Chapter 62 : Mobile Gene Elements in Environmental Microbial Communities

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Mobile Gene Elements in Environmental Microbial Communities, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap62-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap62-2.gif


This chapter concentrates on characteristics of the different types of mobile elements that facilitate horizontal gene transfer (HGT) in bacteria. It begins with a discussion of the HGT; then describes the tremendous variation both within and between different classes of mobile gene transfer elements; and ends with a brief description of the techniques for studying HGT in environmental microbial communities. HGT is facilitated through some combination of the activity of mobile gene elements (MGEs) and/or host and recipient cellular enzyme systems. The chapter primarily focuses on the characteristics of the MGEs themselves. There are five basic classes of MGEs: phages, plasmids, transposons, integrons, and integrative conjugative elements (ICEs). Metagenomic techniques have revealed support for long-distance HGT in a number of bacteria and archaea. Metagenomic approaches have also been used to obtain phage genomes from environmental microbial communities. Many researchers have also taken a prospective approach to examine the frequency and factors influencing gene transfer in environmental microbial communities. Traditionally, prospective approaches have included the seeding of microcosms or environments with bacteria containing marker genes or naked DNA or plasmids and the selection of transformants.

Citation: Nemergut D, Barkay T, Coombs J. 2007. Mobile Gene Elements in Environmental Microbial Communities, p 758-768. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch62
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Four steps involved in successful nucleic acid transfer. ( ) DNA/RNA molecules are prepared for transfer. ( ) The genetic information is transferred to the recipient cell, through either transduction, conjugation, or transformation. ( ) The nucleic acid molecule enters the recipient cell. ( ) The DNA or RNA molecule is recognized by the host cell replication machinery, either via integration into the genome or as an extrachromosomal element.

Citation: Nemergut D, Barkay T, Coombs J. 2007. Mobile Gene Elements in Environmental Microbial Communities, p 758-768. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch62
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

NJ tree of integron-type integrases. Proteins from a single organism are named with a genus and species. IntI1 and IntI3 have been found in several organisms. Boxed names highlight organisms whose integrase phylogenies are markedly different from their organismal phylogenies. *, nodes that are supported by >80% by both parsimony and distance bootstrap analysis.

Citation: Nemergut D, Barkay T, Coombs J. 2007. Mobile Gene Elements in Environmental Microbial Communities, p 758-768. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch62
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Achtman, M.,, N. Willetts, and, A. J. Clark. 1971. Beginning a genetic analysis of conjugational transfer determined by F-factor in Escherichia coli by isolation and characterization of transfer-deficient mutants. J. Bacteriol. 106: 529538.
2. Ahmed, A. M.,, T. Nakagawa,, E. Arakawa,, T. Ramamurthy,, S. Shinoda, and, T. Shimamoto. 2004. New aminoglycoside acetyltransferase gene, aac(3)-Id, in a class 1 integron from a multiresistant strain of Vibrio fluvialis isolated from an infant aged 6 months. J. Antimicrob. Chemother. 53: 947951.
3. Ashelford, K. E.,, M. J. Day, and, J. C. Fry. 2003. Elevated abundance of bacteriophage infecting bacteria in soil. Appl. Environ. Microbiol. 69: 285289.
4. Avery, O. T.,, C. M. MacLeod, and, M. McCarty. 1944. Studies on the chemical nature of the substance inducing transformation of pneumonococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumonoccus type III. J. Exp. Med. 79: 137157.
5. Bacic, M.,, A. C. Parker,, J. Stagg,, H. P. Whitley,, W. G. Wells,, L. A. Jacob, and, C. J. Smith. 2005. Genetic and structural analysis of the Bacteroides conjugative transposon CTn341. J. Bacteriol. 187: 28582869.
6. Beaber, J. W.,, B. Hochhut, and, M. K. Waldor. 2004. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427: 7274.
7. Beja, O.,, E. V. Koonin,, L. Aravind,, L. T. Taylor,, H. Seitz,, J. L. Stein,, D. C. Bensen,, R. A. Feldman,, R. V. Swanson, and, E. F. DeLong. 2002. Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Appl. Environ. Microbiol. 68: 335345.
8. Bergh, O.,, K. Y. Borsheim,, G. Bratbak, and, M. Heldal. 1989. High abundance of viruses found in aquatic environments. Nature 340: 467468.
9. Beumer, A.,, and J. B. Robinson. 2005. A broad-host-range, generalized transducing phage (SN-T) acquires 16S rRNA genes from different genera of bacteria. Appl. Environ. Microbiol. 71: 83018304.
10. Bissonnette, L.,, and P. H. Roy. 1992. Characterization of In0 of Pseudomonas aeruginosa plasmid pVS1, an ancestor of integrons of multiresistance plasmids and transposons of gram-negative bacteria. J. Bacteriol. 174: 12481257.
11. Breitbart, M.,, I. Hewson,, B. Felts,, J. M. Mahaffy,, J. Nulton,, P. Salamon, and, F. Rohwer. 2003. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185: 62206223.
12. Breitbart, M.,, J. H. Miyake, and, F. Rohwer. 2004. Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol. Lett. 236: 249256.
13. Burrus, V.,, G. Pavlovic,, B. Decaris, and, G. Guedon. 2002. Conjugative transposons: the tip of the iceberg. Mol. Microbiol. 46: 601610.
14. Bushman, F. 2002. Lateral DNA Transfer: Mechanisms and Consequences. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
15. Cantera, J. J. L.,, H. Kawasaki, and, T. Seki. 2004. The nitrogen-fixing gene ( nifH) of Rhodopseudomonas palustris: a case of lateral gene transfer? Microbiology 150: 22372246.
16. Castanheira, M.,, M. A. Toleman,, R. N. Jones,, F. J. Schmidt, and, T. R. Walsh. 2004. Molecular characterization of a beta-lactamase gene, bla(GIM-1), encoding a new subclass of metallo-beta-lactamase. Antimicrob. Agents Chemother. 48: 46544661.
17. Chen, C. Y.,, K. M. Wu,, Y. C. Chang,, C. H. Chang,, H. C. Tsai,, T. L. Liao,, Y. M. Liu,, H. J. Chen,, A. B. T. Shen,, J. C. Li,, T. L. Su,, C. P. Shao,, C. T. Lee,, L. I. Hor, and, S. F. Tsai. 2003. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res. 13: 25772587.
18. Chen, I.,, P. J. Christie, and, D. Dubnau. 2005. The ins and outs of DNA transfer in bacteria. Science 310: 14561460.
19. Coetzee, J. N.,, N. Datta, and, R. W. Hedges. 1972. R factors from Proteus rettgeri. J. Gen. Microbiol. 72: 543552.
20. Cohen, S. N.,, A. C. Chang,, H. W. Boyer, and, R. B. Helling. 1973. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl. Acad. Sci. USA 70: 32403244.
21. Coleman, N. V.,, and A. J. Holmes. 2005. The native Pseudomonas stutzeri strain Q chromosonal integron can capture and express cassette-associated genes. Microbiology 151: 18531864.
22. Coombs, J. M.,, and T. Barkay. 2005. Horizontal gene transfer of metal homeostasis genes and its role in microbial communities of the deep terrestrial subsurface, p. 109–129. In G. M. Gadd,, K. T. Semple, and, H. M. Lappin-Scott (ed.), Micro-Organisms and Earth Systems: Advances in Geomicrobiology. Proceedings of the 65th Symposium of the Society of General Microbiology. Cambridge University Press, New York, N.Y.
23. Daubin, V.,, E. Lerat, and, G. Perriere. 2003. The source of laterally transferred genes in bacterial genomes. Genome Biol. 4: R57.
24. Daubin, V.,, and H. Ochman. 2004. Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res. 14: 10361042.
25. del Solar, G.,, R. Giraldo,, M. J. Ruiz-Echevarria,, M. Espinosa, and, R. Diaz-Orejas. 1998. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62: 434464.
26. Ding, Z. Y.,, K. Atmakuri, and, P. J. Christie. 2003. The outs and ins of bacterial type IV secretion substrates. Trends Microbiol. 11: 527535.
27. Dobrindt, U.,, B. Hochhut,, U. Hentschel, and, J. Hacker. 2004. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2: 414424.
28. Doublet, B.,, F. X. Weill,, L. Fabre,, E. Chaslus-Dancla, and, A. Cloeckaert. 2004. Variant Salmonella genomic island 1 antibiotic resistance gene cluster containing a novel 3′- N-aminoglycoside acetyltransferase gene cassette, aac(3)-id, in Salmonella enterica serovar Newport. Antimicrob. Agents Chemother. 48: 38063812.
29. Droge, M.,, A. Puhler, and, W. Selbitschka. 2000. Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. Mol. Gen. Genet. 263: 471482.
30. Drouin, F.,, J. Melancon, and, P. H. Roy. 2002. The intI-like tyrosine recombinase of Shewanella oneidensis is active as an integron integrase. J. Bacteriol. 184: 18111815.
31. Finan, T. M. 2002. Evolving insights: symbiosis islands and horizontal gene transfer. J. Bacteriol. 184: 28552856.
32. Fluit, A. C.,, and F. J. Schmitz. 2004. Resistance integrons and super-integrons. Clin. Microbiol. Infect. 10: 272288.
33. Francia, M. V.,, A. Varsaki,, M. P. Garcillan-Barcia,, A. Latorre,, C. Drainas, and, F. de la Cruz. 2004. A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol. Rev. 28: 79100.
34. Franke, A. E.,, and D. B. Clewell. 1981. Evidence for a chromosome-borne resistance transposon (Tn 916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J. Bacteriol. 145: 494502.
35. Friedrich, M. W. 2002. Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J. Bacteriol. 184: 278289.
36. Galimand, A.,, S. Sabtcheva,, P. Courvalin, and, T. Lambert. 2005. Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn 1548. Antimicrob. Agents Chemother. 49: 29492953.
37. Gerdes, K.,, J. Moller-Jensen, and, R. B. Jensen. 2000. Plasmid and chromosome partitioning: surprises from phylogeny. Mol. Microbiol. 37: 455466.
38. Gillings, M. R.,, M. P. Holley,, H. W. Stokes, and, A. J. Holmes. 2005. Integrons in Xanthomonas: a source of species genome diversity. Proc. Natl. Acad. Sci. USA 102: 44194424.
39. Giuliani, F.,, J. D. Docquier,, M. L. Riccio,, L. Pagani, and, G. M. Rossolini. 2005. OXA-46, a new class D beta-lactamase of narrow substrate specificity encoded by a ( bla)( vim-1)-containing integron from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother. 49: 19731980.
40. Gogarten, J. P.,, and J. P. Townsend. 2005. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3: 679687.
41. Griffith, F. 1928. The significance of pneumonococcal types. J. Hyg. 27: 1359.
42. Grkovic, S.,, M. Ocallaghan, and, H. K. Mahanty. 1995. Characterization of Serratia entomophila bacteriophages and the phage-resistant mutant strain Bc4b. Appl. Environ. Microbiol. 61: 41604166.
43. Hallet, B.,, and D. J. Sherratt. 1997. Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol. Rev. 21: 157178.
44. Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669685.
45. Hastings, P. J.,, S. M. Rosenberg, and, A. Slack. 2004. Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol. 12: 401404.
46. Heritier, C.,, A. Dubouix,, L. Poirel,, N. Marty, and, P. Nordmann. 2005. A nosocomial outbreak of Acinetobacter baumannii isolates expressing the carbapenem-hydrolysing oxacillinase OXA-58. J. Antimicrob. Chemother. 55: 115118.
47. Hugenholtz, P.,, B. M. Goebel, and, N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 47654774. (Erratum, 180:6793.)
48. Kanda, K.,, T. Ohderaotoshi,, A. Shimojyo,, F. Kato, and, A. Murata. 1999. An extrachromosomal prophage naturally associated with Bacillus thuringiensis serovar israelensis. Lett. Appl. Microbiol. 28: 305308.
49. Kapitonov, V. V.,, and J. Jurka. 2005. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 3: 9981011.
50. Lawlor, K.,, A. R. Chaudri,, S. P. McGrath, and, P. R. Hirsch. 1999. Gene transfer in bacteria from soils contaminated with heavy metals. Lett. Appl. Microbiol. 28: 317320.
51. Lawrence, J. G.,, and H. Ochman. 1998. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95: 94139417.
52. Lawrence, J. G.,, and H. Ochman. 2002. Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10: 14.
53. Lawrence, K.,, and M. Mulczyk. 1965. The transfer of two episomes, colicinogenic factor I and resistance transfer factor, in Shigella flexneri strains by crosses between strains each possessing a single episome. J. Gen. Microbiol. 39: 209213.
54. Lederberg, J. 1952. Cell genetics and hereditary symbiosis. Physiol. Rev. 32: 403430.
55. Libisch, B.,, M. Gacs,, K. Csiszar,, M. Muzslay,, L. Rokusz, and, M. Fuzi. 2004. Isolation of an integron-borne bla(VIM-4) type metallo-beta-lactamase gene from a carbapenem-resistant Pseudomonas aeruginosa clinical isolate in Hungary. Antimicrob. Agents Chemother. 48: 35763578.
56. Liebert, C. A.,, R. M. Hall, and, A. O. Summers. 1999. Transposon Tn 21, flagship of the floating genome. Microbiol. Mol. Biol. Rev. 63: 507522.
57. Lin, N. T.,, T. J. Liu,, T. C. Lee,, B. Y. You,, M. H. Yang,, F. S. Wen, and, Y. H. Tseng. 1999. The adsorption protein genes of Xanthomonas campestris filamentous phages determining host specificity. J. Bacteriol. 181: 24652471.
58. Lipson, D. A.,, and S. K. Schmidt. 2004. Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Appl. Environ. Microbiol. 70: 28672879.
59. Llosa, M.,, F. X. Gomis-Ruth,, M. Coll, and, F. de la Cruz. 2002. Bacterial conjugation: a two-step mechanism for DNA transport. Mol. Microbiol. 45: 18.
60. Margulis, L. 1968. Evolutionary criteria in Thallophytes: a radical alternative. Science 161: 10201022.
61. Martin, A. P.,, E. K. Costello,, A. F. Meyer,, D. R. Nemergut, and, S. K. Schmidt. 2004. The rate and pattern of cladogenesis in microbes. Evolution 58: 946955.
62. Mazel, D.,, B. Dychinco,, V. A. Webb, and, J. Davies. 2000. Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. Antimicrob. Agents Chemother. 44: 15681574.
63. Mazel, D.,, B. Dychinco,, V. A. Webb, and, J. Davies. 1998. A distinctive class of integron in the Vibrio cholerae genome. Science 280: 605608.
64. McClintock, B. 1951. Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol. 16: 1347.
65. McDonald, L. C.,, and W. R. Jarvis. 1997. The global impact of vancomycin-resistant enterococci. Curr. Opin. Infect. Dis. 10: 304309.
66. Mellado, E.,, J. A. Asturias,, J. J. Nieto,, K. N. Timmis, and, A. Ventosa. 1995. Characterization of the basic replicon of pCM1, a narrow-host-range plasmid from the moderate halophile Chromohalobacter marismortui. J. Bacteriol. 177: 34433450.
67. Mendes, R. E.,, M. A. Toleman,, J. Ribeiro,, H. S. Sader,, R. N. Jones, and, T. R. Walsh. 2004. Integron carrying a novel metallo-beta-lactamase gene, bla ( IMP-16), and a fused form of aminoglycoside-resistant gene aac(6′)- 30/aac ( 6′)- Ib′: report from the SENTRY antimicrobial surveillance program. Antimicrob. Agents Chemother. 48: 46934702.
68. Mullany, P.,, A. P. Roberts, and, H. Wang. 2002. Mechanism of integration and excision in conjugative transposons. Cell. Mol. Life Sci. 59: 20172022.
69. Mulvey, M. R.,, D. A. Boyd,, L. Baker,, O. Mykytczuk,, E. M. F. Reis,, M. D. Asensi,, D. P. Rodrigues, and, L. K. Ng. 2004. Characterization of a Salmonella enterica serovar Agona strain harbouring a class 1 integron containing novel OXA-type beta-lactamase (bla(OXA-53)) and 6′-N-aminoglycoside acetyltransferase genes aac(6′)-I30. J. Antimicrob. Chemother. 54: 354359.
70. Nandi, S.,, J. J. Maurer,, C. Hofacre, and, A. O. Summers. 2004. Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci. USA 101: 71187122.
71. Nelson, K. E.,, R. A. Clayton,, S. R. Gill,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, L. D. Peterson,, W. C. Nelson,, K. A. Ketchum,, L. McDonald,, T. R. Utterback,, J. A. Malek,, K. D. Linher,, M. M. Garrett,, A. M. Stewart,, M. D. Cotton,, M. S. Pratt,, C. A. Phillips,, D. Richardson,, J. Heidelberg,, G. G. Sutton,, R. D. Fleischmann,, J. A. Eisen,, O. White,, S. L. Salzberg,, H. O. Smith,, J. C. Venter, and, C. M. Fraser. 1999. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399: 323329.
72. Nemergut, D. R.,, A. P. Martin, and, S. K. Schmidt. 2004. Integron diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl. Environ. Microbiol. 70: 11601168.
73. Nesbo, C. L.,, Y. Boucher,, M. Dlutek, and, W. F. Doolittle. 2005. Lateral gene transfer and phylogenetic assignment of environmental fosmid clones. Environ. Microbiol. 7: 20112026.
74. Nesvera, J.,, J. Hochmannova, and, M. Patek. 1998. An integron of class 1 is present on the plasmid pCG4 from Gram-positive bacterium Corynebacterium glutamicum. FEMS Microbiol. Lett. 169: 391395.
75. Nield, B. S.,, A. J. Holmes,, M. R. Gillings,, G. D. Recchia,, B. C. Mabbutt,, K. M. H. Nevalainen, and, H. W. Stokes. 2001. Recovery of new integron classes from environmental DNA. FEMS Microbiol. Lett. 195: 5965.
76. Nojiri, H.,, M. Shintani, and, T. Omori. 2004. Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl. Microbiol. Biotechnol. 64: 154174.
77. Osborn, A. M.,, and D. Boltner. 2002. When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid 48: 202212.
78. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734740.
79. Prigent, M.,, M. Leroy,, F. Confalonieri,, M. Dutertre, and, M. S. DuBow. 2005. A diversity of bacteriophage forms and genomes can be isolated from the surface sands of the Sahara Desert. Extremophiles 9: 289296.
80. Rawlings, D. E.,, and E. Tietze. 2001. Comparative biology of IncQ and IncQ-like plasmids. Microbiol. Mol. Biol. Rev. 65: 481496.
81. Raymond, J.,, J. L. Siefert,, C. R. Staples, and, R. E. Blankenship. 2004. The natural history of nitrogen fixation. Mol. Biol. Evol. 21: 541554.
82. Roberts, A. P.,, P. A. Johanesen,, D. Lyras,, P. Mullany, and, J. I. Rood. 2001. Comparison of Tn5397 from Clostridium difficile, Tn916 from Enterococcus faecalis and the CW459tet(M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. Microbiology 147: 12431251.
83. Rohwer, F.,, and R. Edwards. 2002. The Phage Proteomic Tree: a genome-based taxonomy for phage. J. Bacteriol. 184: 45294535.
84. Rowe-Magnus, D. A.,, A. M. Guerout,, L. Biskri,, P. Bouige, and, D. Mazel. 2003. Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res. 13: 428442.
85. Rowe-Magnus, D. A.,, A. M. Guerout,, P. Ploncard,, B. Dychinco,, J. Davies, and, D. Mazel. 2001. The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc. Natl. Acad. Sci. USA 98: 652657.
86. Schaefer, M. R.,, and K. Kahn. 1998. Cyanobacterial transposons Tn 5469 and Tn 5541 represent a novel non-composite transposon family. J. Bacteriol. 180: 60596063.
87. Schmidt, H.,, and M. Hensel. 2004. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17: 1456. (Erratum, 19:257, 2006.)
88. Smets, B. F.,, and T. Barkay. 2005. Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nat. Rev. Microbiol. 3: 675678.
89. Sorensen, S. J.,, M. Bailey,, L. H. Hansen,, N. Kroer, and, S. Wuertz. 2005. Studying plasmid horizontal transfer in situ: a critical review. Nat. Rev. Microbiol. 3: 700710.
90. Sorensen, S. J.,, A. H. Sorensen,, L. H. Hansen,, G. Oregaard, and, D. Veal. 2003. Direct detection and quantification of horizontal gene transfer by using flow cytometry and gfp as a reporter gene. Curr. Microbiol. 47: 129133.
91. Springael, D.,, and E. M. Top. 2004. Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies. Trends Microbiol. 12: 5358.
92. Stokes, H. W.,, and R. M. Hall. 1989. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions—integrons. Mol. Microbiol. 3: 16691683.
93. Stokes, H. W.,, A. J. Holmes,, B. S. Nield,, M. P. Holley,, K. M. H. Nevalainen,, B. C. Mabbutt, and, M. R. Gillings. 2001. Gene cassette PCR: sequence-independent recovery of entire genes from environmental DNA. Appl. Environ. Microbiol. 67: 52405246.
94. Stolz, J. F.,, and P. Basu. 2002. Evolution of nitrate reductase: molecular and structural variations on a common function. Chembiochem 3: 198206.
95. Sullivan, J. T.,, and C. W. Ronson. 1998. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc. Natl. Acad. Sci. USA 95: 51455149.
96. Suttle, C. A.,, A. M. Chan, and, M. T. Cottrell. 1990. Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347: 467469.
97. Taoka, A.,, K. Yoshimatsu,, M. Kanemori, and, Y. Fukumori. 2003. Nitrate reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum MS-1: purification and sequence analyses. Can. J. Microbiol. 49: 197206.
98. Thompson, J. R.,, S. Pacocha,, C. Pharino,, V. Klepac-Ceraj,, D. E. Hunt,, J. Benoit,, R. Sarma-Rupavtarm,, D. L. Distel, and, M. F. Polz. 2005. Genotypic diversity within a natural coastal bacterioplankton population. Science 307: 13111313.
99. Toussaint, A.,, and C. Merlin. 2002. Mobile elements as a combination of functional modules. Plasmid 47: 2635.
100. Twort, F. 1915. An investigation on the nature of ultra-microscopic viruses. Lancet ii: 12411243.
101. Vaisvila, R.,, R. D. Morgan,, J. Posfai, and, E. A. Raleigh. 2001. Discovery and distribution of super-integrons among Pseudomonads. Mol. Microbiol. 42: 587601.
102. van Elsas, J. D.,, and M. J. Bailey. 2002. The ecology of transfer of mobile genetic elements. FEMS Microbiol. Ecol. 42: 187197.
103. van Elsas, J. D.,, B. B. M. Gardener,, A. C. Wolters, and, E. Smit. 1998. Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizo-sphere. Appl. Environ. Microbiol. 64: 880889.
104. Villa, L.,, and A. Carattoli. 2005. Integrons and transposons on the Salmonella enterica serovar Typhimurium virulence plasmid. Antimicrob. Agents Chemother. 49: 11941197.
105. Vourli, S.,, P. Giakkoupi,, V. Miriagou,, E. Tzelepi,, A. C. Vatopoulos, and, L. S. Tzouvelekis. 2004. Novel GES/IBC extended-spectrum beta-lactamase variants with carbapenemase activity in clinical enterobacteria. FEMS Microbiol. Lett. 234: 209213.
106. Wachino, J.,, Y. Doi,, K. Yamane,, N. Shibata,, T. Yagi,, T. Kubota,, H. Ito, and, Y. Arakawa. 2004. Nosocomial spread of ceftazidime-resistant Klebsiella pneumoniae strains producing a novel class A beta-lactamase, GES-3, in a neonatal intensive care unit in Japan. Antimicrob. Agents Chemother. 48: 19601967.
107. Waldor, M. K.,, H. Tschape, and, J. J. Mekalanos. 1996. A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J. Bacteriol. 178: 41574165.
108. Watanabe, T.,, H. Nishida,, O. Ogata, and, T. Arai. 1964. Episome-mediated transfer of drug resistance in Enterobacteriaceae. VII. Two types of naturally occurring R factors. J. Bacteriol. 88: 716726.
109. Weinbauer, M. G. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28: 127181.
110. Wolf, Y. I.,, L. Aravind, and, E. V. Koonin. 1999. Rickettsiae and Chlamydiae—evidence of horizontal gene transfer and gene exchange. Trends Genet. 15: 173175.
111. Yeo, H. J.,, and G. Waksman. 2004. Unveiling molecular scaffolds of the type IV secretion system. J. Bacteriol. 186: 19191926.
112. Zhou, J. H. 2003. Microarrays for bacterial detection and microbial community analysis. Curr. Opin. Microbiol. 6: 288294.
113. Zhou, J. Z.,, and D. K. Thompson. 2002. Challenges in applying microarrays to environmental studies. Curr. Opin. Biotechnol. 13: 204207.


Generic image for table

Distribution of different - and -acting factors in the MGEs

Citation: Nemergut D, Barkay T, Coombs J. 2007. Mobile Gene Elements in Environmental Microbial Communities, p 758-768. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch62

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error