathan. 2003. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302: 19631966.
27. Darwin, K. H.,, G. Lin,, Z. Chen,, H. Li, and, C. F. Nathan. 2005. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol. Microbiol. 55: 561571.
28. Darwin, K. H., and, C. F. Nathan. 2005. Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis. Infect. Immun. 73: 45814587.
29. Dheenadhayalan, V.,, G. Delogu, and, M. J. Brennan. 2006. Expression of the PE–PGRS 33 protein in Mycobacterium smegmatis triggers necrosis in macrophages and enhanced mycobacterial survival. Microbes Infect. 8: 262272.
30. Edwards, K. M.,, M. H. Cynamon,, R. K. Voladri,, C. C. Hager,, M. S. DeStefano,, K. T. Tham,, D. L. Lakey,, M. R. Bochan, and, D. S. Kernodle. 2001. Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis. Am. J. Respir. Crit. Care Med. 164: 22132219.
31. Edwards, W. M.,, R. S. Cox, Jr.,, J. P. Cooney, and, R. I. Crone. 1970. Active pulmonary tuberculosis with cavitation of forty-one years’ duration. Am. Rev. Respir. Dis. 102: 448455.
32. Ehrt, S.,, M. U. Shiloh,, J. Ruan,, M. Choi,, S. Gunzburg,, C. Nathan,, Q. Xie, and, L. W. Riley. 1997. A novel antioxidant gene from Mycobacterium tuberculosis. J. Exp. Med. 186: 18851896.
33. Ernst, J. D. 1998. Macrophage receptors for Mycobacterium tuberculosis. Infect. Immun. 66: 12771281.
34. Fairbairn, I. P.,, C. B. Stober,, D. S. Kumararatne, and, D. A. Lammas. 2001. ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X( 7)-dependent process inducing bacterial death by phagosome-lysosome fusion. J. Immunol. 167: 33003307.
35. Feng, C. G.,, D. Jankovic,, M. Kullberg,, A. Cheever,, C. A. Scanga,, S. Hieny,, P. Caspar,, G. S. Yap, and, A. Sher. 2005. Maintenance of pulmonary Th1 effector function in chronic tuberculosis requires persistent IL-12 production. J. Immunol. 174: 41854192.
36. Flynn, J. L., and, J. Chan. 2005. What’s good for the host is good for the bug. Trends Microbiol. 13: 98102.
37. Flynn, J. L.,, J. Chan,, K. J. Triebold,, D. K. Dalton,, T. A. Stewart, and, B. R. Bloom. 1993. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178: 22492254.
38. Flynn, J. L.,, M. M. Goldstein,, K. J. Triebold,, J. Sypek,, S. Wolf, and, B. R. Bloom. 1995. IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection. J. Immunol. 155: 25152524.
39. Fratti, R. A.,, J. M. Backer,, J. Gruenberg,, S. Corvera, and, V. Deretic. 2001. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J. Cell Biol. 154: 631644.
40. Fulton, S. A.,, S. M. Reba,, R. K. Pai,, M. Pennini,, M. Torres,, C. V. Harding, and, W. H. Boom. 2004. Inhibition of major histocompatibility complex II expression and antigen processing in murine alveolar macrophages by Mycobacterium bovis BCG and the 19-kilodalton mycobacterial lipoprotein. Infect. Immun. 72: 21012110.
41. Gandhi, N. R.,, A. Moll,, A. W. Sturm,, R. Pawinski,, T. Govender,, U. Lalloo,, K. Zeller,, J. Andrews, and, G. Friedland. 2006. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 368: 15751580.
42. Gillooly, D. J.,, I. C. Morrow,, M. Lindsay,, R. Gould,, N. J. Bryant,, J. M. Gaullier,, R. G. Parton, and, H. Stenmark. 2000. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19: 45774588.
43. Glickman, M. S.,, J. S. Cox, and, W. R. Jacobs, Jr. 2000. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5: 717727.
44. Greinert, U.,, M. Ernst,, M. Schlaak, and, P. Entzian. 2001. Interleukin-12 as successful adjuvant in tuberculosis treatment. Eur. Respir. J. 17: 10491051.
45. Guinn, K. M.,, M. J. Hickey,, S. K. Mathur,, K. L. Zakel,, J. E. Grotzke,, D. M. Lewinsohn,, S. Smith, and, D. R. Sherman. 2004. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol. Microbiol 51: 359370.
46. Heath, W. R.,, G. T. Belz,, G. M. Behrens,, C. M. Smith,, S. P. Forehan,, I. A. Parish,, G. M. Davey,, N. S. Wilson,, F. R. Carbone, and, J. A. Villadangos. 2004. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199: 926.
47. Hickman, S. P.,, J. Chan, and, P. Salgame. 2002. Mycobacterium tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive T cell polarization. J. Immunol. 168: 46364642.
48. Honer Zu Bentrup, K.,, A. Miczak,, D. L. Swenson, and, D. G. Russell. 1999. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J. Bacteriol. 181: 71617167.
49. Hsu, T.,, S. M. Hingley-Wilson,, B. Chen,, M. Chen,, A. Z. Dai,, P. M. Morin,, C. B. Marks,, J. Padiyar,, C. Goulding,, M. Gingery,, D. Eisenberg,, R. G. Russell,, S. C. Derrick,, F. M. Collins,, S. L. Morris,, C. H. King, and, W. R. Jacobs, Jr. 2003. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc. Natl. Acad. Sci. USA 100: 1242012425.
50. Ito, K.,, M. Fujimori,, K. Shingu,, Y. Hama,, T. Kanai,, H. Koyama, and, J. Amano. 2005. Pulmonary tuberculosis in a patient receiving intensive chemotherapy for metastatic breast cancer. Breast J. 11: 8788.
51. Jacobs, W. R., Jr. 2000. Mycobacterium tuberculosis: a once genetically intractable organism, p. 116. In G. F. Hatfull and, W. R. Jacobs, Jr. (ed.), Molecular Genetics of Mycobacteria. ASM Press, Washington, DC.
52. Janeway, C. A., Jr., and, R. Medzhitov. 1998. Introduction: the role of innate immunity in the adaptive immune response. Semin. Immunol. 10: 349350.
53. Jung, Y. J.,, R. LaCourse,, L. Ryan, and, R. J. North. 2002. Virulent but not avirulent Mycobacterium tuberculosis can evade the growth inhibitory action of a T helper 1-dependent, nitric oxide synthase 2-independent defense in mice. J. Exp. Med. 196: 991998.
54. Junqueira-Kipnis, A. P.,, R. J. Basaraba,, V. Gruppo,, G. Palanisamy,, O. C. Turner,, T. Hsu,, W. R. Jacobs, Jr.,, S. A. Fulton,, S. M. Reba,, W. H. Boom, and, I. M. Orme. 2006. Mycobacteria lacking the RD1 region do not induce necrosis in the lungs of mice lacking interferon-gamma. Immunology 119: 224231.
55. Jutras, I., and, M. Desjardins. 2005. Phagocytosis: at the crossroads of innate and adaptive immunity. Annu. Rev. Cell Dev. Biol. 21: 511527.
56. Kausalya, S.,, R. Somogyi,, A. Orlofsky, and, M. B. Prystowsky. 2001. Requirement of A1-a for bacillus Calmette-Guerin-mediated protection of macrophages against nitric oxide-induced apoptosis. J. Immunol. 166: 47214727.
57. Keane, J.,, M. K. Balcewicz-Sablinska,, H. G. Remold,, G. L. Chupp,, B. B. Meek,, M. J. Fenton, and, H. Kornfeld. 1997. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect. Immun. 65: 298304.
58. Keane, J.,, H. G. Remold, and, H. Kornfeld. 2000. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J. Immunol. 164: 20162020.
59. Kim, D. K.,, S. W. Lee,, C. G. Yoo,, Y. W. Kim,, S. K. Han,, Y. S. Shim, and, J. J. Yim. 2005. Clinical characteristics and treatment responses of tuberculosis in patients with malignancy receiving anticancer chemotherapy. Chest 128: 22182222.
60. Kopp, E., and, R. Medzhitov. 2003. Recognition of microbial infection by Toll-like receptors. Curr. Opin. Immunol. 15: 396401.
61. Kusner, D. J., and, J. A. Barton. 2001. ATP stimulates human macrophages to kill intracellular virulent Mycobacterium tuberculosis via calcium-dependent phagosome-lysosome fusion. J. Immunol. 167: 33083315.
62. Leveton, C.,, S. Barnass,, B. Champion,, S. Lucas,, B. De Souza,, M. Nicol,, D. Banerjee, and, G. Rook. 1989. T-cell-mediated protection of mice against virulent Mycobacterium tuberculosis. Infect. Immun. 57: 390395.
63. Lewis, K. N.,, R. Liao,, K. M. Guinn,, M. J. Hickey,, S. Smith,, M. A. Behr, and, D. R. Sherman. 2003. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation. J. Infect. Dis. 187: 117123.
64. Liu, K.,, J. Yu, and, D. G. Russell. 2003. pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology 149: 18291835.
65. MacGurn, J. A.,, S. Raghavan,, S. A. Stanley, and, J. S. Cox. 2005. A non-RD1 gene cluster is required for Snm secretion in Mycobacterium tuberculosis. Mol. Microbiol. 57: 16531663.
66. MacMicking, J.,, Q. W. Xie, and, C. Nathan. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323350.
67. MacMicking, J. D.,, R. J. North,, R. LaCourse,, J. S. Mudgett,, S. K. Shah, and, C. F. Nathan. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 94: 52435248.
68. Maiti, D.,, A. Bhattacharyya, and, J. Basu. 2001. Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophage survival by phosphorylating Bad through a phosphatidylinositol 3-kinase/Akt pathway. J. Biol. Chem. 276: 329333.
69. Malik, Z. A.,, G. M. Denning, and, D. J. Kusner. 2000. Inhibition of Ca(2+) signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191: 287302.
70. Malik, Z. A.,, C. R. Thompson,, S. Hashimi,, B. Porter,, S. S. Iyer, and, D. J. Kusner. 2003. Cutting edge: Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. J. Immunol. 170: 28112815.
71. McDonough, K. A.,, Y. Kress, and, B. R. Bloom. 1993. Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect. Immun. 61: 27632773.
72. McGarvey, J. A.,, D. Wagner, and, L. E. Bermudez. 2004. Differential gene expression in mononuclear phagocytes infected with pathogenic and non-pathogenic mycobacteria. Clin. Exp. Immunol. 136: 490500.
73. Medzhitov, R., and, C. A. Janeway, Jr. 1998. An ancient system of host defense. Curr. Opin. Immunol. 10: 1215.
74. Mogues, T.,, M. E. Goodrich,, L. Ryan,, R. LaCourse, and, R. J. North. 2001. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J. Exp. Med. 193: 271280.
75. Molloy, A.,, P. Laochumroonvorapong, and, G. Kaplan. 1994. Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guerin. J. Exp. Med. 180: 14991509.
76. Muller, I.,, S. P. Cobbold,, H. Waldmann, and, S. H. Kaufmann. 1987. Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4 + and Lyt-2 + T cells. Infect. Immun. 55: 20372041.
77. Munoz-Elias, E. J., and, J. D. McKinney. 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 11: 638644.
78. Nau, G. J.,, J. F. Richmond,, A. Schlesinger,, E. G. Jennings,, E. S. Lander, and, R. A. Young. 2002. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl. Acad. Sci. USA 99: 15031508.
79. Ng, V. H.,, J. S. Cox,, A. O. Sousa,, J. D. MacMicking, and, J. D. McKinney. 2004. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol. Microbiol. 52: 12911302.
80. Oddo, M.,, T. Renno,, A. Attinger,, T. Bakker,, H. R. MacDonald, and, P. R. Meylan. 1998. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J. Immunol. 160: 54485454.
81. Orme, I. M. 1988. Characteristics and specificity of acquired immunologic memory to Mycobacterium tuberculosis infection. J. Immunol. 140: 35893593.
82. Ouellet, H.,, Y. Ouellet,, C. Richard,, M. Labarre,, B. Wittenberg,, J. Wittenberg, and, M. Guertin. 2002. Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc. Natl. Acad. Sci. USA 99: 59025907.
83. Pathak, S. K.,, S. Basu,, A. Bhattacharyya,, S. Pathak,, M. Kundu, and, J. Basu. 2005. Mycobacterium tuberculosis lipoarabinomannan-mediated IRAK-M induction negatively regulates Toll-like receptor-dependent interleukin-12 p40 production in macrophages. J. Biol. Chem. 280: 4279442800.
84. Pathania, R.,, N. K. Navani,, A. M. Gardner,, P. R. Gardner, and, K. L. Dikshit. 2002. Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli. Mol. Microbiol. 45: 13031314.
85. Pethe, K.,, D. L. Swenson,, S. Alonso,, J. Anderson,, C. Wang, and, D. G. Russell. 2004. Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc. Natl. Acad. Sci. USA 101: 1364213647.
86. Pinto, R.,, B. M. Saunders,, L. R. Camacho,, W. J. Britton,, B. Gicquel, and, J. A. Triccas. 2004. Mycobacterium tuberculosis defective in phthiocerol dimycocerosate translocation provides greater protective immunity against tuberculosis than the existing bacille Calmette-Guerin vaccine. J. Infect. Dis. 189: 105112.
87. Quesniaux, V. J.,, D. M. Nicolle,, D. Torres,, L. Kremer,, Y. Guerardel,, J. Nigou,, G. Puzo,, F. Erard, and, B. Ryffel. 2004. Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J. Immunol. 172: 44254434.
88. Rao, V.,, N. Fujiwara,, S. A. Porcelli, and, M. S. Glickman. 2005. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J. Exp. Med. 201: 535543.
89. Rao, V.,, F. Gao,, B. Chen,, W. R. Jacobs, Jr., and, M. S. Glickman. 2006. Transcyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J. Clin. Investig. 116: 16601667.
90. Raynaud, C.,, C. Guilhot,, J. Rauzier,, Y. Bordat,, V. Pelicic,, R. Manganelli,, I. Smith,, B. Gicquel, and, M. Jackson. 2002. Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol. Microbiol. 45: 203217.
91. Reed, M. B.,, P. Domenech,, C. Manca,, H. Su,, A. K. Barczak,, B. N. Kreiswirth,, G. Kaplan, and, C. E. Barry III. 2004. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431: 8487.
92. Rhoades, E. R.,, A. A. Frank, and, I. M. Orme. 1997. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber. Lung Dis. 78: 5766.
93. Rink, J.,, E. Ghigo,, Y. Kalaidzidis, and, M. Zerial. 2005. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122: 735749.
94. Ruan, J.,, G. St. John,, S. Ehrt,, L. Riley, and, C. Nathan. 1999. noxR3, a novel gene from Mycobacterium tuberculosis, protects Salmonella typhimurium from nitrosative and oxidative stress. Infect. Immun. 67: 32763283.
95. Saunders, B. M.,, A. A. Frank,, I. M. Orme, and, A. M. Cooper. 2002. CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cell. Immunol. 216: 6572.
96. Scanga, C. A.,, V. P. Mohan,, H. Joseph,, K. Yu,, J. Chan, and, J. L. Flynn. 1999. Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect. Immun. 67: 45314538.
97. Scanga, C. A.,, V. P. Mohan,, K. Tanaka,, D. Alland,, J. L. Flynn, and, J. Chan. 2001. The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect. Immun. 69: 77117717.
98. Schlesinger, L. S. 1993. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J. Immunol. 150: 29202930.
99. Senaratne, R. H.,, A. D. De Silva,, S. J. Williams,, J. D. Mougous,, J. R. Reader,, T. Zhang,, S. Chan,, B. Sidders,, D. H. Lee,, J. Chan,, C. R. Bertozzi, and, L. W. Riley. 2006. 5′-Adenosinephosphosulphate reductase (CysH) protects Mycobacterium tuberculosis against free radicals during chronic infection phase in mice. Mol. Microbiol. 59: 17441753.
100. Serbina, N. V.,, C. C. Liu,, C. A. Scanga, and, J. L. Flynn. 2000. CD8+ CTL from lungs of Mycobacterium tuberculosis-infected mice express perforin in vivo and lyse infected macrophages. J. Immunol. 165: 353363.
101. Sher, A.,, R. T. Gazzinelli,, D. Jankovic,, T. Scharton-Kersten,, G. Yap,, T. M. Doherty, and, T. Wynn. 1998. Cytokines as determinants of disease and disease interactions. Braz. J. Med. Biol. Res. 31: 8587.
102. Shi, L.,, S. Berg,, A. Lee,, J. S. Spencer,, J. Zhang,, V. Vissa,, M. R. McNeil,, K. H. Khoo, and, D. Chatterjee. 2006. The carboxy terminus of EmbC from Mycobacterium smegmatis mediates chain length extension of the arabinan in lipoarabinomannan. J. Biol. Chem. 281: 1951219526.
103. Sly, L. M.,, S. M. Hingley-Wilson,, N. E. Reiner, and, W. R. McMaster. 2003. Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J. Immunol. 170: 430437.
104. Sorensen, A. L.,, S. Nagai,, G. Houen,, P. Andersen, and, A. B. Andersen. 1995. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect. Immun. 63: 17101717.
105. Stanley, S. A.,, S. Raghavan,, W. W. Hwang, and, J. S. Cox. 2003. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl. Acad. Sci. USA 100: 1300113006.
106. Stead, W. W., and, A. K. Dutt. 1991. Tuberculosis in elderly persons. Annu. Rev. Med. 42: 267276.
107. Stenger, S.,, R. J. Mazzaccaro,, K. Uyemura,, S. Cho,, P. F. Barnes,, J. P. Rosat,, A. Sette,, M. B. Brenner,, S. A. Porcelli,, B. R. Bloom, and, R. L. Modlin. 1997. Differential effects of cytolytic T cell subsets on intracellular infection. Science 276: 16841687.
108. Stewart, G. R.,, J. Patel,, B. D. Robertson,, A. Rae, and, D. B. Young. 2005. Mycobacterial mutants with defective control of phagosomal acidification. PLoS Pathog. 1: 269278.
109. St. John, G.,, N. Brot,, J. Ruan,, H. Erdjument Bromage,, P. Tempst,, H. Weissbach, and, C. Nathan. 2001. Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proc. Natl. Acad. Sci. USA 98: 99019906.
110. Thompson, C. R.,, S. S. Iyer,, N. Melrose,, R. Van Oosten,, K. Johnson,, S. M. Pitson,, L. M. Obeid, and, D. J. Kusner. 2005. Sphingosine kinase 1 (SK1) is recruited to nascent phagosomes in human macrophages: inhibition of SK1 translocation by Mycobacterium tuberculosis. J. Immunol. 174: 35513561.
111. Ting, L. M.,, A. C. Kim,, A. Cattamanchi, and, J. D. Ernst. 1999. Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1. J. Immunol. 163: 38983906.
112. Trinchieri, G. 2003. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3: 133146.
113. Vergne, I.,, J. Chua, and, V. Deretic. 2003. Mycobacterium tuberculosis phagosome maturation arrest: selective targeting of PI3P-dependent membrane trafficking. Traffic 4: 600606.
114. Vergne, I.,, J. Chua, and, V. Deretic. 2003. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J. Exp. Med. 198: 653659.
115. Vergne, I.,, J. Chua,, H. H. Lee,, M. Lucas,, J. Belisle, and, V. Deretic. 2005. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 102: 40334038.
116. Vergne, I.,, J. Chua,, S. B. Singh, and, V. Deretic. 2004. Cell biology of Mycobacterium tuberculosis phagosome. Annu. Rev. Cell Dev. Biol. 20: 367394.
117. Vergne, I.,, R. A. Fratti,, P. J. Hill,, J. Chua,, J. Belisle, and, V. Deretic. 2004. Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphati-dylinositol analog phosphati-dylinositol mannoside stimulates early endosomal fusion. Mol. Biol. Cell 15: 751760.
118. Winau, F.,, S. H. Kaufmann, and, U. E. Schaible. 2004. Apoptosis paves the detour path for CD8 T cell activation against intracellular bacteria. Cell. Microbiol. 6: 599607.
119. Xu, S.,, A. Cooper,, S. Sturgill-Koszycki,, T. van Heyningen,, D. Chatterjee,, I. Orme,, P. Allen, and, D. G. Russell. 1994. Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J. Immunol. 153: 25682578.
120. Yeh, S. R.,, M. Couture,, Y. Ouellet,, M. Guertin, and, D. L. Rousseau. 2000. A cooperative oxygen binding hemoglobin from Mycobacterium tuberculosis. Stabilization of heme ligands by a distal tyrosine residue. J. Biol. Chem. 275: 16791684.


Generic image for table

genes involved in immune-system evasion

Citation: Larsen M, Dao D, Baughn A, Jalapthy K, Jacobs, Jr. W. 2007. Pathogenesis of , p 31-50. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error