Chapter 10 : Lipid Analyses for Viable Microbial Biomass, Community Composition, Metabolic Status, and In Situ Metabolism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Lipid Analyses for Viable Microbial Biomass, Community Composition, Metabolic Status, and In Situ Metabolism, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap10-2.gif


This chapter discusses how phospholipid fatty acids (PLFA) and other lipids can be used to estimate total viable microbial biomass, community composition, and metabolic status as well as the use of in situ C incorporation to determine metabolic pathways in environmental samples. The viable microbial biomass increases with the availability of metabolizable substrates and may decrease after their exhaustion. Gas chromatography-mass spectrometry (GC-MS) of PLFA as their methyl esters provides greater sensitivity and specificity than the LP method and additionally provides detailed information on the microbial community composition and metabolic status. Some PLFA are indicative of particular phylogenic groups, and considered together with the environment from which the sample was retrieved, can be helpful in interpreting results. Biomarkers for the metabolic status of microbial communities include those for starvation and toxicity, unbalanced growth, and aerobic versus anaerobic growth, among others. Ubiquinones (UQ) are biomarkers for oxic respiration that mediate electron transport to oxygen and nitrate, while menaquinones (MK) can carry electrons to any electron acceptor. Besides the major respiratory quinones UQ and MK, and also contain desmethylmenaquinones, methionaquinones, plastoquinones, rhodoquinones, and caldariellaquinones, which can also vary in the length of the side chain and, in the case of MK, in the degree of hydrogenation of the side chain.

Citation: Hedrick D, Peacock A, White* D. 2007. Lipid Analyses for Viable Microbial Biomass, Community Composition, Metabolic Status, and In Situ Metabolism, p 112-125. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Variation in the glycerol moiety of phospholipids. The glycerol carbons are traditionally numbered with the top carbon in glycerol-based lipids as carbon 1 with the glycerol carbon attached to the polar head group of the lipid (X) as the third carbon. R and R are alkyl chains. For the sphingolipid, the carbon attached to the polar head group (X) is the first carbon.

Citation: Hedrick D, Peacock A, White* D. 2007. Lipid Analyses for Viable Microbial Biomass, Community Composition, Metabolic Status, and In Situ Metabolism, p 112-125. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Expected responses of the biomarkers UQ/(UQ+MK) and (UQ+MK)/PLFA in an idealized sedimentary transect. Adapted from reference .

Citation: Hedrick D, Peacock A, White* D. 2007. Lipid Analyses for Viable Microbial Biomass, Community Composition, Metabolic Status, and In Situ Metabolism, p 112-125. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abraham, W.-R.,, C. Hesse, and, O. Pelz. 1998. Ratios of carbon isotopes in microbial lipids as an indicator of substrate usage. Appl. Environ. Microbiol. 64: 42024209.
2. ACS Committee on Environmental Improvement and Subcommittee on Environmental Analytical Chemistry. 1980. Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal. Chem. 52: 22422249.
3. Almeida, J. S.,, M. T. Barreto Crespo,, J. J. Figueiredo Marques,, P. A. Noble,, S. J. Macnaughton,, J. R. Stephen,, D. C. White, and, M. J. T. Carrondo. 1999. Microbial Typing for Management of Remediation in Contaminated Soils. Proceedings of the African International Environmental Protection Symposium (AIEPS-99).
4. Alugupali, S.,, M. K. Sikka,, L. Larsson, and, D. C White. 1998. Gas chromatography-mass spectrometry methods for the analysis of mycocerosic acids present in Mycobacterium tuberculosis. J. Microbiol. Methods 31: 143150.
5. Amy, P. A.,, D. L. Halderman,, D. Ringelberg, and, D. C. White. 1994. Changes in bacteria recoverable from subsurface volcanic rock samples during storage at 4°C. Appl. Environ. Microbiol. 60: 26792703.
6. Arao, T. 1999. In situ detection of changes in soil bacterial and fungal activities by measuring 13C incorporation into soil phospholipid fatty acids from 13C acetate. Soil Biol. Biochem. 31: 10151020.
7. Baer, S. H.,, H. P. Blaschek, and, T. L. Smith. 1987. Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl. Environ. Microbiol. 53: 28542861.
8. Balkwill, D. L.,, F. R. Leach,, J. T. Wilson,, J. F. McNabb, and, D. C. White. 1988. Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface sediments. Microb. Ecol. 16: 7384.
9. Batrakov, S. G.,, and D. I. Nikitin. 1996. Lipid composition of the phosphatidylcholine-producing bacterium Hyphomicrobium vulgare NP-160. Biochim. Biophys. Acta 26: 129137.
10. Bligh, E. G.,, and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 31: 911917.
11. Bobbie, R. J.,, J. S. Nickels,, G. A. Smith,, S. D. Fazio,, R. H. Findlay,, W. M. Davis, and, D. C. White. 1981. Effect of light on biomass and community structure of estuarine detrital microbiota. Appl. Environ. Microbiol. 42: 150158.
12. Bossio, D. A.,, and K. M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35: 265278.
13. Bossio, D. A.,, K. M. Scow,, N. Gunapala, and, K. J. Graham. 1998. Determinations of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36: 112.
14. Brinch-Iverson, J.,, and G. M. King. 1990. Effects of substrate concentration, growth state, and oxygen availability on relationships among bacterial carbon, nitrogen and phospholipid phosphorous content. FEMS Microbiol. Ecol. 74: 345356.
15. Brügger, B.,, G. Erben,, R. Sandhoff,, F. T. Wieland, and, W. D. Lehmann. 1997. Quantitative analysis of biological membrane lipids at the low picomole level by nanoelectrospray ionization tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 94: 23392344.
16. Butler, W. R.,, D. G. Ahearn, and, J. O. Kilburn. 1986. High-performance liquid chromatography of mycolic acids as a tool in the identification of Corynebacterium, Nocardia, Rhodococcus, and Mycobacterium species. J. Clin. Microbiol. 23: 182185.
17. Canuel, E. A.,, J. E. Cloen,, D. B. Ringelberg,, J. B. Guckert, and, G. H. Rau. 1995. Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay. Limnol. Oceanogr. 40: 6781.
18. Canuel, E. A.,, K. H. Freeman, and, S. G. Wakeham. 1997. Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments. Limnol. Oceanogr. 42: 15701583.
19. Cerón García, M. C.,, J. M. Fernández Sevilla,, F. G. Acién Fernández,, E. Molina Grima, and, F. García Camacho. 2000. Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J. Appl. Phycol. 12: 239248.
20. Chang, Y.-J.,, P. E. Long,, R. Geyer,, A. D. Peacock,, C. T. Resch,, K. Sublette,, S. Pfiffner,, A. Smithgall,, R. T. Anderson,, H. A. Vrionis,, J. R. Stephen,, R. Dayvault,, I. Ortiz-Bernad,, D. R. Lovley, and, D. C. White. 2005. Microbial incorporation of 13C labeled acetate at the field scale: detection of microbes responsible for reduction of U(VI). Environ. Sci. Technol. 39: 90399048.
21. Choma, A.,, and I. Komaniecka. 2002. Analysis of phospholipids and ornithine-containing lipids from Mesorhizobium spp. Syst. Appl. Microbiol. 25: 326331.
22. Chou, S.,, P. Chedore, and, S. Kasatiya. 1998. Use of gas chromatographic fatty acid and mycolic acid cleavage product determination to differentiate among Mycobacterium genavense, Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis. J. Clin. Microbiol. 36: 577579.
23. Clejan, S.,, A. A. Guffanti,, M. A. Cohen, and, T. A. Krulwich. 1989. Mutation of Bacillus firmus OF4 to duramycin resistance results in substantial replacement of membrane lipid phosphatidylethanolamine by its plasmalogen form. J. Bacteriol. 171: 17441746.
24. Collins, M. D.,, and D. Jones. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45: 316354.
25. Cox, A. D.,, and S. G. Wilkinson. 1989. Polar lipids and fatty acids of Pseudomonas cepacia. Biochim. Biophys. Acta 1001: 6067.
26. Cox, E. E.,, D. W. Major,, D. W. Acton,, T. J. Phelps, and, D. C. White. 1994. Evaluating trichloroethylene bio-degradation by measuring the in situ status and activities of microbial populations, p. 37–49. In R. E. Hinchee,, A. Leeson,, L. Semprini, and, S. K. Ong (ed.), Bioremediation of Chlorinated Polycyclic Aromatic Compounds. Lewis Publishers, Ann Arbor, Mich.
27. Crossman, Z. M.,, F. Abraham, and, R. P. Evershed. 2004. Stable isotope pulse-chasing and compound specific stable carbon isotope analysis of phospholipid fatty acids to assess methane oxidizing bacterial populations in landfill cover soils. Environ. Sci. Technol. 38: 13591367.
28. De Rosa, M.,, A. Gambacorta,, R. Huber,, V. Lanzotti,, B. Nicolaus,, K. O. Stetter, and, A. Trincone. 1988. A new 15,16-dimethyl-30-glyceryloxytriacontanoic acid from lipids of Thermotoga maritima. J. Chem. Soc. Chem. Comm. 19: 13001301.
29. Doré, J.,, and M. P. Bryant. 1989. Lipid growth requirement and influence of lipid supplement on fatty acid and aldehyde composition of Syntrophococcus sucromultans. Appl. Environ. Microbiol. 55: 927933.
30. Fang, J.,, and M. J. Barcelona. 1998. Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry. J. Microbiol. Methods 33: 2335.
31. Fang, J.,, M. J. Barcelona,, T. Abrajano,, Y. Nogi, and, C. Kato. 2002. Isotopic composition of fatty acids of extremely piezophilic bacteria from the Mariana Trench at 11,000 m. Mar. Chem. 80: 19.
32. Federle, T. W.,, M. A. Hullar,, R. J. Livingston,, D. A. Meeter, and, D. C. White. 1983. Spatial distribution of biochemical parameters indicating biomass and community composition of microbial assemblies in estuarine mud flat sediments. Appl. Environ. Microbiol. 45: 5863.
33. Findlay, R. H.,, and F. C. Dobbs. 1993. Quantitative description of microbial communities using lipid analysis, p. 271–284. In P. F. Kemp,, B. F. Sherr,, E. B. Sherr, and, J. J. Cole (ed.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, Fla.
34. Findlay, R. H.,, G. M. King, and, L. Watling. 1989. Efficiency of phospholipid analysis in determining microbial biomass in sediments. Appl. Environ. Microbiol. 55: 28882893.
35. Findlay, R. H.,, M. B. Trexler,, J. B. Guckert, and, D. C. White. 1990. Laboratory study of disturbance in marine sediments: response of a microbial community. Mar. Ecol. Prog. Ser. 61: 121133.
36. Findlay, R. H.,, M. B. Trexler, and, D. C. White. 1990. Response of a benthic microbial community to biotic disturbance. Mar. Ecol. Prog. Ser. 61: 135148.
37. Fredrickson, J. K.,, D. L. Balkwill,, G. R. Drake,, M. F. Romine,, D. B. Ringelberg, and, D. C. White. 1995. Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl. Environ. Microbiol. 61: 19171922.
38. Frostegård, Å.,, and E. Bååth. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22: 5965.
39. Frostegård, Å.,, A. Tunlid, and, E. Bååth. 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. J. Microbiol. Methods 14: 151163.
40. Gehron, M. J.,, and D. C. White. 1982. Quantitative determination of the nutritional status of detrital micro-biota and the grazing fauna by triglyceride glycerol analysis. J. Exp. Mar. Biol. 64: 145158.
41. Geyer, R.,, A. D. Peacock,, A. Miltner,, H.-H. Richnow,, D. C. White,, K. L. Sublette, and, M. Kästner. 2005. In situ assessment of biodegradation potential using biotraps amended with 13C-labeled benzene or toluene. Environ. Sci. Technol. 39: 49834989.
42. Geyer, R.,, A. D. Peacock,, D. C. White,, C. Lytle, and, G. J. Van Berkel. 2004. Atmospheric pressure chemical ionization and atmospheric pressure photoionization for simultaneous mass spectrometric analysis of microbial respiratory ubiquinones and menaquinones. J. Mass Spectrom. 39: 922929.
43. Glaeser, J.,, and J. Overmann. 2003. Characterization and in situ carbon metabolism of phototrophic consortia. Appl. Environ. Microbiol. 69: 37393750.
44. Guckert, J. B.,, C. P. Antworth,, P. D. Nichols, and, D. C. White. 1985. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol. Ecol. 31: 147158.
45. Guckert, J. B.,, M. A. Hood, and, D. C. White. 1986. Phospholipid, ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl. Environ. Microbiol. 52: 794801.
46. Guckert, J. B.,, D. B. Ringelberg,, D. C. White,, R. S. Henson, and, B. J. Bratina. 1991. Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the Proteobacteria. J. Gen. Microbiol. 137: 26312641.
47. Hanson, J. R.,, J. L. Macalady,, D. Harris, and, K. M. Scow. 1999. Linking toluene degradation with specific microbial populations in soil. Appl. Environ. Microbiol. 65: 54035408.
48. Hedrick, D. B.,, and D. C. White. 1986. Microbial respiratory quinones in the environment: a sensitive liquid chromatographic method. J. Microbiol. Methods 5: 243254.
49. Hedrick, D. B.,, J. B. Guckert, and, D. C. White. 1991. The effect of oxygen and chloroform on microbial activities in a high-solids, high-productivity biomass reactor. Biomass Bioenergy 1: 207212.
50. Hedrick, D. B.,, J. B. Guckert, and, D. C. White. 1991. Archaebacterial ether lipid diversity analyzed by supercritical fluid chromatography: integration with a bacterial lipid protocol. J. Lipid Res. 32: 659666.
51. Hedrick, D. B.,, A. Peacock,, J. R. Stephen,, S. J. Macnaughton,, J. Brüggemann, and, D. C. White. 2000. Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data. J. Microbiol. Methods 41: 235248.
52. Hedrick, D. B.,, A. Peacock, and, D. C. White. 2005. Interpretation of fatty acid profiles of soil microorganisms, p. 251–259. In R. Margesin and, E. Schinner (ed.), Manual for Soil Analysis—Monitoring and Assessing Soil Bioremediation. Springer-Verlag, Berlin, Germany.
53. Henn, M. R.,, G. Gleixner, and, I. H. Chapela. 2002. Growth-dependent stable carbon isotope fractionation by basidiomycete fungi: 13C pattern and physiological process. Appl. Environ. Microbiol. 68: 49564964.
54. Hiraishi, A. 1999. Isoprenoid quinones as biomarkers of microbial populations in the environment. J. Biosci. Bioeng. 88: 449450.
55. Hood, M. A.,, J. B. Guckert,, D. C. White, and, F. Deck. 1986. Effect of nutrient deprivation on the levels of lipid, carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae. Appl. Environ. Microbiol. 52: 788793.
56. Huber, R.,, T. A. Langworthy,, H. König,, M. Thomm,, C. R. Woese,, U. B. Sleytr, and, K. O. Stetter. 1986. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 144: 324333.
57. Huber, R.,, C. R. Woese,, T. A. Langworthy,, H. Fricke, and, K. O. Stetter. 1989. Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the “Thermotogales.” Syst. Appl. Microbiol. 12: 3237.
58. Jahnke, L. L.,, R. E. Summons,, L. M. Dowling, and, K. D. Zahiralis. 1995. Identification of methanotrophic lipid biomarkers in cold-seep mussel gills: chemical and isotopic analysis. Appl. Environ. Microbiol. 61: 576582.
59. Jahnke, L. L.,, R. E. Summons,, J. M. Hope, and, D. J. Des Marais. 1999. Carbon isotopic fractionation in lipids from methanotrophic bacteria. II. The effects of physiology and environmental parameters on the biosynthesis and isotopic signatures of biomarkers. Geochim. Cosmochim. Acta 63: 7993.
60. Johnsen, A. R.,, A. Winding,, U. Karlson, and, P. Roslev. 2002. Linking of microorganisms to phenanthrene metabolism in soil by analysis of 13C-labeled cell lipids. Appl. Environ. Microbiol. 68: 61066113.
61. Johnston, N. C.,, and H. Goldfine. 1982. Effects of growth temperature on fatty acid and alk-1-enyl group compositions of Veillonella parvula and Megasphaera elsdenii phospholipids. J. Bacteriol. 149: 567575.
62. Jones, G. J.,, P. D. Nichols, and, P. M. Shaw. 1994. Analysis of microbial sterols and hopanoids, p. 163–195. In M. Goodfellow and, A. G. O’Donnell (ed.), Chemical Methods in Prokaryotic Systematics. John Wiley & Sons, New York, N.Y.
63. Kamio, Y.,, and H. Takahashi. 1980. Isolation and characterization of outer and inner membranes of Selenomonas ruminantium: lipid compositions. J. Bacteriol. 141: 888898.
64. Kaneda, T. 1991. Iso and anteiso fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55: 288302.
65. Kates, M. 1986. Techniques of Lipidology: Isolation, Analysis and Identification of Lipids. Elsevier, Amsterdam, The Netherlands.
66. Kawai, Y.,, and I. Yano. 1983. Ornithine-containing lipid of Bordetella pertussis, a new type of hemagglutinin. Eur. J. Biochem. 136: 531538.
67. Kawai, Y.,, I. Yano, and, K. Kaneda. 1988a. Various kinds of lipoamino acids including a novel serine-containing lipid in an opportunistic pathogen Flavobacterium. Their structures and biological activities on erythrocytes. Eur. J. Biochem. 171: 7380.
68. Kawai, Y.,, I. Yano,, K. Kaneda, and, E. Yabuuchi. 1988b. Ornithine-containing lipids of some Pseudomonas species. Eur. J. Biochem. 175: 633641.
69. Kerger, B. D.,, C. A. Mancuso,, P. D. Nichols,, D. C. White,, T. Langworthy,, M. Sittig,, H. Schlessner, and, P. Hirsch. 1988. The budding bacteria, Pirellula and Planctomyces, with a typical 16S-rRNA and absence of peptidoglycan, show eubacterial phospholipids and unusually high proportions of long-chain beta-hydroxy fatty acids in the lipopolysaccharide lipid A. Arch. Microbiol. 149: 255260.
70. Keweloh, H.,, and H. J. Heipieper. 1996. Trans unsaturated fatty acids in bacteria. Lipids 31: 129137.
71. Kieft, T. L.,, D. B. Ringelberg, and, D. C. White. 1994. Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium. Appl. Environ. Microbiol. 60: 32923299.
72. Knoche, H. W.,, and J. M. Shively. 1972. The structure of an ornithine-containing lipid from Thiobacillus thiooxidans. J. Biol. Chem. 247: 170178.
73. Koga, Y.,, and H. Goldfine. 1984. Biosynthesis of phospholipids in Clostridium butyricum: kinetics of synthesis of plasmalogens and the glycerol acetal of ethanolamine plasmalogen. J. Bacteriol. 159: 597604.
74. Kohring, L. L.,, D. B. Ringelberg,, R. Devereux,, D. Stahl,, M. W. Mittelman, and, D. C. White. 1994. Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol. Lett. 119: 303308.
75. Konova, I. V.,, S. K. Kasymbekova,, L. L. Mityushina,, S. G. Batrakov, and, M. N. Bekhtereva. 1978. Influence of phosphorus on the composition of polar lipids of Actinomyces olivaceus. Biol. Bull. Acad. Sci. USSR 5: 217223.
76. Kostiw, L. L.,, C. W. Boylen, and, B. J. Tyson. 1972. Lipid composition of growing and starving cells of Arthrobacter crystallopoietes. J. Bacteriol. 94: 18681874.
77. Laneelle, M. A.,, D. Prome,, G. Laneelle,, J. C. Prome. 1990. Ornithine lipid of Mycobacterium tuberculosis: its distribution in some slow- and fast-growing mycobacteria. J. Gen. Microbiol. 136: 773778.
78. Langworthy, T. A.,, G. Holzer,, J. G. Zeikus, and, T. G. Tornabene. 1983. Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfoto-bacterium commune. Syst. Appl. Microbiol. 4: 117.
79. Langworthy, T. A.,, W. R. Mayberry,, P. F. Smith, and, I. M. Robinson. 1975. Plasmalogen composition of Anaeroplasma. J. Bacteriol. 122: 785787.
80. Leung, K. T.,, Y.-J. Chang,, Y.-D. Gan,, A. Peacock,, S. J. Macnaughton,, J. R. Stephen,, R. S. Burkhalter,, C. A. Flemming, and, D. C. White. 1999. Detection of Sphingomonas spp. in soil by PCR and sphingolipid bio-marker analysis. J. Ind. Microbiol. 23: 252260.
81. Lichtfouse, E. 2000. Compound-specific isotope analysis. Application to archaelogy, biomedical sciences, biosynthesis, environment, extraterrestrial chemistry, food science, forensic science, humic substances, microbiology, organic geochemistry, soil science and sport. Rapid Comm. Mass Spectrom. 14: 13371344.
82. Linscheid, M.,, B. W. Diehl,, M. Overmohle,, I. Riedl, and, E. Heinz. 1997. Membrane lipids of Rhodopseudomonas viridis. Biochim. Biophys. Acta 1347: 151163.
83. Londry, K. L.,, L. L. Jahnke, and, D. J. Des Marais. 2004. Stable carbon isotope ratios of lipid biomarkers of sulfate-reducing bacteria. Appl. Environ. Microbiol. 70: 745751.
84. Lovley, D. R.,, S. J. Giovannoni,, D. C. White,, J. E. Champine,, E. J. P. Phillips,, Y. A. Gorby, and, S. Goodwin. 1992. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159: 336344.
85. Lytle, C. A.,, Y.-D. M. Gan, and, D. C. White. 2000. Electrospray ionization/mass spectrometry compatible reversed-phase separation of phospholipids: piperidine as a post column modifier for negative ion detection. J. Microbiol. Methods 41: 227234.
86. Magurran, A. E. 1988. Ecological Diversity and Its Measurement. Princeton University Press, Princeton, N.J.
87. Makula, R. A.,, and W. R. Finnerty. 1974. Phospholipid composition of Desulfovibrio species. J. Bacteriol. 120: 12791283.
88. Makula, R. A.,, and W. R. Finnerty. 1975. Isolation and characterization of an ornithine-containing lipid from Desulfovibrio gigas. J. Bacteriol. 123: 523529.
89. Mansour, M. P.,, J. K. Volkman,, A. E. Jackson, and, S. I. Blackburn. 1999. The fatty acid and sterol composition of five marine dinoflagellates. J. Phycol. 35: 710.
90. Mayberry, W. R.,, and J. R. Lane. 1993. Sequential alkaline saponification/acid hydrolysis/esterification: a one tube method with enhanced recovery of both cyclopropane and hydroxylated fatty acids. J. Microbiol. Methods 18: 2132.
91. Mikell, A. T.,, Jr., T. J. Phelps, and, D. C. White. 1987. Phospholipids to monitor microbial ecology in anaerobic digesters, p. 413–444. In W. H. Smith and, J. R. Frank (ed.), Methane from Biomass, a Systems Approach. Elsevier Pub. Co., New York, N.Y.
92. Minnikin, D. E.,, and H. Abdolrahimzadeh. 1974. The replacement of phosphatidylethanolamine and acidic phospholipids by ornithine-amide lipid and a minor phosphorus-free lipid in Pseudomonas fluorescens NCMB129. FEBS Lett. 43: 257260.
93. Moriyon, I.,, and I. Lopez-Goni. 1998. Structure and properties of the outer membranes of Brucella abortus and Brucella melitensis. Int. Microbiol. 1: 1926.
94. Morrison, S. J.,, and D. C. White. 1980. Effects of grazing by estuarine gammaridean amphipods on the micro-biota of allochthonous detritus. Appl. Environ. Microbiol. 40: 659671.
95. Mottram, H. R.,, and R. P. Evershed. 2003. Practical considerations in the gas chromatography/combustion/isotope ratio monitoring mass spectrometry of 13C-enriched compounds: detection limits and carryover effects. Rapid Commun. Mass Spectrom. 17: 26692674.
96. Newell, S. Y. 1993. Membrane-containing fungal mass and fungal specific growth rate in natural samples, p. 579–586. In P. F. Kemp,, B. F. Sherr,, E. B. Sherr, and, J. J. Cole (ed.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, Fla.
97. Nichols, P. D.,, J. B. Guckert, and, D. C. White. 1986. Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J. Microbiol. Methods 5: 4955.
98. Nichols, P. D.,, C. A. Mancuso, and, D. C. White. 1987. Measurement of methanotroph and methanogen signature phospholipids for use in assessment of biomass and community structure in model systems. Org. Geochem. 11: 451461.
99. Nichols, P. D.,, W. R. Mayberry,, C. P. Antworth, and, D. C. White. 1985. Determination of monounsaturated double bond position and geometry in the cellular fatty acids of the pathogenic bacterium Francisella tularensis. J. Clin. Microbiol. 21: 738740.
100. Nickels, J. S.,, J. D. King, and, D. C. White. 1979. Poly-beta-hydroxybutyrate accumulation as a measure of unbalanced growth of the estuarine detrital microbiota. Appl. Environ. Microbiol. 37: 459465.
101. Norland, S. 1993. The relationship between biomass and volume of bacteria, p. 303–307. In P. F. Kemp,, B. F. Sherr,, E. B. Sherr, and, J. J. Cole (ed.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, Fla.
102. Odham, G.,, A. Tunlid,, G. Westerdahl,, L. Larsson,, J. B. Guckert, and, D. C. White. 1985. Determination of microbial fatty acid profiles at femtomolar levels in human urine and the initial marine microfouling community by capillary gas chromatography-chemical ionization mass spectrometry with negative ion detection. J. Microbiol. Methods 3: 331344.
103. Olsson, P. A.,, I. M. van Aarle,, M. E. Gavito,, P. Bengtson, and, G. Bengtsson. 2005. 13C incorporation into signature fatty acids as an assay for carbon allocation in arbuscular mycorrhiza. Appl. Environ. Microbiol. 71: 25922599.
104. Oshima, M.,, and T. Ariga. 1975. ω-cyclohexyl fatty acids in acidophilic thermophilic bacteria. J. Biol. Chem. 250: 6963.
105. Palmisano, A. C.,, M. P. Lizotte,, G. A. Smith,, P. D. Nichols,, D. C. White, and, C. W. Sullivan. 1988. Changes in photosynthetic carbon assimilation in Antarctic sea-ice diatoms during a spring bloom: variations in synthesis of lipid classes. J. Exp. Mar. Biol. Ecol. 116: 113.
106. Parkes, R. J.,, N. J. E. Dowling,, D. C. White,, R. A. Herbert, and, G. R. Gibson. 1992. Characterization of sulfate-reducing bacterial populations within marine and estuarine sediments with different rates of sulfate reduction. FEMS Microbiol. Ecol. 102: 235250.
107. Peacock, A. D.,, Y. J. Chang,, J. D. Istok,, L. Krumholz,, R. Geyer,, B. Kinsall,, D. Watson,, K. L. Sublette, and, D. C. White. 2004. Utilization of microbial biofilms as monitors of bioremediation. Microb. Ecol. 47: 284292.
108. Pennanen, T.,, J. Liski,, E. Baath,, V. Kitunen,, J. Uotila,, C. J. Westman, and, H. Fritze. 1999. Structure of the microbial communities in coniferous forest soils in relation to site fertility and stand development stage. Microb. Ecol. 38: 168179.
109. Petersen, S. O.,, P. Roslev, and, R. Bol. 2004. Dynamics of a pasture soil microbial community after deposition of cattle urine amended with [13C]urea. Appl. Environ. Microbiol. 70: 63636369.
110. Pond, D. W.,, M. V. Bell,, D. R. Dixon,, A. E. Fallick,, M. Segonzac, and, J. R. Sargent. 1998. Stable-carbon-isotope composition of fatty acids in hydrothermal vent mussels containing methanotrophic and thiotrophic bacterial endosymbionts. Appl. Environ. Microbiol. 64: 370375.
111. Pond, J. L.,, T. A. Langworthy, and, G. Holzer. 1986. Long-chain diols: a new class of membrane lipids from a thermophilic bacterium. Science 231: 11341136.
112. Potts, M.,, J. J. Olie,, J. S. Nickels,, J. Parsons, and, D. C. White. 1987. Variations in phospholipid ester-linked fatty acids and carotenoids of desiccated Nostoc commune (cyanobacteria) from different geographic locations. Appl. Environ. Microbiol. 53: 49.
113. Radajewski, S.,, I. R. McDonald, and, J. C. Murrell. 2003. Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr. Opin. Biotechnol. 14: 296302.
114. Ratledge, C.,, and S. G. Wilkinson. 1988. Microbial Lipids. Academic Press Ltd., London, United Kingdom.
115. Rĕzanka, T.,, I. Dor,, A. Prell, and, V. M. Dembitsky. 2003. Fatty acid composition of six freshwater wild cyanobacterial species. Folia Microbiol. 48: 7175.
116. Riebesell, U.,, A. T. Revill,, D. G. Holdsworth, and, J. K. Volkman. 2000. The effects of varying CO 2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochim. Cosmochim. Acta 64: 41794192.
117. Ringelberg, D. B.,, J. D. Davis,, G. A. Smith,, S. M. Pfiffner,, P. D. Nichols,, J. B. Nickels,, J. M. Hensen,, J. T. Wilson,, M. Yates,, D. H. Kampbell,, H. W. Reed,, T. T. Stocksdale, and, D. C. White. 1988. Validation of signature polar lipid fatty acid biomarkers for alkane-utilizing bacteria in soils and subsurface aquifer materials. FEMS Microbiol. Ecol. 62: 3950.
118. Ringelberg, D. B.,, G. T. Townsend,, K. A. DeWeerd,, J. M. Suflita, and, D. C. White. 1994. Detection of the anaerobic dechlorinating microorganism Desulfomonile tiedjei in environmental matrices by its signature lipopolysaccharide branched-long-chain hydroxy fatty acids. FEMS Microbiol. Ecol. 14: 918.
119. Rundel, P. W.,, J. R. Ehleringer, and, K. A. Nagy (ed.). 1989. Stable Isotopes in Ecological Research. Springer Verlag, New York, N.Y.
120. Russell, N. J.,, and D. S. Nichols. 1999. Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology 145: 767779.
121. Sakata, S.,, J. M. Hayes,, A. R. McTaggart,, R. A. Evans,, K. J. Leckrone, and, R. K. Togasaki. 1997. Carbon isotopic fractionation associated with lipid biosynthesis by a cyanobacterium: relevance for interpretation of bio-marker records. Geochim. Cosmochim. Acta 61: 53795389.
122. Schouten, S.,, W. C. M. Klein Breteler,, P. Blokker,, N. Schogt,, W. I. C. Rijpstra,, K. Grice,, M. Baas, and, J. S. Sinninghe Damasté. 1998. Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: implications for deciphering the carbon isotopic biomarker record. Geochim. Cosmochim. Acta 62: 13971406.
123. Schouten, S.,, M. Strous,, M. M. M. Kuypers,, W. I. C. Rijpstra,, M. Baas,, C. J. Schubert,, M. S. M. Jetten, and, J. S. Sinninghe Damsté. 2004. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 70: 37853788.
124. Smith, C. A.,, C. B. Phiefer,, S. J. Macnaughton,, A. Peacock,, R. S. Burkhalter,, R. Kirkegaard, and, D. C. White. 2000. Quantitative lipid biomarker detection of unculturable microbes and chlorine exposure in water distribution system biofilms. Water Res. 34: 26832688.
125. Smith, G. A.,, P. D. Nichols, and, D. C. White. 1989. Triglyceride and sterol composition of sediment microorganisms from McMurdo Sound, Antarctica. Polar Biol. 9: 273279.
126. Smith, G. A.,, J. S. Nickels,, B. D. Kerger,, J. D. Davis,, S. P. Collins,, J. T. Wilson,, J. F. McNabb, and, D. C. White. 1986. Quantitative characterization of microbial biomass and community structure in subsurface material: a prokaryotic consortium responsive to organic contamination. Can. J. Microbiol. 32: 104111.
127. Sternberg, L. D. L.,, M. J. DeNiro, and, H. O. Ajie. 1986. Isotopic relationships between saponifiable lipids and cellulose nitrate prepared from red, brown and green algae. Planta 169: 320324.
128. Teece, M. A.,, M. L. Fogel,, M. E. Dollhopf, and, K. H. Nealson. 1999. Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Org. Geochem. 30: 15711579.
129. ter Braak, C. J. F. 1987. Ordination, p. 91–169. In R. H. G. Jongman,, C. J. F. ter Braak, and, O. F. R. van Tongeren (ed.), Data Analysis in Community and Landscape Ecology. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.
130. Tollefson, T. S.,, and R. B. McKercher. 1983. The degradation of 14C-labelled phosphatidyl choline in soil. Soil Biol. Biochem. 15: 145148.
131. Tunlid, A.,, B. H. Baird,, M. B. Trexler,, S. Olsson,, R. H. Findlay,, G. Odham, and, D. C. White. 1985. Determination of phospholipid ester-linked fatty acids and poly beta hydroxybutyrate for the estimation of bacterial biomass and activity in the rhizosphere of the rape plant Brassica napus (L). Can. J. Microbiol. 31: 11131119.
132. Tunlid, A.,, D. Ringelberg,, T. J. Phelps,, C. Low, and, D. C. White. 1989. Measurement of phospholipid fatty acids at picomolar concentrations in biofilms and deep subsurface sediments using gas chromatography and chemical ionization mass spectrometry. J. Microbiol. Methods 10: 139153.
133. Tunlid, A.,, N. A. Schultz,, D. R. Benson,, D. B. Steele, and, D. C. White. 1989. Differences in the composition between vegetative cells and nitrogen-fixing vesicles of Frankia spp. strain Cp11. Proc. Natl. Acad. Sci. USA 86: 33993403.
134. van der Meer, M. T. J.,, S. Schouten, and, J. S. Sinnighe Damsté. 1998. The effect of the reversed tricarboxylic cycle on the 13C contents of bacterial lipids. Org. Geochem. 28: 527533.
135. van der Meer, M. T. J.,, S. Schouten,, J. S. Sinninghe Damsté,, J. W. de Leeuw, and, D. M. Ward. 2003. Compound-specific isotopic fractionation patterns suggest different carbon metabolisms among Chloroflexus-like bacteria in hot-spring microbial mats. Appl. Environ. Microbiol. 69: 60006006.
136. Walker, J. T.,, A. Sonesson,, C. W. Keevil, and, D. C. White. 1993. Detection of Legionella pneumophila in biofilms containing a complex microbial consortium by gas chromatography-mass spectrometric analysis of genus-specific hydroxy fatty acids. FEMS Microbiol. Lett. 113: 139144.
137. Weaver, T. L.,, M. A. Patrick, and, P. R. Dugan. 1975. Whole-cell and membrane lipids of the methylotrophic bacterium Methylosinus trichosporium. J. Bacteriol. 124: 602605.
138. White, D. C. 1988. Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity. Adv. Limnol. 31: 118.
139. White, D. C. 1995. Chemical ecology: possible linkage between macro- and microbial ecology. Oikos 74: 177184.
140. White, D. C.,, and D. B. Ringelberg. 1995. Utility of signature lipid biomarker analysis in determining in situ viable biomass, community structure, and nutritional/physiological status of the deep subsurface microbiota, p. 119–136. In P. S. Amy and, D. L. Halderman (ed.), The Microbiology of the Terrestrial Deep Subsurface. CRC Lewis Press, Boca Raton, Fla.
141. White, D. C.,, and D. B. Ringelberg. 1996. Monitoring deep subsurface microbiota for assessment of safe long-term nuclear waste disposal. Can. J. Microbiol. 42: 375381.
142. White, D. C.,, and D. B. Ringelberg. 1998. Signature lipid biomarker analysis, p. 255–272. In R. S. Burlage,, R. Atlas,, D. Stahl,, G. Geesey, and, G. Sayler (ed.), Techniques in Microbial Ecology. Oxford University Press, New York, N.Y.
143. White, D. C.,, R. J. Bobbie,, J. S. Herron,, J. D. King, and, S. J. Morrison. 1979. Biochemical measurements of microbial mass and activity from environmental samples, p. 69–81. In J. W. Costerton and, R. R. Colwell (ed.), Native Aquatic Bacteria: Enumeration, Activity and Ecology. ASTM STP 695. American Society for Testing and Materials, Philadelphia, Pa.
144. White, D. C.,, R. J. Bobbie,, J. S. Nickels,, S. D. Fazio, and, W. M. Davis. 1980. Nonselective biochemical methods for the determination of fungal mass and community structure in estuarine detrital microflora. Bot. Mar. 23: 239250.
145. White, D. C.,, W. M. Davis,, J. S. Nickels,, J. D. King, and, R. J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40: 5162.
146. White, D. C.,, R. Geyer,, A. D. Peacock,, D. B. Hedrick,, S. S. Koenigsberg,, Y. Sung,, J. He, and, F. E. Löffler. 2005. Phospholipid furan fatty acids and ubiquinone-8: lipid biomarkers that may protect Dehalococcoides strains from free radicals. Appl. Environ. Microbiol. 71: 84268433.
147. White, D. C.,, J. S. Gouffon,, A. D. Peacock,, R. Geyer,, A. Biernacki,, G. A. Davis,, M. Pryor,, M. B. Tabacco, and, K. L. Sublette. 2003. Forensic analysis by comprehensive rapid detection of pathogens and contamination concentrated in biofilms in drinking water systems for water resource protection and management. Environ. Forensics 4: 6374.
148. White, D. C.,, A. N. Tucker, and, C. C. Sweeley. 1969. Characterization of the iso-branched sphinganines from the ceramide phospholipids of Bacteroides melaninogenicus. Biochim. Biophys. Acta 187: 527532.
149. Wick, L. Y.,, N. Pasche,, S. M. Bernasconi,, O. Pelz, and, H. Harms. 2003. Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium fred-eriksbergense LB501T. Appl. Environ. Microbiol. 69: 61336142.
150. Wilkinson, B. J.,, M. R. Morman, and, D. C. White. 1972. Phospholipid composition and metabolism of Micrococcus denitrificans. J. Bacteriol. 112: 12881294.
151. Xiong, J.,, and C. E. Bauer. 2002. Complex evolution of photosynthesis. Annu. Rev. Plant Biol. 53: 503521.
152. Zhang, C. L.,, B. W. Fouke,, G. T. Bonheyo,, A. D. Peacock,, D. C. White,, Y. Huang, and, C. S. Romanek. 2004. Lipid biomarkers and carbon-isotopes of modern travertine deposits (Yellowstone National Park, USA): implications for biogeochemical dynamics in hot-spring systems. Geochim. Cosmochim. Acta 68: 31573169.
153. Zhang, C. L.,, Y. Li,, J. D. Wall,, L. Larsen,, R. Sassen,, Y. Huang,, Y. Wang,, A. Peacock,, D. C. White,, J. Horita, and, D. R. Cole. 2002. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico. Geology 30: 239242.
154. Zhang, C. L.,, Y. Li,, Q. Ye,, J. Fong,, A. D. Peacock,, E. Blunt,, J. Fang,, D. R. Lovley, and, D. C. White. 2003. Carbon isotope signatures of fatty acids in Geobacter metal-lireducens and Shewanella algae. Chem. Geol. 195: 1728.
155. Zhang, C. L.,, Q. Ye,, D. Goetz,, A.-L. Reysenbach,, A. Peacock,, D. C. White,, J. Horita,, D. R. Cole,, J. Fang,, L. Pratt,, J. Fang, and, Y. Huang. 2001. Carbon isotopic fractionations associated with thermophilic bacteria Thermotoga maritima and Persephonella marina. Environ. Microbiol. 4: 5864.


Generic image for table

Examples of signature lipids and their cellular location

Citation: Hedrick D, Peacock A, White* D. 2007. Lipid Analyses for Viable Microbial Biomass, Community Composition, Metabolic Status, and In Situ Metabolism, p 112-125. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error