Chapter 58 : Soil Enzymes: Linking Proteomics and Ecological Processes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Soil Enzymes: Linking Proteomics and Ecological Processes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap58-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap58-2.gif


Extracellular enzymes are the proximate agents of organic matter transformation in soils. Data on microbial distributions and diversity are accumulating rapidly, and advances in molecular biology are providing new tools that are applicable to extracellular enzyme studies. In particular, proteomic approaches can be used to identify the extracellular enzymes that link genomic information with ecological processes. This chapter presents brief overviews of recent advances in extracellular enzyme research. Root activity may be supplemented by enzyme production from mycorrhizal fungi. Arbuscular mycorrhizal fungi are primarily involved in phosphorus (P) capture via production of phosphatases, accounting for 48 to 59% of total P uptake when P is supplied in organic form but only 22 to 33% when supplied in inorganic form. There is good evidence that invasive plant species alter nutrient cycling processes and that these changes are sometimes mediated by extracellular enzyme activity (EEA). Microplate technology also enables well-known colorimetric assays to be scaled down for high-throughput analyses. Two main challenges must be overcome to reduce variability to acceptable levels in these assays. First, there must be adequate homogenization of the environmental sample to ensure that the slurry in the microplate wells is representative of the initial material. The second challenge is that particles from the sample homogenate scatter the light beam of the microplate reader and make absorbance readings highly variable. Innovative approaches based on molecular biology are resolving long-standing questions about the mechanisms of biogeochemical processes and the controls on microbial diversity.

Citation: Allison S, Gartner T, Holland K, Weintraub M, Sinsabaugh R. 2007. Soil Enzymes: Linking Proteomics and Ecological Processes, p 704-711. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch58
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Extracellular enzyme activity catalyzes organic matter decomposition and nutrient mineralization in soil. Extracellular enzyme production is induced by signal pathways linked to substrate availability ( ) and microbial community organization ( ). Upon release, the function and fate of extracellular enzymes are determined by environmental conditions and soil structure ( ). These abiotic variables determine the economics of microbial enzyme production in relation to microbial growth.

Citation: Allison S, Gartner T, Holland K, Weintraub M, Sinsabaugh R. 2007. Soil Enzymes: Linking Proteomics and Ecological Processes, p 704-711. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled

Citation: Allison S, Gartner T, Holland K, Weintraub M, Sinsabaugh R. 2007. Soil Enzymes: Linking Proteomics and Ecological Processes, p 704-711. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Allison, S. D. 2005. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol. Lett. 8: 626635.
2. Allison, S. D.,, C. Nielsen, and, R. F. Hughes. 2006. Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana. Soil Biol. Biochem. 38: 15371544.
3. Allison, S. D.,, and P. M. Vitousek. 2005. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 37: 937944.
4. Aon, M. A.,, M. N. Cabello,, D. E. Sarena,, A. C. Colaneri,, M. G. Franco,, J. L. Burgos, and, S. Cortassa. 2001. I. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil. Appl. Soil Ecol. 18: 239254.
5. Archibald, F.,, and B. Roy. 1992. Production of manganic chelates by laccase from the lignin-degrading fungus Trametes ( Coriolus) versicolor. Appl. Environ. Microbiol. 58: 14961499.
6. Barras, F.,, F. Vangijsegem, and, A. K. Chatterjee. 1994. Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu. Rev. Phytopathol. 32: 201234.
7. Beguin, P. 1990. Molecular biology of cellulose degradation. Annu. Rev. Microbiol. 44: 219248.
8. Bending, G. D.,, and D. J. Read. 1995. The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. The foraging behaviour of ectomycorrhizal mycelium and the translocation of nutrients from exploited organic matter. New Phytol. 130: 401409.
9. Bending, G. D.,, and D. J. Read. 1996. Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi. Soil Biol. Biochem. 28: 15951602.
10. Bending, G. D.,, and D. J. Read. 1996. Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol. Biochem. 28: 16031612.
11. Bending, G. D.,, and D. J. Read. 1997. Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol. Res. 101: 13481354.
12. Berg, B. 2000. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol. Manag. 133: 1322.
13. Bertin, C.,, X. Yang, and, L. A. Weston. 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256: 67.
14. Blanchette, R. A. 1991. Delignification by wood-decay fungi. Annu. Rev. Phytopathol. 29: 381398.
15. Burke, R. M.,, and J. W. G. Cairney. 2002. Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza 12: 105116.
16. Burns, R. G. 1982. Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol. Biochem. 14: 423427.
17. Carreiro, M. M.,, R. L. Sinsabaugh,, D. A. Repert, and, D. F. Parkhurst. 2000. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81: 23592365.
18. Chalot, M.,, and A. Brun. 1998. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol. Rev. 22: 2144.
19. Chen, D. M.,, A. F. S. Taylor,, R. M. Burke, and, J. W. G. Cairney. 2001. Identification of genes for lignin peroxidases and manganese peroxidases in ectomycorrhizal fungi. New Phytol. 152: 151158.
20. Chróst, R. J. 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes, p. 29–59. In R. J. Chróst (ed.), Microbial Enzymes in Aquatic Environments. Springer-Verlag, New York, N.Y.
21. Chróst, R. J.,, and W. Siuda. 2002. Ecology of microbial enzymes in lake ecosystems, p. 35–72. In R. G. Burns and, R. P. Dick (ed.), Enzymes in the Environment. Marcel Dekker, New York, N.Y.
22. Claus, H. 2004. Laccases: structure, reactions, distribution. Micron 35: 9396.
23. Courty, P.-E.,, K. Pritsch,, M. Schloter,, A. Hartmann, and, J. Garbaye. 2005. Activity profiling of ectomycorrhizal communities in two forest soils using multiple enzymatic tests. New Phytol. 167: 309319.
24. Dakora, F. D.,, and D. A. Phillips. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245: 3547.
25. De Cesare, F.,, A. M. V. Garzillo,, V. Buonocore, and, L. Badalucco. 2000. Use of sonication for measuring acid phosphatase activity in soil. Soil Biol. Biochem. 32: 825832.
26. Dighton, J. 2003. Fungi in Ecosystem Processes. Marcel Dekker, New York, N.Y.
27. Ehrenfeld, J. G. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6: 503523.
28. Ekschmitt, K.,, M. Q. Liu,, S. Vetter,, O. Fox, and, V. Wolters. 2005. Strategies used by soil biota to overcome soil organic matter stability—why is dead organic matter left over in the soil? Geoderma 128: 167176.
29. Elena, S. F.,, and R. E. Lenski. 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4: 457469.
30. Fierer, N.,, M. A. Bradford, and, R. B. Jackson. Towards an ecological classification of soil bacteria. Ecology, in press.
31. Fierer, N.,, and R. B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103: 626631.
32. Fog, K. 1988. The effect of added nitrogen on the rate of decomposition of organic matter. Biol. Rev. 63: 433462.
33. Freeman, C.,, N. Ostle, and, H. Kang. 2001. An enzymic “latch” on a global carbon store. Nature 409: 149.
34. Gallo, M. E.,, C. L. Lauber,, S. E. Cabaniss,, M. P. Waldrop,, R. L. Sinsabaugh, and, D. R. Zak. 2005. Soil organic matter and litter chemistry response to experimental N deposition in northern temperate deciduous forest ecosystems. Global Change Biol. 11: 15141521.
35. Griffiths, R. P.,, M. A. Castellano, and, B. A. Caldwell. 1991. Ectomycorrhizal mats formed by Gautieria monticola and Hysterangium setchelli and their association with Douglas-fir seedlings: a case study. Plant Soil 134: 255259.
36. Hodge, A.,, C. D. Campbell, and, A. H. Fitter. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413: 297299.
37. Hoppe, H.-G.,, C. Arnosti, and, G. F. Herndl. 2002. Ecological significance of bacterial enzymes in the marine environment. In R. G. Burns and, R. P. Dick (ed.), Enzymes in the Environment. Marcel Dekker, New York, N.Y.
38. Insam, H. 2001. Developments in soil microbiology since the mid-1960s. Geoderma 100: 389402.
39. International Union of Biochemistry and Molecular Biology. 1992. Enzyme Nomenclature 1992. Academic Press, San Diego, Calif.
40. Joseleau, J.-P.,, S. Gharibian,, J. Comtat,, A. Lefebvre, and, K. Ruel. 1994. Indirect involvement of ligninolytic enzyme systems in cell wall degradation. FEMS Microbiol. Lett. 13: 255264.
41. Kelleher, B. P.,, A. J. Simpson,, K. O. Willeford,, M. J. Simpson,, R. Stout,, A. Rafferty, and, W. L. Kingery. 2004. Acid phosphatase interactions with organo-mineral complexes: influence on catalytic activity. Biogeochemistry 71: 285297.
42. Kirk, T. K.,, and R. L. Farrell. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41: 465505.
43. Kourtev, P. S.,, J. G. Ehrenfeld, and, M. Häggblom. 2003. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol. Biochem. 35: 895905.
44. Krull, E.,, J. Baldock, and, J. Skjemstad. 2001. Soil texture effects on decomposition and soil carbon storage, p. 103–110. In Net Ecosystem Exchange CRC Workshop Proceedings.
45. Leprince, F.,, and H. Quiquampoix. 1996. Extracellular enzyme activity in soil: effect of pH and ionic strength on the interaction with montmorillonite of two acid phosphatases secreted by the ectomycorrhizal fungus Hebeloma cylindrosporum. Eur. J. Soil Sci. 47: 511522.
46. Lindeberg, G. 1944. Über die Physiologie ligninabbauender Bodenhymenomyzeten. Symb. Bot. Ups. 8: 1183.
47. Luis, P.,, G. Walther,, H. Kellner,, F. Martin, and, F. Buscot. 2004. Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biol. Biochem. 36: 10251036.
48. Lynd, L. R.,, P. J. Weimer,, W. H. van Zyl, and, I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506577.
49. Lyons, J. I.,, S. Y. Newell,, A. Buchan, and, M. A. Moran. 2003. Diversity of ascomycete laccase gene sequences in a southeastern US salt marsh. Microb. Ecol. 45: 270281.
50. Mader, P.,, H. Vierhailig,, R. Streitwolf-Engel,, T. Boller,, B. Frey,, P. Christie, and, A. Wiemken. 2000. Transport of 15N from soil compartments separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol. 146: 155161.
51. Magill, A. H.,, and J. D. Aber. 1998. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant Soil 203: 301311.
52. Marx, M.-C.,, E. Kandeler,, M. Wood,, N. Wermbter, and, S. C. Jarvis. 2005. Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol. Biochem. 37: 3548.
53. Mayer, L. M.,, L. L. Schick,, K. R. Hardy,, R. Wagai, and, J. McCarthy. 2004. Organic matter in small mesopores in sediments and soils. Geochim. Cosmochim. Acta 68: 38633872.
54. McClaugherty, C. A.,, and A. E. Linkins. 1990. Temperature responses of enzymes in 2 forest soils. Soil Biol. Biochem. 22: 2933.
55. McGill, W. B.,, and C. V. Cole. 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26: 267286.
56. Moldrup, P.,, T. Olesen,, T. Komatsu,, P. Schjonning, and, D. E. Rolston. 2001. Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci. Soc. Am. J. 65: 613623.
57. Moorhead, D. L.,, and R. L. Sinsabaugh. 2000. Simulated patterns of litter decay predict patterns of extracellular enzyme activities. Appl. Soil Ecol. 14: 7179.
58. Moorhead, D. L.,, and R. L. Sinsabaugh. A theoretical model of litter decay and microbial interaction. Ecol. Monogr., in press.
59. Nannipieri, P.,, L. Muccini, and, C. Ciardi. 1983. Microbial biomass and enzyme activities—production and persistence. Soil Biol. Biochem. 15: 679685.
60. Neff, J. C.,, A. R. Townsend,, G. Gleixner,, S. J. Lehman,, J. Turnbull, and, W. D. Bowman. 2002. Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419: 915917.
61. Olander, L. P.,, and P. M. Vitousek. 2000. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49: 175190.
62. Parton, W. J.,, D. S. Schimel,, C. V. Cole, and, D. S. Ojima. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 51: 11731179.
63. Perez, J.,, and T. W. Jeffries. 1992. Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 24022409.
64. Perucci, P. 1992. Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biol. Fertil. Soils 14: 5460.
65. Quiquampoix, H.,, S. Servagent-Noinville, and, M. Baron. 2002. Enzyme adsorption on soil mineral surfaces and consequences for the catalytic activity, p. 285–306. In R. G. Burns and, R. P. Dick (ed.), Enzymes in the Environment. Marcel Dekker, New York, N.Y.
66. Read, D. J.,, and J. Perez-Moreno. 2003. Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance? New Phytol. 157: 475492.
67. Renella, G.,, L. Landi, and, P. Nannipieri. 2002. Hydrolase activities during and after the chloroform fumigation of soil as affected by protease activity. Soil Biol. Biochem. 34: 5160.
68. Saiya-Cork, K. R.,, R. L. Sinsabaugh, and, D. R. Zak. 2002. The effects of long-term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34: 13091315.
69. Schimel, J. P.,, and M. N. Weintraub. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem. 35: 549563.
70. Schulze, W. X.,, G. Gleixner,, K. Kaiser,, G. Guggenberger,, M. Mann, and, E.-D. Schulze. 2005. A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 142: 335343.
71. Sinsabaugh, R. L.,, R. K. Antibus,, A. E. Linkins,, C. A. McClaugherty,, L. Rayburn,, D. Repert, and, T. Weiland. 1993. Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74: 15861593.
72. Sinsabaugh, R. L.,, M. M. Carreiro, and, S. Alvarez. 2002. Enzyme and microbial dynamics during litter decomposition, p. 249–266. In R. G. Burns and, R. P. Dick (ed.), Enzymes in the Environment. Marcel Dekker, New York, N.Y.
73. Sinsabaugh, R. L.,, M. M. Carreiro, and, D. A. Repert. 2002. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60: 124.
74. Sinsabaugh, R. L.,, S. Findlay,, P. Franchini, and, D. Fischer. 1997. Enzymatic analysis of riverine bacterio-plankton production. Limnol. Oceanogr. 42: 2938.
75. Sinsabaugh, R. L.,, M. E. Gallo,, C. Lauber,, M. P. Waldrop, and, D. R. Zak. 2005. Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75: 201215.
76. Sinsabaugh, R. L.,, and D. L. Moorhead. 1994. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol. Biochem. 26: 13051311.
77. Sinsabaugh, R. L.,, H. Reynolds, and, T. M. Long. 2000. Rapid assay for amidohydrolase (urease) activity in environmental samples. Soil Biol. Biochem. 32: 20952097.
78. Smith, S. E.,, and D. J. Read. 1997. Mycorrhizal Symbiosis, 2nd ed. Academic Press, San Diego, Calif.
79. Smith, V. H. 2002. Effects of resource supplies on the structure and function of microbial communities. Antonie Leeuwenhoek 81: 99106.
80. Sollins, P.,, P. Homann, and, B. A. Caldwell. 1996. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74: 65105.
81. Stursova, M.,, C. L. Crenshaw, and, R. L. Sinsabaugh. 2006. Microbial responses to long-term N deposition in a semi-arid grassland. Microb. Ecol. 51: 9098.
82. Tarafdar, J. C.,, and H. Marschner. 1994. Phosphatase activity in the rhizosphere and hydrosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol. Biochem. 26: 387395.
83. Trasar-Cepeda, C.,, C. Leirós,, F. Gil-Sotres, and, S. Seoane. 1998. Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biol. Fertil. Soils 26: 100106.
84. Travisano, M.,, and G. J. Velicer. 2004. Strategies of microbial cheater control. Trends Microbiol. 12: 7278.
85. Tscherko, D.,, U. Hammesfahr,, M.-C. Marx, and, E. Kandeler. 2004. Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biol. Biochem. 36: 16851698.
86. Vance, E. D.,, and F. S. Chapin III. 2001. Substrate limitations to microbial activity in taiga forest floors. Soil Biol. Biochem. 33: 173188.
87. van den Burg, B. 2003. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6: 213218.
88. Vetter, Y. A.,, J. W. Denning,, P. A. Jumars, and, B. B. Krieger-Brockett. 1998. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb. Ecol. 36: 7592.
89. Waldrop, M. P.,, T. C. Balser, and, M. K. Firestone. 2000. Linking microbial community composition to function in a tropical soil. Soil Biol. Biochem. 32: 18371846.
90. Waldrop, M. P.,, D. R. Zak, and, R. L. Sinsabaugh. 2004. Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol. Biochem. 36: 14431451.
91. Waldrop, M. P.,, D. R. Zak,, R. L. Sinsabaugh,, M. Gallo, and, C. Lauber. 2004. Nitrogen deposition modifies soil carbon storage through changes in microbial enzyme activity. Ecol. Appl. 14: 11721177.
92. Watanabe, K.,, and K. Hayano. 1995. Seasonal variation of soil protease activities and their relation to proteolytic bacteria and Bacillus spp. in paddy field soil. Soil Biol. Biochem. 27: 197203.
93. Weetall, H. 1975. Immobilized enzymes and their application in the food and beverage industry. Proc. Biochem. 10: 324.
94. Weintraub, M. N.,, and J. P. Schimel. 2005. The seasonal dynamics of amino acids and other nutrients in Alaskan Arctic tundra soils. Biogeochemistry 73: 359380.
95. Weintraub, M. N.,, and J. P. Schimel. 2005. Seasonal protein dynamics in Alaskan Arctic tundra soils. Soil Biol. Biochem. 37: 14691475.
96. Wick, B.,, H. Tiessen, and, R. S. C. Menezes. 2000. Land quality changes following the conversion of the natural vegetation into silvo-pastoral systems in semi-arid NE Brazil. Plant Soil 222: 5970.
97. Zimmerman, A. R.,, J. Chorover,, K. W. Goyne, and, S. L. Brantley. 2004. Protection of mesopore-adsorbed organic matter from enzymatic degradation. Environ. Sci. Technol. 38: 45424548.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error