Chapter 46 : Extreme High-Pressure Marine Environments

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Extreme High-Pressure Marine Environments, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap46-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap46-2.gif


The observation that the vast majority of Earth’s microorganisms reside in extreme aquatic environments, given the immense volume of the deep ocean, is a simple fact. Some combination of extreme temperature, pressure, food supply, acidity, redox conditions, or even water activity describes the norm, not the rarity, for aquatic microbial habitats. This chapter provides some history, current trends, and specific examples of strategies and experimental protocols for studying microorganisms (Bacteria and Archaea) that inhabit the largest volume of extreme (or any inhabited) environment on the planet, the pressurized deep ocean and its sub-seafloor realm. Although few scientists have ready access to submersible operations in the deep sea or even to standard sampling expeditions by surface ships, the new investigator can find established researchers forthcoming with expertise, field samples, or cultured strains. Yet another variant on the theme of end-point experiments at high temperatures and pressures is the recent development in the Jørgensen laboratory of a high-pressure thermal gradient block, generally patterned after the system described for low-temperature, high-pressure research. The problem for extreme deep-sea environments, as elsewhere, lies with the available approaches to measuring activity, not with limitations to deep-sea sampling or seafloor experimentation. The latter are limited only by resources (and perhaps motivation), since a wide variety of sampling gear and instrumentation, including pressure retaining devices, are available for in situ study of deep-sea extremophiles.

Citation: Deming J. 2007. Extreme High-Pressure Marine Environments, p 575-590. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch46
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Examples of typical equipment for conducting microbial studies at elevated hydrostatic pressures, including a stainless steel hand pump, gauge, and fluid reservoir (Enerpac Division, Applied Power, Inc.), high-pressure valves and flexible capillary tubing (HIP, Erie, Pa.), and a quickly disconnecting, threadless pressure vessel and threadless cap (custom-built by Tem-Pres Division, Leco Corp., modeled on the work of Yayanos [ ] and Yayanos and Van Boxtel [ ]). See the text for additional details.

Citation: Deming J. 2007. Extreme High-Pressure Marine Environments, p 575-590. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch46
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Examples of sample containers used at elevated hydrostatic pressures, i.e., with pressure-responsive (moveable) parts (containers A to D) or a completely flexible design (containers E and F). Containers A and D double as sample collectors in the field for fluid and sediment, respectively. Containers B and C (when filled with solid media [ ]) and container F ( ) allow for colony formation under pressure. Container C, which can be of any length, is used in the pressure-temperature gradient instrument of Yayanos et al. ( ). See Table 1 for examples of container use in selected studies; see the text for additional details.

Citation: Deming J. 2007. Extreme High-Pressure Marine Environments, p 575-590. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch46
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, M. W. W. 1999. The biochemical diversity of life near and above 100°C in marine environments. J. Appl. Microbiol. 85 (Suppl. S) : 108S117S.
2. Alongi, D. M. 1990. Bacterial growth rates, production and estimates of detrital carbon utilization in deep-sea sediments of the Solomon and Coral Seas. Deep-Sea Res. 37: 731746.
3. Baird, B. H.,, D. E. Nivens,, J. H. Parker, and, D. C. White. 1985. The biomass, community structure, and spatial distribution of the sedimentary microbiota from a high-energy area of the deep sea. Deep-Sea Res. 32: 10891099.
4. Barnett, P. R. O.,, J. Watson, and, D. Connelly. 1984. A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sites. Oceanol. Acta 7: 399408.
5. Baross, J. A. 1993. Isolation and cultivation of hyperthermophilic bacteria from marine and freshwater habitats, p. 21–30. In P. F. Kemp,, B. F. Sherr,, E. B. Sherr, and, J. J. Cole (ed.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, Fla.
6. Baross, J. A.,, and J. W. Deming. 1983. Growth of “black smoker” bacteria at temperatures of at least 250°C. Nature (London) 303: 423426.
7. Baross, J. A.,, and J. W. Deming. 1995. Growth at high temperatures: isolation and taxonomy, physiology, and ecology, p. 169–217. In D. M. Karl (ed.), The Microbiology of Deep-Sea Hydrothermal Vents. CRC Press, New York, N.Y.
8. Baross, J. A.,, J. W. Deming, and, R. R. Becker. 1984. Evidence for microbial growth in high pressure, high temperature environments, p. 186–195. In M. J. Klug and, C. A. Reddy (ed.), Current Perspectives in Microbial Ecology: Third International Symposium on Microbial Ecology. American Society for Microbiology, Washington, D.C.
9. Baross, J. A.,, W. S. D. Wilcock,, D. S. Kelley,, E. F. DeLong, and, S. C. Cary. 2004. The subsurface biosphere at mid-ocean ridges: issues and challenges. Geophys. Monogr. Ser. 144: 111.
10. Bartlett, D. H. 2002. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595: 367381.
11. Bendtsen, J.,, C. Lundsgaard,, M. Middelboe, and, D. Archer. 2002. Influence of bacterial uptake on deep-ocean dissolved organic carbon. Global Biogeochem. Cycles 16: 1127. [Online.] doi:10.1029/2002GB001947.
12. Bianchi, A.,, and J. Garcin. 1993. In stratified waters the metabolic rate of deep-sea bacteria decreases with decompression. Deep-Sea Res. 40: 17031710.
13. Bianchi, A.,, and J. Garcin. 1994. Bacterial response to hydrostatic pressure in seawater samples collected in mixed-water and stratified-water conditions. Mar. Ecol. Prog. Ser. 111: 137141.
14. Bianchi, A.,, J. Garcin, and, O. Tholosan. 1999. A high pressure serial sampler to measure microbial activity in the deep sea. Deep-Sea Res. 46: 21292142.
15. Boetius, A.,, and K. Lochte. 1994. Regulation of microbial enzymatic degradation of organic matter in deep-sea sediments. Mar. Ecol. Prog. Ser. 104: 299307.
16. Boetius, A.,, T. Ferdelman, and, K. Lochte. 2000. Bacterial activity in sediments of the deep Arabian Sea in relation to vertical flux. Deep-Sea Res. II 47: 28352875.
17. Boetius, A.,, K. Ravenschlag,, C. J. Schubert,, D. Rickert,, F. Widdel,, A. Gieseke,, R. Amann,, B. B. Jorgensen,, U. Witte, and, O. Pfannkuche. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature (London) 407: 623626.
18. Boland, G. S.,, and G. T. Rowe. 1991. Deep-sea benthic sampling with the GOMEX box corer. Limnol. Oceanogr. 36: 10151020.
19. Cahet, G.,, and M. Sibuet. 1986. Activité biologique en domaine profond: transformations biochimiques in situ de composés organiques marqués au carbone-14 à l’interface eau-sédiment par 2000 m de profondeur dans le golfe de Gascogne. Mar. Biol. 90: 307315.
20. Certes, A. 1884. Sur la culture, a l’abri des germes atmospheriques, des eaux et des sediments rapportes par les expeditions du Traveilleur et du Talisman, 1882-1883. C. R. Acad. Sci. 98: 690693.
21. Chastain, R. A.,, and A. A. Yayanos. 1991. Ultrastructural changes in an obligately barophilic marine bacterium after decompression. Appl. Environ. Microbiol. 57: 14891497.
22. Cook, T. L.,, and D. S. Stakes. 1995. Biogeological mineralization in deep-sea hydrothermal deposits. Science 267: 19751979.
23. Cowen, J. P. 1989. Positive pressure effect on manganese binding by bacteria in deep-sea hydrothermal plumes. Appl. Environ. Microbiol. 55: 764766.
24. Cowen, J. P. 2004. The microbial biosphere of sediment-buried oceanic basement. Res. Microbiol. 155: 497506.
25. Cowen, J. P.,, S. J. Giovannoni,, F. Kenig,, H. P. Johnson,, D. Butterfield,, M. S. Rappé,, M. Mutnak, and, P. Lam. 2003. Fluids from aging ocean crust that support microbial life. Science 299: 120123.
26. Danavaro, R.,, N. Della Croce,, A. Dell’Anno, and, A. Pusceddu. 2003. A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep-Sea Res. I 50: 14111420.
27. De Angelis, M. A.,, J. A. Baross, and, M. D. Lilley. 1991. Enhanced microbial methane oxidation in water from a deep-sea hydrothermal vent field at simulated in situ hydrostatic pressures. Limnol. Oceanogr. 36: 565570.
28. Delaney, J. R.,, D. S. Kelley,, M. D. Lilley,, D. A. Butterfield,, J. A. Baross,, W. S. D. Wilcock,, R. W. Embley, and, M. Summit. 1998. The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science 281: 222230.
29. DeLong, E. F.,, and D. M. Karl. 2005. Genomic perspectives in microbial oceanography. Nature (London) 437: 336342.
30. DeLong, E. F.,, C. M. Preston,, T. Mincer,, V. Rich,, S. J. Hallam,, N.-U. Frigaard,, A. Martinez,, M. B. Sullivan,, R. Edwards,, B. Rodriguez Brito,, S. W. Chishom, and, D. M. Karl. 2006. Community genomics among stratified microbial assemblages in the Ocean’s interior. Science 311: 496503.
31. Deming, J. W. 1985. Bacterial growth in deep-sea sediment trap and boxcore samples. Mar. Ecol. Prog. Ser. 25: 305312.
32. Deming, J. W. 1986. Ecological strategies of barophilic bacteria in the deep ocean. Microbiol. Sci. 3: 205211.
33. Deming, J. W. 1987. Thermophilic bacteria associated with black smokers along the East Pacific Rise, p. 325–332. In Deuxieme Colloque International de Bacteriologie Marine, IFREMER, Actes de Colloques 3. Centre National de la Recherche Scientifique, Brest, France.
34. Deming, J. W. 1993. 14C tracer method for measuring microbial activity in deep-sea sediments, p. 405–414. In P. F. Kemp,, B. F. Sherr,, E. B. Sherr, and, J. J. Cole (ed.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, Fla.
35. Deming, J. W.,, and J. A. Baross. 1986. Solid medium for culturing black smoker bacteria at temperatures to 120°C. Appl. Environ. Microbiol. 51: 238243.
36. Deming, J. W.,, and J. A. Baross. 1993. Deep-sea smokers: windows to a subsurface biosphere? Geochim. Cosmochim. Acta 57: 32193230.
37. Deming, J. W.,, and J. A. Baross. 1993. The early diagenesis of organic matter: bacterial activity, p. 119–144. In M. H. Engel and, S. A. Macko (ed.), Organic Geochemistry. Plenum Press, New York, N.Y.
38. Deming, J. W.,, and J. A. Baross. 2000. Survival, dormancy and nonculturable cells in extreme deep-sea environments, p. 147–197. In R. R. Colwell and, D. J. Grimes (ed.), Nonculturable Microorganisms in the Environment. ASM Press, Washington, D.C.
39. Deming, J. W.,, and J. A. Baross. 2002. Search and discovery of microbial enzymes from thermally extreme environments in the ocean, p. 327–362. In R. P. Dick and, R. G. Burns (ed.), Enzymes in the Environment, Activity, Ecology, and Applications. Marcel Dekker, Inc., New York, N.Y.
40. Deming, J. W.,, and S. D. Carpenter. Factors influencing benthic bacterial abundance and activity on the northern continental slope and abyssal plain of the Gulf of Mexico. Submitted for publication.
41. Deming, J. W.,, and R. R. Colwell. 1981. Barophilic bacteria associated with deep-sea animals. BioScience 31: 507511.
42. Deming, J. W.,, and R. R. Colwell. 1985. Observations of barophilic microbial activity in samples of sediment and intercepted particulates from the Demerara abyssal plain. Appl. Environ. Microbiol. 50: 10021006.
43. Deming, J. W.,, H. Hada,, R. R. Colwell,, K. R. Luehrsen, and, G. E. Fox. 1984. The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J. Gen. Microbiol. 130: 19111920.
44. Deming, J. W.,, L. K. Somers,, W. L. Straube,, D. G. Swartz, and, M. T. MacDonell. 1988. Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst. Appl. Microbiol. 10: 152160.
45. Dietz, A. S.,, and A. A. Yayanos. 1978. Silica gel media for isolating and studying bacteria under hydrostatic pressure. Appl. Environ. Microbiol. 36: 966968.
46. Dixon, J. L.,, and C. M. Turley. 2000. The effect of water depth on bacterial numbers, thymidine incorporation rates and C:N ratios in northeast Atlantic surficial sediments. Hydrobiologia 440: 217225.
47. Eder, W.,, L. L. Jahnke,, M. Schmidt, and, R. Huber. 2001. Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl. Environ. Microbiol. 67: 30773085.
48. Edwards, K. J.,, D. R. Rogers,, C. O. Wirsen, and, T. M. McCollom. 2003. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithotrophic α- and γ- Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69: 29062913.
49. Francis, C. A.,, K. J. Roberts,, J. M. Beman,, A. E. Santoro, and, B. B. Oakley. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 102: 1468314688.
50. Hallum, S. J.,, N. Putnam,, C. M. Preston,, J. C. Detter,, D. Rokhsar,, P. M. Richardson, and, E. F. DeLong. 2004. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305: 14571462.
51. Harmsen, H. J. M.,, D. Prieur, and, C. Jeanthon. 1997. Distribution of microorganisms in deep-sea hydrothermal chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl. Environ. Microbiol. 63: 28762883.
52. Hedrick, D. B.,, R. J. Pledger,, D. C. White, and, J. A. Baross. 1992. In situ microbial ecology of hydrothermal vent sediments. FEMS Microbiol. Ecol. 101: 110.
53. Helmke, E.,, and H. Weyland. 1986. Effect of hydrostatic pressure and temperature on the activity and synthesis of chitinases of Antarctic Ocean bacteria. Mar. Biol. 91: 17.
54. Herndl, G. J.,, T. Reinthaler,, E. Teira,, H. van Aken,, C. Veth,, A. Pernthaler, and, J. Pernthaler. 2005. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71: 23032309.
55. Holden, J. F.,, and J. A. Baross. 1995. Enhanced thermo-tolerance by hydrostatic pressure in the deep-sea hyper-thermophile Pyrococcus strain ES4. FEMS Microbiol. Ecol. 18: 2734.
56. Holden, J. F.,, and R. M. Daniel. 2004. The upper temperature limit for life based on hyperthermophile culture experiments and field observations in the subseafloor biosphere at mid-ocean ridges. Geophys. Monogr. Ser. 144: 1324.
57. Holden, J. F.,, M. Summit, and, J. A. Baross. 1998. Thermophilic and hyperthermophilic microorganisms in 3–30°C hydrothermal fluids following a deep-sea volcanic eruption. FEMS Microbiol. Ecol. 25: 3341.
58. Holden, J. F.,, K. Takai,, M. Summit,, S. Bolton,, J. Zyskowski, and, J. A. Baross. 2001. Diversity among three novel groups of hyperthermophilic deep-sea Thermococcus species from three sites in the northeastern Pacific Ocean. FEMS Microbiol. Ecol. 36: 5160.
59. Horikoshi, K. 1998. Barophiles: deep-sea microorganisms adapted to an extreme environment. Curr. Opin. Microbiol. 1: 291295.
60. Huber, H.,, M. J. Hohn,, R. Rachel,, T. Fuchs,, V. C. Wimmer, and, K. O. Stetter. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature (London) 417: 6367.
61. Huber, J. A.,, H. P. Johnson,, D. A. Butterfield, and, J. A. Baross. 2006. Microbial life in ridge flank crustal fluids. Environ. Microbiol. 8: 8899.
62. Jaenicke, R. 1987. Cellular components under extremes of pressure and temperature: structure-function relationship of enzymes under pressure, p. 257–272. In H. W. Jannasch,, R. E. Marquis, and, A. M. Zimmerman (ed.), Current Perspectives in High Pressure Biology. Academic Press, London, United Kingdom.
63. Jahnke, R. A.,, and M. B. Christiansen. 1989. A free-vehicle benthic chamber instrument for sea floor studies. Deep-Sea Res. 36: 625637.
64. Jannasch, H. W.,, and C. O. Wirsen. 1977. Retrieval of concentrated and undecompressed microbial populations from the deep sea. Appl. Environ. Microbiol. 33: 642646.
65. Jannasch, H. W.,, and C. O. Wirsen. 1981. Morphological survey of microbial mats near deep-sea thermal vents. Appl. Environ. Microbiol. 41: 528538.
66. Jannasch, H. W.,, and C. O. Wirsen. 1982. Microbial activities in undecompressed and decompressed deep-seawater samples. Appl. Environ. Microbiol. 43: 11161124.
67. Jannasch, H. W.,, C. O. Wirsen, and, C. D. Taylor. 1982. Deep-sea bacteria: isolation in the absence of decompression. Science 216: 13151317.
68. Jannasch, H. W.,, C. O. Wirsen, and, C. L. Winget. 1973. A bacteriological, pressure-retaining, deep-sea sampler and culture vessel. Deep-Sea Res. 20: 661664.
69. Jolivet, E.,, S. L’Haridon,, E. Corre,, P. Forterre, and, D. Prieur. 2003. Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int. J. Syst. Evol. Microbiol. 53: 847851.
70. Jorgensen, B. B. 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurements with radiotracer techniques. Geomicrobiol. J. 1: 1127.
71. Jorgensen, B. B.,, M. F. Isaksen, and, H. W. Jannasch. 1992. Bacterial sulfate reduction above 100°C in deep-sea hydrothermal vent sediments. Science 258: 17561757.
72. Jumars, P. A.,, L. M. Mayer,, J. W. Deming,, J. A. Baross, and, R. A. Wheatcroft. 1990. Deep-sea deposit-feeding strategies suggested by environmental and feeding constraints. Philos. Trans. R. Soc. Lond. A 331: 85101.
73. Kallmeyer, J.,, and A. Boetius. 2004. Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Appl. Environ. Microbiol. 70: 12311233.
74. Kallmeyer, J.,, T. G. Ferdelman,, K.-H. Jansen, and, B. B. Jørgensen. 2003. A high-pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples. J. Microbiol. Methods 55: 165172.
75. Karl, D. M. 1978. Distribution, abundance, and metabolic states of microorganisms in the water column and sediments of the Black Sea. Limnol. Oceanogr. 23: 936949.
76. Karl, D. M.,, D. J. Burns,, K. Orrett, and, H. W. Jannasch. 1984. Thermophilic microbial activity in samples from deep-sea hydrothermal vents. Mar. Biol. Lett. 5: 227231.
77. Karl, D. M.,, G. T. Taylor,, J. A. Novitsky,, H. W. Jannasch,, C. O. Wirsen,, N. R. Pace,, D. J. Lane,, G. J. Olsen, and, S. J. Giovannoni. 1988. A microbiological study of Guaymas Basin high temperature hydrothermal vents. Deep-Sea Res. 35: 777791.
78. Karner, M. B.,, E. F. DeLong, and, D. M. Karl. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature (London) 409: 507510.
79. Kashefi, K.,, and D. Lovley. 2003. Extending the upper temperature limit for life. Science 301: 934.
80. Kato, C.,, and Y. Nogi. 2001. Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol. Ecol. 35: 223230.
81. Kaye, J. Z.,, and J. A. Baross. 2000. High incidence of halotolerant bacteria in Pacific hydrothermal vent and pelagic environments. FEMS Microbiol. Ecol. 32: 249260.
82. Kaye, J. Z.,, and J. A. Baross. 2004. Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal vent and sea surface environments. Appl. Environ. Microbiol. 70: 62206229.
83. Kelley, D. S.,, J. A. Baross, and, J. R. Delaney. 2002. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30: 385491.
84. Kelley, D. S.,, J. A. Karson,, G. L. Früh-Green,, D. R. Yoerger,, T. M. Shank,, D. A. Butterfield,, J. M. Hayes,, M. O. Schrenk,, E. J. Olson,, G. Proskurowski,, M. Jakuba,, A. Bradley,, B. Larson,, K. Ludwig,, D. Glickson,, K. Buckman,, A. S. Bradley,, W. J. Brazelton,, K. Roe,, M. J. Elend,, A. Delacour,, S. M. Bernasconi,, M. D. Lilley,, J. A. Baross,, R. E. Summons, and, S. P. Sylva. 2005. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307: 14281434.
85. Kelly, R. M.,, and J. W. Deming. 1988. Extremely thermophilic archaebacteria: biological and engineering considerations. Biotechnol. Prog. 4: 4762.
86. Kushner, D. J. (ed.). 1978. Microbial Life in Extreme Environments. Academic Press, New York, N.Y.
87. Laksanalamai, P.,, and F. T. Robb. 2004. Small heat shock proteins from extremophiles: a review. Extremophiles 8: 111.
88. Lam, P.,, J. P. Cowen, and, R. D. Jones. 2004. Autotrophic ammonia oxidation in a deep-sea hydrothermal plume. FEMS Microbiol. Ecol. 47: 191206.
89. Landau, J. V.,, and L. Thibodeau. 1962. The micromorphology of Amoeba proteus during pressure-induced changes in the sol-gel cycle. Exp. Cell Res. 27: 591594.
90. LePage, E.,, E. Marguet,, C. Geslin,, O. Matte-Tailliez,, W. Zillig,, P. Forterre, and, P. Tailliez. 2004. Molecular diversity of new Thermococcales isolates from a single area of hydrothermal deep-sea vents as revealed by randomly amplified polymorphic DNA fingerprinting and 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 70: 12771286.
91. Lochte, K.,, and C. M. Turley. 1988. Bacteria and cyanobacteria associated with phytodetritus in the deep sea. Nature (London) 333: 6769.
92. Madrid, V. M.,, G. T. Taylor,, M. I. Scranton, and, A. Y. Chistoserdov. 2001. Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. Appl. Environ. Microbiol. 67: 16631674.
93. Marteinsson, V. T.,, P. Moulin,, J.-L. Birrien,, A. Gambacorta,, M. Vernet, and, D. Prieur. 1997. Physiological responses to stress conditions and barophilic behavior of the hyperthermophilic vent archeon Pyrococcus abyssi. Appl. Environ. Microbiol. 63: 12301236.
94. McCliment, E. A.,, K. M. Voglesonger,, P. A. O’Day,, E. E. Dunn,, J. R. Holloway, and, S. C. Cary. 2006. Colonization of nascent, deep-sea hydrothermal vents by a novel archaeal and nanoarchaeal assemblage. Environ. Microbiol. 8: 114125.
95. McInerney, J. O.,, M. Wilkinson,, J. W. Patching,, T. M. Embley, and, R. Powell. 1995. Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder. Appl. Environ. Microbiol. 61: 16461648.
96. Mehta, M. P.,, D. A. Butterfield, and, J. A. Baross. 2003. Phylogenetic diversity of nitrogenase ( nifH) genes in deep-sea and hydrothermal vent environments. Appl. Environ. Microbiol. 69: 960970.
97. Mehta, M. P.,, J. A. Huber, and, J. A. Baross. 2005. Incidence of novel and potentially archaeal nitrogenase genes in the deep Northeast Pacific Ocean. Environ. Microbiol. 7: 15251534.
98. Methé, B. A.,, K. E. Nelson,, J. W. Deming,, B. Momen,, E. Melamud,, X. Zhang,, J. Moult,, R. Madupa,, W. C. Nelson,, R. J. Dodson,, L. M. Brinkac,, S. C. Daugherty,, A. S. Durkin,, R. T. DeBoy,, J. F. Kolonay,, S. A. Sullivan,, L. Zhou,, T. M. Davidsen,, M. Wu,, A. L. Huston,, M. Lewis,, B. Weaver,, J. F. Weidman,, H. Khouri,, T. R. Utterback,, T. V. Feldblyum, and, C. M. Fraser. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA 102: 1091310918.
99. Meyer-Reil, L.-A. 1986. Measurement of hydrolytic activity and incorporation of dissolved organic substrates by microorganisms in marine sediments. Mar. Ecol. Prog. Ser. 31: 143149.
100. Meyer-Reil, L.-A.,, and M. Koster. 1992. Microbial life in pelagic sediments: the impact of environmental parameters on enzymatic degradation of organic material. Mar. Ecol. Prog. Ser. 81: 6572.
101. Michels, P. C.,, D. Hei, and, D. S. Clark. 1996. Pressure effects on enzyme activity and stability at high temperatures. Adv. Protein Chem. 48: 341376.
102. Morita, R. Y. 1975. Psychrophilic bacteria. Bacteriol. Rev. 39: 144167.
103. Moriya, K.,, T. Inada,, M. Kyo, and, K. Horikoshi. 1995. Large-scale fermentation under high hydrostatic pressure using a newly developed deep-sea baro/thermophilic collection and cultivation system. J. Mar. Biotechnol. 2: 175177.
104. Nakagawa, S.,, K. Takai,, K. Horikoshi, and, Y. Sako. 2004. Aeropyrum camini sp. nov., a strictly aerobic, hyper-thermophilic archaeon from a deep-sea hydrothermal vent chimney. Int. J. Syst. Evol. Microbiol. 54: 329335.
105. Nakagawa, T.,, J.-I. Ishibashi,, A. Maruyama,, T. Yamanaka,, Y. Morimoto,, H. Kimura,, T. Urabe, and, M. Fukui. 2004. Analysis of dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific. Appl. Environ. Microbiol. 70: 393403.
106. Nakayama, A.,, Y. Yano, and, K. Yoshida. 1994. New method for isolating barophiles from intestinal contents of deep-sea fishes retrieved from the abyssal zone. Appl. Environ. Microbiol. 60: 42104212.
107. Nelson, C. M.,, M. R. Schuppenhauer, and, D. S. Clark. 1992. High-pressure, high-temperature bioreactor for comparing effects of hyperbaric and hydrostatic pressure on bacterial growth. Appl. Environ. Microbiol. 58: 17891793.
108. Nercessian, O.,, A.-L. Reysenbach,, D. Prieur, and, C. Jeanthon. 2003. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13°N). Environ. Microbiol. 5: 492502.
109. Nogi, Y.,, S. Hosoya,, C. Kato, and, K. Horikoshi. 2004. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments in the Japan Trench. Int. J. Syst. Evol. Microbiol. 52: 15271532.
110. Noll, K. M.,, and M. Vargas. 1997. Recent advances in genetic analyses of hyperthermophilic Archaea and Bacteria. Arch. Microbiol. 168: 7380.
111. Oliver, J. D. 1993. Formation of viable but nonculturable cells, p. 239–272. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum Press, New York, N.Y.
112. Oren, A. 2002. Halophilic Microorganisms and Their Environments. Kluwer Academic Press, Dordrecht, The Netherlands.
113. Parkes, R. J.,, G. Webster,, B. A. Cragg,, A. J. Weight-man,, C. J. Newberry,, T. G. Ferdelman,, J. Kallmeyer,, B. B. Jørgensen,, I. W. Aiello, and, J. C. Fry. 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature (London) 436: 390394.
114. Patching, J. W.,, and D. Eardly. 1997. Bacterial biomass and activity in the deep waters of the eastern Atlantic—evidence of a barophilic community. Deep-Sea Res. 44: 16551670.
115. Phillips, H.,, L. E. Wells,, R. V. Johnson II,, S. Elliott, and, J. W. Deming. 2003. LAREDO: a new instrument for sampling and in situ incubation of deep-sea hydrothermal vent fluids. Deep-Sea Res. I 50: 13751387.
116. Poremba, K. 1994. Simulated degradation of phytodetritus in deep-sea sediments of the NE Atlantic (47°N, 19°W). Mar. Ecol. Prog. Ser. 105: 291299.
117. Poremba, K. 1994. Impact of pressure on bacterial activity in water columns situated at the European continental margin. Netherlands J. Sea Res. 33: 2935.
118. Poremba, K. 1995. Hydrolytic enzymatic activity in deep-sea sediments. FEMS Microbiol. Ecol. 16: 213222.
119. Qian, Y.,, M. H. Engel,, S. A. Macko,, S. Carpenter, and, J. W. Deming. 1993. Kinetics of peptide hydrolysis and amino acid decomposition at high temperature. Geochim. Cosmochim. Acta 57: 12711274.
120. Quéric, N.-V.,, T. Soltwedel, and, W. E. Arntz. 2004. Application of a rapid direct viable count method to deep-sea sediment bacteria. J. Microbiol. Methods 57: 351367.
121. Relexans, J.-C.,, J. W. Deming,, A. Dinet,, J.-F. Gaillard, and, M. Sibuet. 1996. Sedimentary organic matter and micro-meiobenthos with relation to trophic conditions in the northeast tropical Atlantic. Deep-Sea Res. I 43: 13431368.
122. Reysenbach, A.-L.,, and E. Shock. 2002. Merging genomes with geochemistry in hydrothermal ecosystems. Science 296: 10771082.
123. Rice, S. A.,, and J. D. Oliver. 1992. Starvation response of the marine barophile CNPT-3. Appl. Environ. Microbiol. 58: 24322437.
124. Robb, F. T.,, K. R. Sowers,, S. DasSarma,, A. R. Place,, H. J. Schreier, and, E. M. Fleischmann (ed.). 1995. Archaea, a Laboratory Manual. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
125. Rochelle, P. A.,, J. C. Fry,, R. J. Parkes, and, A. J. Weightman. 1992. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol. Lett. 100: 5966.
126. Rowe, G. T.,, and M. Sibuet. 1983. Recent advances in instrumentation in deep-sea biological research, p. 81–95. In G. T. Rowe (ed.), The Sea, vol. 8. Deep-Sea Biology. John Wiley & Sons, New York, N.Y.
127. Schippers, A.,, L. N. Neretin,, J. Kallmeyer,, T. G. Ferdelman,, B. A. Cragg,, R. J. Parkes, and, B. B. Jorgensen. 2005. Prokaryotic cells of the deep subseafloor biosphere identified as living bacteria. Nature (London) 433: 861864.
128. Schrenk, M. O.,, D. S. Kelley, and, J. A. Baross. 1999. Attachment of hyperthermophilic microorganisms to mineral substrata: in situ observations and subseafloor analogs. Proc. Geol. Soc. Am. 31: 7.
129. Schrenk, M. O.,, D. S. Kelley,, J. R. Delaney, and, J. A. Baross. 2003. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol. 69: 35803592.
130. Schrenk, M. O.,, D. S. Kelley,, S. A. Bolton, and, J. A. Baross. 2005. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City hydro-thermal field, Mid-Atlantic Ridge. Environ. Microbiol. 6: 10861095.
131. Soltwedel, T.,, C. Hasemann,, N.-V. Quéric, and, K. von Juterzenka. 2005. Gradients in activity and biomass of the small benthic biota along a channel system in the deep Western Greenland Sea. Deep-Sea Res. I 52: 815835.
132. Straube, W. L.,, J. W. Deming,, C. C. Somerville,, R. R. Colwell, and, J. A. Baross. 1990. Particulate DNA in smoker fluids: evidence for existence of microbial populations in hot hydrothermal systems. Appl. Environ. Microbiol. 56: 14401447.
133. Straube, W. L.,, M. O’Brien,, K. Davis, and, R. R. Colwell. 1990. Enzymatic profiles of 11 barophilic bacteria under in situ conditions: evidence for pressure modulation of phenotype. Appl. Environ. Microbiol. 56: 812814.
134. Summit, M.,, and J. A. Baross. 2001. A novel microbial habitat in the mid-ocean ridge subseafloor. Proc. Natl. Acad. Sci. USA 98: 21582163.
135. Summit, M.,, B. Scott,, K. Nielsen,, E. Mathur, and, J. Baross. 1998. Pressure enhances thermal stability of DNA polymerase from three thermophilic organisms. Extremophiles 2: 339345.
136. Summit, M.,, A. Peacock,, D. Ringelberg,, D. C. White, and, J. A. Baross. 2000. Phospholipid fatty acid-derived microbial biomass and community dynamics in hot, hydrothermally influenced sediments from Middle Valley, Juan de Fuca Ridge. Proc. ODP Sci. Results 169: 119.
137. Sunamura, M.,, Y. Higashi,, C. Miyako,, J. Ishibashi, and, A. Murayama. 2004. Two Bacteria phylotypes are predominant in the Suiyo Seamount hydrothermal plume. Appl. Environ. Microbiol. 70: 11901198.
138. Tabor, P. S.,, J. W. Deming,, K. Ohwada,, H. Davis,, M. Waxman, and, R. R. Colwell. 1981. A pressure-retaining deep ocean sampler for measurement of microbial activity in the deep sea. Microb. Ecol. 7: 5165.
139. Takai, K.,, and K. Horikoshi. 1999. Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics 152: 12851297.
140. Takai, K.,, A. Sugai,, T. Itoh, and, K. Horikoshi. 2000. Paleococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int. J. Syst. Evol. Microbiol. 50: 489500.
141. Takai, K.,, T. Komatsu,, F. Inagaki, and, K. Horikoshi. 2001. Distribution of archaea in a black smoker chimney structure. Appl. Environ. Microbiol. 67: 36183629.
142. Tamburini, C.,, J. Garcin,, M. Ragot, and, A. Bianchi. 2002. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000 m water column in the NW Mediterranean Sea. Deep-Sea Res. II 49: 21092123.
143. Tamburini, C.,, J. Garcin, and, A. Bianchi. 2003. Role of deep-sea bacteria in organic matter mineralization and adaptation to hydrostatic pressure conditions in the NW Mediterranean Sea. Aquat. Microb. Ecol. 32: 209218.
144. Taylor, C. D. 1979. Growth of a bacterium under a high-pressure oxyhelium atmosphere. Appl. Environ. Microbiol. 37: 4249.
145. Teira, E.,, T. Reinthaler,, A. Pernthaler,, J. Pernthaler, and, G. J. Herndl. 2004. Combining catalyzed reporter deposition-fluorescence in situ hybridization and micro-autoradiography to detect substrate utilization by Bacteria and Archaea in the deep ocean. Appl. Environ. Microbiol. 70: 44114414.
146. Tholosan, O.,, J. Garcin, and, A. Bianchi. 1999. Effects of hydrostatic pressure on microbial activity through a 2000-m deep water column in the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 183: 4957.
147. Toffin, L.,, A. Bidault,, P. Pignet,, B. J. Tindall,, A. Slobodkin,, C. Kato, and, D. Prieur. 2004. Shewanella profunda sp. nov., isolated from deep marine sediments of the Nankai Trough. Int. J. Syst. Evol. Microbiol. 54: 19431949.
148. Trent, J. D.,, and A. A. Yayanos. 1985. Pressure effects on the temperature range for growth and survival of the marine bacterium Vibrio harveyi: implications for bacteria attached to sinking particles. Mar. Biol. 89: 165172.
149. Tuovila, B. J.,, F. C. Dobbs,, P. S. LaRock, and, B. Z. Siegel. 1987. Preservation of ATP in hypersaline environments. Appl. Environ. Microbiol. 53: 27492753.
150. Turley, C. M. 1993. The effect of pressure on leucine and thymidine incorporation by free-living bacteria and by bacteria attached to sinking oceanic particles. Deep-Sea Res. 40: 21932206.
151. Turley, C. M. 2000. Bacteria in the cold deep-sea benthic boundary layer and sediment-water interface of the NE Atlantic. FEMS Microbiol. Ecol. 33: 8999.
152. Turley, C. M.,, and J. L. Dixon. 2002. Bacterial numbers and growth in surficial deep-sea sediments and phytodetritus in the NE Atlantic: relationships with particulate organic carbon and total nitrogen. Deep-Sea Res. I 49: 815826.
153. Urios, L.,, V. Cueff,, P. Pignet, and, G. Barbier. 2004. Tepidibacter formicigenes sp. nov., a novel spore-forming bacterium isolated from a Mid-Atlantic hydrothermal vent. Int. J. Syst. Evol. Microbiol. 54: 439443.
154. Vezzi, A.,, S. Campanaro,, M. D’Angelo,, F. Simonato,, N. Vitulo,, F. M. Lauro,, A. Cestaro,, G. Malacrida,, B. Simionati,, N. Cannata,, C. Romualdi,, D. H. Bartlett, and, G. Valle. 2005. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307: 14591461.
155. Weber, A.,, and B. B. Jorgensen. 2002. Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico. Deep-Sea Res. I 49: 827841.
156. Welch, T. J.,, and D. H. Bartlett. 1997. Cloning, sequencing and overexpression of the gene encoding malate dehydrogenase from the deep-sea bacterium Photobacterium species strains SS9. Biochim. Biophys. Acta 1350: 4146.
157. Wells, L. E.,, M. Cordray,, S. Bowerman,, L. Miller,, W. F. Vincent, and, J. W. Deming. 2006. Archaea in particle-rich waters of the Beaufort Shelf and Franklin Bay, Canadian Arctic: clues to an allochthonous origin? Limnol. Oceanogr. 51: 4759.
158. Whitman, W. B.,, D. C. Coleman, and, W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95: 65786583.
159. Wirsen, C. O.,, and H. W. Jannasch. 1983. In situ studies on deep-sea amphipods and their intestinal micro-flora. Mar. Biol. 78: 6973.
160. Wirsen, C. O.,, and H. W. Jannasch. 1986. Microbial transformations in deep-sea sediments: free-vehicle studies. Mar. Biol. 91: 277284.
161. Witte, U.,, F. Wenzhöfer,, S. Sommer,, A. Boetius,, P. Heinz,, N. Aberle,, M. Sand,, A. Cremer,, W.-R. Abraham,, B. B. Jørgensen, and, O. Pfannkuche. 2003. In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature (London) 424: 763766.
162. Xu, Y.,, Y. Nogi,, C. Kato,, Z. Liang,, H.-J. Rüger,, D. De Kegel, and, N. Glansdorff. 2003. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int. J. Syst. Evol. Microbiol. 53: 533538.
163. Yamaguchi, A.,, Y. Watanabe,, H. Ishida,, T. Harimoto,, K. Furusawa,, S. Suzuki,, J. Ishizaka,, T. Ikeda, and, M. M. Takahashi. 2002. Structure and size distribution of plankton communities down to the greater depths in the western North Pacific Ocean. Deep-Sea Res. II 49: 55135529.
164. Yayanos, A. A. 1982. Recovery and maintenance of live amphipods at a pressure of 580 bars from an ocean depth of 5700 meters. Science 200: 10561059.
165. Yayanos, A. A. 1982. Deep-sea biophysics, p. 409–416. In Subseabed Disposal Program Annual Report January to September 1981, vol. II. Appendices (Principal Investigator Progress Reports). Sandia National Laboratories, Albuquerque, N.Mex.
166. Yayanos, A. A. 1995. Microbiology to 10,500 meters in the deep sea. Annu. Rev. Microbiol. 49: 777805.
167. Yayanos, A. A.,, and E. F. DeLong. 1987. Deep-sea bacterial fitness to environmental temperatures and pressures, p. 17–32. In H. W. Jannasch,, R. E. Marquis, and, A. M. Zimmerman (ed.), Current Perspectives in High Pressure Biology. Academic Press, London, United Kingdom.
168. Yayanos, A. A.,, A. S. Dietz, and, R. Van Boxtel. 1979. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205: 808810.
169. Yayanos, A. A.,, A. S. Dietz, and, R. Van Boxtel. 1981. Obligately barophilic bacterium from the Mariana Trench. Proc. Natl. Acad. Sci. USA 78: 52125215.
170. Yayanos, A. A.,, and R. Van Boxtel. 1982. Coupling device for quick high-pressure connections to 100 MPa. Rev. Sci. Instrum. 53: 704705.
171. Yayanos, A. A.,, R. Van Boxtel, and, A. S. Dietz. 1983. Reproduction of Bacillus stearothermophilus as a function of temperature and pressure. Appl. Environ. Microbiol. 46: 13571363.
172. Yayanos, A. A.,, R. Van Boxtel, and, A. S. Dietz. 1984. High-pressure-temperature gradient instrument: use for determining the temperature and pressure limits of bacterial growth. Appl. Environ. Microbiol. 48: 771776.
173. ZoBell, C. E.,, and R. Y. Morita. 1957. Barophilic bacteria in some deep-sea sediments. J. Bacteriol. 73: 563568.


Generic image for table

Examples of studies of microbial community activity in the cold deep sea conducted under in situ conditions or at simulated in situ temperatures and pressures

Citation: Deming J. 2007. Extreme High-Pressure Marine Environments, p 575-590. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch46
Generic image for table

Examples of microbial community measurements on samples recovered from the hot (>90°C) deep sea, made directly or after incubation in situ or at laboratory-simulated in situ temperatures and pressures

Citation: Deming J. 2007. Extreme High-Pressure Marine Environments, p 575-590. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch46

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error