Chapter 101 : Microbial Fe(III) Reduction: Ecological and Physiological Considerations

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Microbial Fe(III) Reduction: Ecological and Physiological Considerations, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap101-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap101-2.gif


The dissimilatory Fe(III)-reducing bacteria (FeRB) are anaerobic prokaryotes that couple the oxidation of an electron donor such as hydrogen or short-chain fatty acids such as acetate to the reduction of Fe(III) as an energy-conserving metabolic process. The researchers pumped an anaerobic medium mixed with a green fluorescent protein-expressing strain of through the aerobic flow cell (AFC) and across the mineral surface. Surface pitting from mineral dissolution was heterogeneous, as was the precipitation of secondary Fe(II) minerals. These studies highlight the importance of considering the effects of open systems on the physiology and biogeochemistry of iron-microbe interactions. The geochemistry of the environment under study can provide the first indications of microbial Fe(III) reduction. Most 16S rRNA-based molecular ecology tools can be, and have been, applied to the FeRB. The volume of literature focusing on the biochemistry and physiology of FeRB has increased dramatically in the last 3 years. Based on numerous studies, it is clear that with all FeRB studied, there are two common themes shared by all of these organisms. The first is that cell attachment to mineral surfaces is common in all FeRB studied and is probably essential to Fe(III) reduction. The second theme is the abundance of c-type cytochromes in almost every organism studied.

Citation: Cummings D, Magnuson T. 2007. Microbial Fe(III) Reduction: Ecological and Physiological Considerations, p 1239-1248. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch101
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Stainless steel biofilm coupon with fragments of specular hematite ( ). Inset, DAPI (4′, 6′, diamidino-2-phenylindole)-stained biofilm formed on the surface of a hematite particle after incubation in groundwater. Images courtesy of Brent Peyton (Montana State University) and Katie Reardon (Pacific Northwest National Laboratory).

Citation: Cummings D, Magnuson T. 2007. Microbial Fe(III) Reduction: Ecological and Physiological Considerations, p 1239-1248. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch101
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

In situ interrogation of biofilms of The scale bar is 10 μm in both panels. Note the intimate association of cells with mineral particles (M) in both images. (A). In situ RT-PCR of grown on ferrihydrite. The gene target was C, which encodes a cytochrome Mineral particles are outlined, and cells expressing the gene are in brightly fluorescent groups. (B) Combined fluorescence and phase-contrast image of grown on ferrihydrite. Cells were stained with DAPI (pink) and a fluorescent lectin EPS probe (green).

Citation: Cummings D, Magnuson T. 2007. Microbial Fe(III) Reduction: Ecological and Physiological Considerations, p 1239-1248. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch101
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Akfar, E.,, and Y. Fukumori. 1999. Purification and characterization of triheme cytochrome c 7 from the metal-reducing bacterium, Geobacter metallireducens. FEMS Microbiol. Lett. 175: 205210.
2. Albrechtson, H.-J.,, and T. J. DiChristina. 1994. Evidence for microbial iron reduction in a landfill leachate-polluted aquifer (Vejen, Denmark). Appl. Environ. Microbiol. 60: 39203925.
3. Anderson, R. T.,, J. N. Rooney-Varga,, C. V. Gaw, and, D. R. Lovley. 1998. Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers. Environ. Sci. Technol. 32: 12221229.
4. Arnold, R. G.,, T. DiChristina, and, M. Hoffmann. 1988. Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200. Biotechnol. Bioeng. 32: 10811096.
5. Atlas, R. M.,, and R. Bartha. 1998. Microbial Ecology, 4th ed. Benjamin/Cummings, Menlo Park, Calif.
6. Balch, W. E.,, and R. S. Wolfe. 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32: 781789.
7. Beliaev, A. S.,, D. A. Saffarini,, J. L. McLaughlin, and, D. Hunnicut. 2001. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol. Microbiol. 39: 722730.
8. Benner, S. G.,, C. M. Hansel,, B. W. Wielinga,, T. M. Barber, and, S. Fendorf. 2002. Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environ. Sci. Technol. 36: 17051711.
9. Biju, V.,, D. Pan,, J. McLean,, D. Saffarini,, J. Fredrickson,, H. P. Lu, and, Y. A. Gorby. 2005. Display and retraction of ‘outer membrane’ cytochromes by Shewanella oneidensis in response to electron acceptor availability. Presented at the 105th General Meeting of the American Society for Microbiology, Atlanta, Ga.
10. Bond, D. R.,, T. Mester,, C. L. Nesbo,, A. V. Izquierdo-Lopez,, F. L. Collart, and, D. R. Lovley. 2005. Characterization of citrate synthase from Geobacter sulfurreducens and evidence for a family of citrate synthases similar to those of eukaryotes throughout the Geobacteraceae. Appl. Environ. Microbiol. 71: 38583865.
11. Bostrom, B.,, M. Jansson, and, C. Forsberg. 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 559.
12. Buerge, I. J.,, and S. J. Hug. 1999. Influence of mineral surfaces on chromium(VI) reduction by iron(II). Environ. Sci. Technol. 33: 42854291.
13. Caccavo, F. 1999. Protein-mediated adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to hydrous ferric oxide. Appl. Environ. Microbiol. 65: 50175022.
14. Caccavo, F.,, R. P. Blakemore, and, D. R. Lovley. 1992. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay Estuary, New Hampshire. Appl. Environ. Microbiol. 58: 32113216.
15. Caccavo, F.,, D. J. Lonergan,, D. R. Lovley,, D. D. Davis,, J. F. Stolz, and, M. J. McInerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60: 37523759.
16. Caccavo, F.,, P. C. Schamberger,, K. Keiding, and, P. H. Nielsen. 1997. Role of hydrophobicity in adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga to amorphous Fe(III) oxide. Appl. Environ. Microbiol. 63: 38373843.
17. Chapelle, F. H.,, and D. R. Lovley. 1992. Competitive exclusion of sulfate reduction by Fe(III)-reducing bacteria: a mechanism for producing discrete zones of high-iron ground water. Ground Water 30: 2936.
18. Childers, S. E.,, S. Ciufo, and, D. R. Lovley. 2002. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416: 767769.
19. Cooper, D. C.,, F. Picardal,, J. Rivera, and, C. Talbot. 2000. Zinc immobilization and magnetite formation via ferric oxide reduction by Shewanella putrefaciens 200. Environ. Sci. Technol. 34: 100106.
20. Coppi, M. V.,, C. Leang,, S. J. Sandler, and, D. R. Lovley. 2001. Development of a genetic system for Geobacter sulfurreducens. Appl. Environ. Microbiol. 67: 31803187.
21. Croal, L. R.,, J. A. Gralnick,, D. Malasarn, and, D. K. Newman. 2004. The genetics of geochemistry. Annu. Rev. Genet. 38: 175202.
22. Cummings, D. E.,, F. Caccavo,, S. Fendorf, and, R. F. Rosenzweig. 1999. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. 33: 723729.
23. Cummings, D. E.,, A. W. March,, B. Bostick,, S. Spring,, F. Caccavo, Jr.,, S. Fendorf, and, R. F. Rosenzweig. 2000. Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d’Alene, Idaho). Appl. Environ. Microbiol. 66: 154162.
24. Cummings, D. E.,, O. L. Snoeyenbos-West,, D. T. Newby,, A. M. Niggemyer,, D. R. Lovley,, L. A. Achenbach, and, R. F. Rosenzweig. 2003. Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microb. Ecol. 46: 257269.
25. Cummings, D. E.,, S. Spring, and, R. F. Rosenzweig. 2002. The ecology of iron-reducing bacteria in pristine and contaminated environments, p. 1018–1027. In C. J. Hurst,, R. L. Crawford,, G. R. Knudsen,, M. J. McInerney, and, L. D. Stetzenbach (ed.), Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, D.C.
26. Das, A.,, and F. Caccavo. 2000. Dissimilatory Fe(III) oxide reduction by Shewanella alga BrY requires adhesion. Curr. Microbiol. 40: 344347.
27. Das, A.,, and F. Caccavo. 2001. Adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to crystalline Fe(III) oxides. Curr. Microbiol. 42: 151154.
28. DiChristina, T. J. 2002. New insights into the molecular mechanism of microbial metal reduction. Presented at the American Chemical Society General Meeting, Orlando, Fla.
29. DiChristina, T. J.,, C. M. Moore, and, C. A. Haller. 2002. Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires fer E, a homolog of the pul E ( gspE) type II protein secretion gene. J. Bacteriol. 184: 142151.
30. Eggleston, C. E.,, N. Kahre,, D. Lovelace,, M. W. Swenson, and, T. S. Magnuson. Redox-linked conformation change during electron transfer from monoheme c-type cytochromes to natural (Sn/Ti)-doped α-Fe 2O 3 and Sn-doped In 2O 3. Geochim. Cosmochim. Acta, in press.
31. Fendorf, S.,, B. W. Wielinga, and, C. M. Hansel. 2000. Chromium transformations in natural environments: the role of biological and abiological processes in chromium (VI) reduction. Int. J. Geol. Rev. 42: 691701.
32. Fredrickson, J. K.,, J. M. Zachara,, D. W. Kennedy,, H. Dong,, T. C. Onstott,, N. H. Hinman, and, B. Li. 1998. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 62: 32393257.
33. Fredrickson, J. K.,, J. M. Zachara,, D. W. Kennedy,, M. C. Duff, and, Y. A. Gorby. 2000. Reduction of U(VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim. Cosmochim. Acta 64: 30853098.
34. Geesey, G. G.,, A. L. Neal,, P. A. Suci, and, B. M. Peyton. 2002. A review of spectroscopic methods for characterizing microbial transformations of minerals. J. Microbiol. Methods 51: 125139.
35. Gibbs-Eggar, Z.,, B. Jude,, J. Dominik,, J.-L. Loizeau, and, F. Oldfield. 1999. Possible evidence for dissimilatory bacterial magnetite dominating the magnetic properties of recent lake sediments. Earth Plan. Sci. Lett. 168: 16.
36. Gonzalez-Gil, G.,, J. E. Amonette,, M. F. Romine,, Y. A. Gorby, and, G. G. Geesey. 2005. Bioreduction of natural specular hematite under flow conditions. Geochim. Cosmochim. Acta 69: 11451155.
37. Hansel, C. M.,, S. G. Benner,, J. Neiss,, A. Dohnalkova,, R. K. Kukkadapu, and, S. Fendorf. 2003. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta 67: 29772992.
38. Heidelberg, J. F., et al. 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20: 11181123.
39. Hernandez, M. E.,, A. Kappler, and, D. K. Newman. 2004. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 70: 921928.
40. Hernandez, M. E.,, and D. K. Newman. 2001. Extracellular electron transfer. Cell. Mol. Life Sci. 58: 15621571.
41. Heron, G.,, T. H. Christensen, and, J. D. Tjell. 1994. Oxidation capacity of aquifer sediments. Environ. Sci. Technol. 28: 153159.
42. Heron, G.,, C. Crouzet,, A. C. Bourg, and, T. H. Christensen. 1994. Speciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques. Environ. Sci. Technol. 28: 16981705.
43. Hoehler, T. M.,, M. J. Alperin,, D. B. Albert, and, C. S. Martens. 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim. Cosmochim. Acta 62: 17451756.
44. Holmes, D. E.,, K. T. Finneran,, R. A. O’Neil, and, D. R. Lovley. 2002. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl. Environ. Microbiol. 68: 23002306.
45. Holmes D. E.,, K. P. Nevin,, R. A. O’Neil,, J. E. Ward,, L. A. Adams,, T. L. Woodard,, H. A. Vrionis, and, D. R. Lovley. 2005. Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes. Appl. Environ. Microbiol. 71: 68706877.
46. Hungate, R. E. 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14: 149.
47. Jones, J. G.,, S. Gardener, and, B. M. Simon. 1984. Reduction of ferric iron by heterotrophic bacteria in lake sediments. J. Gen. Microbiol. 130: 4551.
48. Kennedy, L. G.,, J. W. Everett,, K. J. Ware,, R. Parsons, and, V. Green. 1998. Iron and sulfur mineral analysis methods for natural attenuation assessments. Bioremed. J. 2: 259276.
49. Kim, B. C.,, C. Leang,, Y. H. R. Ding,, R. H. Glaven,, M. V. Coppi, and, D. R. Lovley. 2005. OmcF, a putative c-type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens. J. Bacteriol. 187: 45054513.
50. Komadel, P.,, and J. W. Stucki. 1988. Quantitative assay of minerals for Fe 2+ and Fe 3+ using 1,10-phenanthroline. III. A rapid photochemical method. Clays Clay Miner. 36: 379381.
51. Kostka, J. E.,, and K. H. Nealson. 1998. Isolation, cultivation and characterization of iron- and manganese-reducing bacteria, p. 58–78. In R. S. Burlage,, R. Atlas,, D. Stahl,, G. Geesey, and, G. Sayler (ed.), Techniques in Microbial Ecology. Oxford University Press, New York, N.Y.
52. Küsel, K.,, T. Dorsch,, G. Acker, and, E. Stackebrandt. 1999. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl. Environ. Microbiol. 65: 36333640.
53. Landa, E. R.,, E. J. P. Phillips, and, D. R. Lovley. 1991. Release of 226Ra from uranium mill tailings by microbial Fe(III) reduction. Appl. Geochem. 6: 647652.
54. Laverman, A. M.,, J. S. Blum,, J. K. Schaefer,, E. J. P. Phillips,, D. R. Lovley, and, R. S. Oremland. 1995. Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol. 61: 35563561.
55. Leang, C.,, M. V. Coppi, and, D. R. Lovley. 2003. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 185: 20962103.
56. Liger, E.,, L. Charlet, and, P. Van Cappellen. 1999. Surface catalysis of uranium(VI) reduction by iron(II). Geochim. Cosmochim. Acta 63: 29392955.
57. Lloyd, J. R.,, J. Chesnes,, S. Glasauer,, D. J. Bunker,, F. R. Livens, and, D. R. Lovley. 2002. Reduction of actinides and fission products by Fe(III)-reducing bacteria. Geomicrobiol. J. 19: 103120.
58. Lloyd, J. R.,, C. Leang,, A. L. Hodges Myerson,, M. V. Coppi,, C. Cuifo,, B. Methé,, S. J. Sandler, and, D. R. Lovley. 2003. Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem. J. 369: 153161.
59. Lonergan, D. J.,, H. L. Jenter,, J. D. Coates,, E. J. P. Phillips,, T. M. Schmidt, and, D. R. Lovley. 1996. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. 178: 24022408.
60. Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259287.
61. Lovley, D. R.,, F. H. Chapelle, and, J. C. Woodward. 1994. Use of dissolved H 2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environ. Sci. Technol. 28: 12051210.
62. Lovley, D. R.,, J. D. Coates,, E. L. Blunt-Harris,, E. J. P. Phillips, and, J. C. Woodward. 1996. Humic substances as electron acceptors for microbial respiration. Nature 382: 445448.
63. Lovley, D. R.,, S. J. Giovannoni,, D. C. White,, J. E. Champine,, E. J. P. Phillips,, Y. A. Gorby, and, S. Goodwin. 1993. Geobacter metallireducens gen. nov. sp. nov., a micro-organism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159: 336344.
64. Lovley, D. R.,, and S. Goodwin. 1988. Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta 52: 29933003.
65. Lovley, D. R.,, and E. J. P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51: 683689.
66. Lovley, D. R.,, and E. J. P. Phillips. 1986. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl. Environ. Micro-biol. 52: 751757.
67. Lovley, D. R.,, and E. J. P. Phillips. 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl. Environ. Microbiol. 53: 15361540.
68. Lovley, D. R.,, and E. J. P. Phillips. 1987. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53: 26362641.
69. Lovley, D. R.,, and E. J. P. Phillips. 1988. Novel mode of energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 14721480.
70. Lovley, D. R.,, E. J. P. Phillips,, Y. A. Gorby, and, E. R. Landa. 1991. Microbial reduction of uranium. Nature 350: 413416.
71. Lovley, D. R.,, E. J. P. Phillips,, D. J. Lonergan, and, P. K. Widman. 1995. Fe(III) and S 0 reduction by Pelobacter carbinolicus. Appl. Environ. Microbiol. 61: 21322138.
72. Lowe, K. L.,, T. J. DiChristina,, A. N. Roychoudhury, and, P. Van Cappellen. 2000. Microbiological and geochemical characterization of microbial Fe(III) reduction in salt marsh sediments. Geomicrobiol. J. 17: 163178.
73. Lower, S. K.,, M. F. Hochella, Jr., and, T. J. Beveridge. 2001. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292: 13601363.
74. Magnuson, T. S.,, N. Isoyama,, A. L. Hodges-Meyerson,, G. Davidson,, M. J. Maroney,, G. G. Geesey, and, D. R. Lovley. 2001. Isolation, characterization and gene sequence analysis of a membrane-associated 89 kDa Fe(III) reducing cytochrome c from Geobacter sulfurreducens. Biochem. J. 359: 147152.
75. Magnuson, T. S.,, A. L. Neal, and, G. G. Geesey. 2004. Combining in situ reverse transcriptase polymerase chain reaction, optical microscopy, and X-ray photoelectron spectroscopy to investigate mineral surface-associated microbial activities. Microb. Ecol. 48: 578588.
76. Majors, P. D.,, J. S. McClean,, J. K. Fredrickson, and, R. A. Wind. 2005. HMR methods for in-situ biofilm metabolism studies: spatial and temporal resolved measurements. Water. Sci. Technol. 52: 712.
77. Methé, B. A., et al. 2003. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302: 19671969.
78. Munch, J. C.,, and J. C. G. Ottow. 1980. Preferential reduction of amorphous to crystalline iron oxides by bacterial activity. Soil Sci. 129: 1521.
79. Myers, C. R.,, and J. M. Myers. 1997. Outer membrane cytochromes of Shewanella putrefaciens MR-1: spectral analysis, and purification of the 83-kDa c-type cytochrome. Biochim. Biophys. Acta 1326: 307318.
80. Myers, C. R.,, and J. M. Myers. 2003. Cell surface exposure of the outer membrane cytochromes of Shewanella oneidensis MR-1. Lett. Appl. Microbiol. 37: 254258.
81. Myers, J. M.,, and C. R. Myers. 1998. Isolation and sequence of omcA, a gene encoding a decaheme outer membrane cytochrome c of Shewanella putrefaciens MR-1, and detection of omcA homologs in other strains of S. putrefaciens. Biochim. Biophys. Acta 1373: 237251.
82. Neal, A. L.,, T. L. Bank,, M. F. Hochella, and, K. M. Rosso. 2005. Cell adhesion of Shewanella oneidensis to iron oxide minerals: effect of different single crystal faces. Geochem. Trans. 6: 7784.
83. Neal, A. L.,, L. C. Clough,, T. D. Perkins, and, T. S. Magnuson. 2004. Characterization of surface-associated growth, mineral transformation, and gene expression by Geobacter pelophilus grown on solid-phase mineral surfaces. FEMS Microbiol. Ecol. 49: 163169.
84. Neal, A. L.,, K. M. Rosso,, G. G. Geesey,, Y. A. Gorby, and, B. J. Little. 2003. Surface structure effects on direct reduction of iron oxides by Shewanella oneidensis. Geochim. Cosmochim. Acta 67: 44894503.
85. Nevin, K. P.,, and D. R. Lovley. 2000. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 66: 22482251.
86. Nevin, K. P.,, and D. R. Lovley. 2002. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl. Environ. Microbiol. 68: 22942299.
87. Ogram, A. 1998. Isolation of nucleic acids from environmental samples, p. 273–288. In R. S. Burlage,, R. Atlas,, D. Stahl,, G. Geesey, and, G. Sayler (ed.), Techniques in Microbial Ecology. Oxford University Press, New York, N.Y.
88. Peacock, A. D.,, Y.-J. Chang,, J. D. Istok,, L. Krumholtz,, R. Geyer,, B. Kinsall,, D. Watson,, K. L. Sublette, and, D. C. White. 2004. Utilization of microbial biofilms as monitors of bioremediation. Microb. Ecol. 47: 284292.
89. Petrie, L.,, N. N. North,, S. L. Dollhopf,, D. L. Balkwill, and, J. E. Kostka. 2003. Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Appl. Environ. Microbiol. 69: 74677479.
90. Peyton, B. M.,, and M. J. Truex. June 1997. In situ biofilm coupon device. U.S. patent 5,641,642.
91. Picardal, F. W.,, R. G. Arnold,, H. Couch,, A. M. Little, and, M. A. Smith. 1993. Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200. Appl. Environ. Microbiol. 59: 37633770.
92. Pitts, K. E.,, P. S. Dobbin,, F. Reyes-Ramirez,, A. J. Thomson,, D. J. Richardson, and, H. E. Seward. 2003. Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates. J. Biol. Chem. 278: 2775827765.
93. Reardon, C. L.,, D. E. Cummings,, L. M. Petzke,, B. L. Kinsall,, D. B. Watson,, B. M. Peyton, and, G. G. Geesey. 2004. Composition and diversity of microbial communities recovered from surrogate minerals incubated in an acidic uranium-contaminated aquifer. Appl. Environ. Microbiol. 70: 60376046.
94. Reguera, G.,, K. D. McCarthy,, T. Mehta,, J. S. Nicoll,, M. T. Tuominen, and, D. R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature 435: 10981101.
95. Richardson, D. J. 2000. Bacterial respiration: a flexible process for a changing environment. Microbiology 146: 551571.
96. Roden, E. E.,, M. R. Leonardo, and, F. G. Ferris. 2002. Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction. Geochim. Cosmochim. Acta 66: 28232839.
97. Roden, E. E.,, and M. M. Urrutia. 2002. Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction. Geomicrobiol. J. 19: 209251.
98. Rooney-Varga, J. N.,, R. T. Anderson,, J. L. Fraga,, D. Ringelberg, and, D. R. Lovley. 1999. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Environ. Micro-biol. 65: 30563063.
99. Royer, R. A.,, W. D. Burgos,, A. S. Fisher,, B. H. Jeon,, R. F. Unz, and, B. A. Dempsey. 2002. Enhancement of hematite bioreduction by natural organic matter. Environ. Sci. Technol. 36: 28972904.
100. Schwalb, C.,, S. K. Chapman, and, G. A. Reid. 2003. The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis. Biochemistry 42: 94919497.
101. Schwertmann, U.,, and R. M. Cornell. 2000. Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed. Wiley-VCH, Weinheim, Germany.
102. Snoeyenbos-West, O. L.,, K. P. Nevin,, R. T. Anderson, and, D. R. Lovley. 2000. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microb. Ecol. 39: 153167.
103. Starkey, R. L.,, and H. O. Halvorson. 1927. Studies on the transformations of iron in nature. II. Concerning the importance of microorganisms in the solution and precipitation of iron. Soil Sci. 24: 381402.
104. Stookey, L. L. 1970. Ferrozine: a new spectrophotometric reagent for iron. Anal. Chem. 42: 779781.
105. Stults, J. R.,, O. L. Snoeyenbos-West,, B. A. Methe,, D. R. Lovley, and, D. P. Chandler. 2001. Application of the 5′ fluorogenic exonuclease assay (TaqMan) for quantitative ribosomal DNA and rRNA analysis in sediments. Appl. Environ. Microbiol. 67: 27812789.
106. Tebo, B. M.,, and A. Y. Obraztsova. 1998. Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol. Lett. 162: 193198.
107. Turick, C. E.,, F. Caccavo, and, L. S. Tisa. 2003. Electron transfer from Shewanella algae BrY to hydrous ferric oxide is mediated by cell-associated melanin. FEMS Microbiol. Lett. 220: 99104.
108. Turick, C. E.,, L. S. Tisa, and, F. Caccavo. 2002. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl. Environ. Microbiol. 68: 24362444.
109. Yarzábal, A.,, G. Brasseur,, J. Ratouchniak,, K. Lund,, D. Lemesle-Meunier,, J. A. DeMoss, and, V. Bonnefoy. 2002. The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J. Bacteriol. 184: 313317.
110. Ye, Q.,, Y. Roh,, S. L. Carroll,, B. Blair,, J. Zhou,, C. L. Zhang, and, M. W. Fields. 2004. Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl. Environ. Microbiol. 70: 55955602.
111. Zhou, J.,, M. A. Bruns, and, J. M. Tiedje. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62: 316322.
112. Zhou, J. H.,, and D. K. Thompson. 2004. Microarray technology and applications in environmental microbiology. Adv. Agron. 82: 183270.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error