Chapter 54 : Microarrays: Design and Use for Agricultural and Environmental Applications

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Microarrays: Design and Use for Agricultural and Environmental Applications, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap54-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap54-2.gif


There are two primary types of microarrays, cDNA-based and oligonucleotide-based microarrays. This chapter focuses primarily on oligonucleotide-based technology because of the specialized problems encountered in agricultural and environmental microbiology. In general, oligonucleotide microarrays are designed by using some of the basic principles of primer and probe design for PCR and Southern hybridization. Microarrays targeting mRNA enable researchers to relate community structure to community function. The design of these types of microarrays allows investigators to evaluate gene expression and therefore to expose important metabolic activities of specific microbial communities. There are several issues related to the use of microarrays that limit their use in environmental studies. At the front end of this potentially powerful tool is the need for sensitive nucleic acid extraction from complicated sample matrices. Direct extraction of nucleic acids from environmental samples may coextract humic acids or other organic materials that may affect nucleic acid hybridization with microarrays. PCR amplification has been used by several groups to amplify nucleic acids prior to microarray analysis. In situations where uncharacterized organisms are present, exhaustive gene or clone libraries for the target gene need to be gathered in order to design group- or clade-specific probes for detection and distinction among all possible targets within the studied ecosystem.

Citation: Dowd S, Ishizaki H, Thurston Enriquez J. 2007. Microarrays: Design and Use for Agricultural and Environmental Applications, p 663-675. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch54
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Schematic representation of a microarray experiment using the two-dye cross-hybridization technique. In this experiment, the expression profiles of a control cell and a cell of the same genetic lineage that has been exposed to a treatment are compared. The RNAs from the control are labeled during cDNA formation with Cy5, which is artificially colored red (note that the figure is printed in black and white and meant only to provide a schematic concept of the experimental procedure). The RNAs from the treated cells are extracted and labeled with Cy3 (green) during cDNA synthesis. After being labeled, the two samples are cohybridized to the microarray. Those genes that are expressed in more abundance in the control sample (or down-regulated during treatment) will show up as green spots. Conversely, those genes that are expressed in more abundance in the treatment sample will be visualized as red spots. Those genes which are expressed equally in the treatment and control samples will appear as yellow spots. In this way, one can see how the expression of an entire transcriptome responds to experimental treatments.

Citation: Dowd S, Ishizaki H, Thurston Enriquez J. 2007. Microarrays: Design and Use for Agricultural and Environmental Applications, p 663-675. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Two different slides printed and evaluated by use of a Paragon DNA microarray quality control stain kit. The slide on the left has consistent well-defined spots, while the slide on the right appears to have either too little oligonucleotide applied or an improper chemistry mixture that does not allow the spots to set and fix uniformly. A proper spotting solution must be used with the proper slide chemistry to allow for uniform spotting quality.

Citation: Dowd S, Ishizaki H, Thurston Enriquez J. 2007. Microarrays: Design and Use for Agricultural and Environmental Applications, p 663-675. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adamczyk, J.,, M. Hesselsoe,, N. Iversen,, M. Horn,, A. Lehner,, P. H. Nielsen,, M. Schloter,, P. Roslev, and, M. Wagner. 2003. The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl. Environ. Microbiol. 69: 68756887.
2. Amann, R. I.,, W. Ludwig, and, K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143169.
3. Bahnweg, G.,, S. Schulze,, E. M. Moller,, H. Rosenbrock,, C. Langebartels, and, H. Sandermann, Jr. 1998. DNA isolation from recalcitrant materials such as tree roots, bark, and forest soil for the detection of fungal pathogens by polymerase chain reaction. Anal. Biochem. 262: 7982.
4. Barnett, M. J.,, C. J. Toman,, R. F. Fisher, and, S. R. Long. 2004. A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc. Natl. Acad. Sci. USA 101: 1663616641.
5. Bodrossy, L.,, N. Stralis-Pavese,, J. C. Murrell,, S. Radajewski,, A. Weilharter, and, A. Sessitsch. 2003. Development and validation of a diagnostic microbial microarray for methanotrophs. Environ. Microbiol. 5: 566582.
6. Bovet, L.,, U. Feller, and, E. Martinoia. 2005. Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environ. Int. 31: 263267.
7. Bowtell, D. D. 1999. Options available—from start to finish—for obtaining expression data by microarray. Nat. Genet. 21: 2532.
8. Bryant, P. A.,, D. Venter,, R. Robins-Browne, and, N. Curtis. 2004. Chips with everything: DNA microarrays in infectious diseases. Lancet Infect. Dis. 4: 100111.
9. Chao, T. C.,, A. Becker,, J. Buhrmester,, A. Puhler, and, S. Weidner. 2004. The Sinorhizobium meliloti fur gene regulates, with dependence on Mn(II), transcription of the sitABCD operon, encoding a metal-type transporter. J. Bacteriol. 186: 36093620.
10. Cheung, V. G.,, M. Morley,, F. Aguilar,, A. Massimi,, R. Kucherlapati, and, G. Childs. 1999. Making and reading microarrays. Nat. Genet. 21: 1519.
11. Chizhikov, V.,, A. Rasooly,, K. Chumakov, and, D. D. Levy. 2001. Microarray analysis of microbial virulence factors. Appl. Environ. Microbiol. 67: 32583263.
12. Cho, J. C.,, and J. M. Tiedje. 2002. Quantitative detection of microbial genes by using DNA microarrays. Appl. Environ. Microbiol. 68: 14251430.
13. Dennis, P.,, E. A. Edwards,, S. N. Liss, and, R. Fulthorpe. 2003. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl. Environ. Microbiol. 69: 769778.
14. Dudoit, S.,, and J. Fridlyand. 2002. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 3:RESEARCH0036.
15. Eberwine, J.,, H. Yeh,, K. Miyashiro,, Y. Cao,, S. Nair,, R. Finnell,, M. Zettel, and, P. Coleman. 1992. Analysis of gene expression in single live neurons. Proc. Natl. Acad. Sci. USA 89: 30103014.
16. Eisen, M. B.,, P. T. Spellman,, P. O. Brown, and, D. Botstein. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 1486314868.
17. Felske, A.,, B. Engelen,, U. Nubel, and, H. Backhaus. 1996. Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl. Environ. Microbiol. 62: 41624167.
18. Forster, T.,, D. Roy, and, P. Ghazal. 2003. Experiments using microarray technology: limitations and standard operating procedures. J. Endocrinol. 178: 195204.
19. Frostegard, A.,, S. Courtois,, V. Ramisse,, S. Clerc,, D. Bernillon,, G. F. Le,, P. Jeannin,, X. Nesme, and, P. Simonet. 1999. Quantification of bias related to the extraction of DNA directly from soils. Appl. Environ. Microbiol. 65: 54095420.
20. Griffiths, R. I.,, A. S. Whiteley,, A. G. O’Donnell, and, M. J. Bailey. 2000. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66: 54885491.
21. Hegde, P.,, R. Qi,, K. Abernathy,, C. Gay,, S. Dharap,, R. Gaspard,, J. E. Hughes,, E. Snesrud,, N. Lee, and, J. Quackenbush. 2000. A concise guide to cDNA microarray analysis. Biotechniques 29: 548556.
22. Hughes, T. R.,, M. Mao,, A. R. Jones,, J. Burchard,, M. J. Marton,, K. W. Shannon,, S. M. Lefkowitz,, M. Ziman,, J. M. Schelter,, M. R. Meyer,, S. Kobayashi,, C. Davis,, H. Dai,, Y. D. He,, S. B. Stephaniants,, G. Cavet,, W. L. Walker,, A. West,, E. Coffey,, D. D. Shoemaker,, R. Stoughton,, A. P. Blanchard,, S. H. Friend, and, P. S. Linsley. 2001. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19: 342347.
23. Hurt, R. A.,, X. Qiu,, L. Wu,, Y. Roh,, A. V. Palumbo,, J. M. Tiedje, and, J. Zhou. 2001. Simultaneous recovery of RNA and DNA from soils and sediments. Appl. Environ. Microbiol. 67: 44954503.
24. Hwang, L.,, D. Hocking-Murray,, A. K. Bahrami,, M. Andersson,, J. Rine, and, A. Sil. 2003. Identifying phase-specific genes in the fungal pathogen Histoplasma capsulatum using a genomic shotgun microarray. Mol. Biol. Cell 14: 23142326.
25. Kim, B. C.,, J. H. Park, and, M. B. Gu. 2004. Development of a DNA microarray chip for the identification of sludge bacteria using an unsequenced random genomic DNA hybridization method. Environ. Sci. Technol. 38: 67676774.
26. Koizumi, Y.,, J. J. Kelly,, T. Nakagawa,, H. Urakawa,, S. El-Fantroussi,, S. Al-Muzaini,, M. Fukui,, Y. Urushigawa, and, D. A. Stahl. 2002. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA micro-array technology. Appl. Environ. Microbiol. 68: 32153225.
27. Krsek, M.,, and E. M. Wellington. 1999. Comparison of different methods for the isolation and purification of total community DNA from soil. J. Microbiol. Methods 39: 116.
28. Lee, P. S.,, and K. H. Lee. 2000. Genomic analysis. Curr. Opin. Biotechnol. 11: 171175.
29. Loy, A.,, K. Kusel,, A. Lehner,, H. L. Drake, and, M. Wagner. 2004. Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. Appl. Environ. Microbiol. 70: 69987009.
30. Loy, A.,, A. Lehner,, N. Lee,, J. Adamczyk,, H. Meier,, J. Ernst,, K. H. Schleifer, and, M. Wagner. 2002. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68: 50645081.
31. Luo, L.,, R. C. Salunga,, H. Guo,, A. Bittner,, K. C. Joy,, J. E. Galindo,, H. Xiao,, K. E. Rogers,, J. S. Wan,, M. R. Jackson, and, M. G. Erlander. 1999. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat. Med. 5: 117122.
32. Majtan, T.,, G. Bukovska, and, J. Timko. 2004. DNA microarrays—techniques and applications in microbial systems. Folia Microbiol. (Prague) 49: 635664.
33. Methe, B. A.,, J. Webster,, K. Nevin,, J. Butler, and, D. R. Lovley. 2005. DNA microarray analysis of nitrogen fixation and Fe(III) reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71: 25302538.
34. Mir, K. U.,, and E. M. Southern. 1999. Determining the influence of structure on hybridization using oligonucleotide arrays. Nat. Biotechnol. 17: 788792.
35. Miskin, I. P.,, P. Farrimond, and, I. M. Head. 1999. Identification of novel bacterial lineages as active members of microbial populations in a freshwater sediment using a rapid RNA extraction procedure and RT-PCR. Microbiology 145: 19771987.
36. Moen, B.,, A. Oust,, O. Langsrud,, N. Dorrell,, G. L. Marsden,, J. Hinds,, A. Kohler,, B. W. Wren, and, K. Rudi. 2005. Explorative multifactor approach for investigating global survival mechanisms of Campylobacter jejuni under environmental conditions. Appl. Environ. Microbiol. 71: 20862094.
37. Mullis, K.,, F. Faloona,, S. Scharf,, R. Saiki,, G. Horn, and, H. Erlich. 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 51: 263273.
38. Nguyen, C.,, D. Rocha,, S. Granjeaud,, M. Baldit,, K. Bernard,, P. Naquet, and, B. R. Jordan. 1995. Differential gene expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones. Genomics 29: 207216.
39. Panicker, G.,, D. R. Call,, M. J. Krug, and, A. K. Bej. 2004. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl. Environ. Microbiol. 70: 74367444.
40. Park, T.,, S. G. Yi,, S. H. Kang,, S. Lee,, Y. S. Lee, and, R. Simon. 2003. Evaluation of normalization methods for microarray data. BMC Bioinformatics. 4: 33.
41. Phillips, J.,, and J. H. Eberwine. 1996. Antisense RNA amplification: a linear amplification method for analyzing the mRNA population from single living cells. Methods 10: 283288.
42. Piper, M. D.,, P. Ran-Lapujade,, C. Bro,, B. Regenberg,, S. Knudsen,, J. Nielsen, and, J. T. Pronk. 2002. Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 277: 3700137008.
43. Pritchard, C. C.,, L. Hsu,, J. Delrow, and, P. S. Nelson. 2001. Project normal: defining normal variance in mouse gene expression. Proc. Natl. Acad. Sci. USA 98: 1326613271.
44. Puskas, L. G.,, A. Zvara,, L. Hackler, Jr.,, T. Micsik, and, H. P. Van. 2002. Production of bulk amounts of universal RNA for DNA microarrays. Biotechniques 33: 898900, 902, 904.
45. Ramdas, L.,, D. E. Cogdell,, J. Y. Jia,, E. E. Taylor,, V. R. Dunmire,, L. Hu,, S. R. Hamilton, and, W. Zhang. 2004. Improving signal intensities for genes with low-expression on oligonucleotide microarrays. BMC Genomics 5: 35.
46. Ren, J.,, and J. F. Prescott. 2003. Analysis of virulence plasmid gene expression of intra-macrophage and in vitro grown Rhodococcus equi ATCC 33701. Vet. Microbiol. 94: 167182.
47. Rhee, S. K.,, X. Liu,, L. Wu,, S. C. Chong,, X. Wan, and, J. Zhou. 2004. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl. Environ. Microbiol. 70: 43034317.
48. Richmond, C. S.,, J. D. Glasner,, R. Mau,, H. Jin, and, F. R. Blattner. 1999. Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res. 27: 38213835.
49. Rimour, S.,, D. Hill,, C. Militon, and, P. Peyret. 2005. GoArrays: highly dynamic and efficient microarray probe design. Bioinformatics 21: 10941103.
50. Rouillard, J. M.,, C. J. Herbert, and, M. Zuker. 2002. OligoArray: genome-scale oligonucleotide design for microarrays. Bioinformatics 18: 486487.
51. Salama, N.,, K. Guillemin,, T. K. McDaniel,, G. Sherlock,, L. Tompkins, and, S. Falkow. 2000. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc. Natl. Acad. Sci. USA 97: 1466814673.
52. Schena, M.,, D. Shalon,, R. W. Davis, and, P. O. Brown. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467470.
53. Sebat, J. L.,, F. S. Colwell, and, R. L. Crawford. 2003. Metagenomic profiling: microarray analysis of an environmental genomic library. Appl. Environ. Microbiol. 69: 49274934.
54. Sharma, A.,, G. P. Srivastava,, V. K. Sharma, and, S. Ramachandran. 2004. ArrayD: a general purpose software for microarray design. BMC Bioinformatics 5: 142.
55. Sherlock, G. 2000. Analysis of large-scale gene expression data. Curr. Opin. Immunol. 12: 201205.
56. Small, J.,, D. R. Call,, F. J. Brockman,, T. M. Straub, and, D. P. Chandler. 2001. Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl. Environ. Microbiol. 67: 47084716.
57. Smyth, G. K.,, and T. Speed. 2003. Normalization of cDNA microarray data. Methods 31: 265273.
58. Springer, A. L.,, L. R. Booth,, M. D. Braid,, C. M. Houde,, K. A. Hughes,, R. J. Kaiser,, C. Pedrak,, D. A. Spicer, and, S. Stolyar. 2003. A rapid method for manual or automated purification of fluorescently labeled nucleic acids for sequencing, genotyping, and microarrays. J. Biomol. Tech. 14: 1732.
59. Stillman, B. A.,, and J. L. Tonkinson. 2001. Expression microarray hybridization kinetics depend on length of the immobilized DNA but are independent of immobilization substrate. Anal. Biochem. 295: 149157.
60. Stralis-Pavese, N.,, A. Sessitsch,, A. Weilharter,, T. Reichenauer,, J. Riesing,, J. Csontos,, J. C. Murrell, and, L. Bodrossy. 2004. Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ. Microbiol. 6: 347363.
61. Taroncher-Oldenburg, G.,, E. M. Griner,, C. A. Francis, and, B. B. Ward. 2003. Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Appl. Environ. Microbiol. 69: 11591171.
62. Tiquia, S. M.,, L. Wu,, S. C. Chong,, S. Passovets,, D. Xu,, Y. Xu, and, J. Zhou. 2004. Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. Biotechniques 36: 664665.
63. Tolstrup, N.,, P. S. Nielsen,, J. G. Kolberg,, A. M. Frankel,, H. Vissing, and, S. Kauppinen. 2003. OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acids Res. 31: 37583762.
64. Toronen, P.,, M. Kolehmainen,, G. Wong, and, E. Castren. 1999. Analysis of gene expression data using self-organizing maps. FEBS Lett. 451: 142146.
65. Vora, G. J.,, C. E. Meador,, D. A. Stenger, and, J. D. Andreadis. 2004. Nucleic acid amplification strategies for DNA microarray-based pathogen detection. Appl. Environ. Microbiol. 70: 30473054.
66. Wang, D.,, L. Coscoy,, M. Zylberberg,, P. C. Avila,, H. A. Boushey,, D. Ganem, and, J. L. DeRisi. 2002. Microarray-based detection and genotyping of viral pathogens. Proc. Natl. Acad. Sci. USA 99: 1568715692.
67. Wang, E.,, L. D. Miller,, G. A. Ohnmacht,, E. T. Liu, and, F. M. Marincola. 2000. High-fidelity mRNA amplification for gene profiling. Nat. Biotechnol. 18: 457459.
68. Warsen, A. E.,, M. J. Krug,, S. LaFrentz,, D. R. Stanek,, F. J. Loge, and, D. R. Call. 2004. Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays. Appl. Environ. Microbiol. 70: 42164221.
69. Watson, S. J.,, F. Meng,, R. C. Thompson, and, H. Akil. 2000. The “chip” as a specific genetic tool. Biol. Psychiatry 48: 11471156.
70. Wernersson, R.,, and H. B. Nielsen. 2005. OligoWiz 2.0—integrating sequence feature annotation into the design of microarray probes. Nucleic Acids Res. 33: W611W615.
71. Wright, D. P.,, T. Johansson,, Q. A. Le,, B. Soderstrom, and, A. Tunlid. 2005. Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula) seedlings in soil microcosms. New Phytol. 167: 579596.
72. Wu, L.,, D. K. Thompson,, G. Li,, R. A. Hurt,, J. M. Tiedje, and, J. Zhou. 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67: 57805790.
73. Wu, L.,, D. K. Thompson,, X. Liu,, M. W. Fields,, C. E. Bagwell,, J. M. Tiedje, and, J. Zhou. 2004. Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ. Sci. Technol. 38: 67756782.
74. Yang, I. V.,, E. Chen,, J. P. Hasseman,, W. Liang,, B. C. Frank,, S. Wang,, V. Sharov,, A. I. Saeed,, J. White,, J. Li,, N. H. Lee,, T. J. Yeatman, and, J. Quackenbush. 2002. Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biol. 3:RESEARCH0062.
75. Yang, Y. H.,, S. Dudoit,, P. Luu,, D. M. Lin,, V. Peng,, J. Ngai, and, T. P. Speed. 2002. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30: e15.
76. Zhao, H.,, T. Hastie,, M. L. Whitfield,, A. L. Borresen-Dale, and, S. S. Jeffrey. 2002. Optimization and evaluation of T7 based RNA linear amplification protocols for cDNA microarray analysis. BMC Genomics 3: 31.
77. Zhou, J. 2003. Microarrays for bacterial detection and microbial community analysis. Curr. Opin. Microbiol. 6: 288294.


Generic image for table

Common microarray slide coatings and associated spotting solutions

Citation: Dowd S, Ishizaki H, Thurston Enriquez J. 2007. Microarrays: Design and Use for Agricultural and Environmental Applications, p 663-675. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch54
Generic image for table

Microarray equipment and reagent supply companies

Citation: Dowd S, Ishizaki H, Thurston Enriquez J. 2007. Microarrays: Design and Use for Agricultural and Environmental Applications, p 663-675. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch54

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error