Chapter 64 : Lipid Fingerprinting of Soil Microbial Communities

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Lipid Fingerprinting of Soil Microbial Communities, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap64-1.gif /docserver/preview/fulltext/10.1128/9781555815882/9781555813796_Chap64-2.gif


This chapter provides an overview of lipid-based methods used to characterize microbial communities, specifically targeting the soil environment. The authors summarize the methods commonly used in investigations of soil communities, consider analytical and technical challenges of soil, describe statistical approaches for analyzing fingerprint data, and present applications to illustrate the types of information generated and questions that can be addressed with these methods. Types of lipid-based methods applied to soil include analyses of phospholipid fatty acids (PLFA), whole-cell fatty acid methyl esters (FAME) (also called EL-MIDI, MIDI method, and TS-FAME) in soil, sterols, and respiratory quinones. Fatty acid-based methods such as PLFA generally produce chromatographs (gas chromatography (GC) or gas chromatography-mass spectrophotometer (GC-MS)) consisting of multiple fatty acids. Some of the fatty acids have masses that are close to detection. PLFA analysis has provided insights into how soil microbial communities respond, in agricultural soils, to different management practices and, in natural ecosystems, to invasion by exotic plant species. In a comparison of the effects of different hay and fertilizer inputs, microbial community composition, based on PLFA fingerprinting, was significantly affected by the different treatments yet microbial C and N pools, as well as respiration, did not specifically respond to inputs. PLFA analysis is a direct wet-chemistry method (unlike, e.g., PCR-based methods) and generates quantitative information (e.g., nanomoles of different fatty acids).

Citation: Lucía Córdova-Kreylos A, Scow K. 2007. Lipid Fingerprinting of Soil Microbial Communities, p 781-792. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch64
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

CCA of microcosm and field soil PLFA profiles. (A) Ordination biplot of the fatty acids and environmental variable scores. Three circles were added to panel A following statistical analysis to aid in identifying the plotted fatty acids. The circle furthest to the left includes the fatty acids i15:0, 16:0, 16:1ω5c, 16:1ω7t, and i17:1ω5. The middle circle includes the fatty acids 16:1ω11c, i17:0, 17:0cy, 18:0, and sum 7. The circle furthest to the right includes the fatty acids 10Me 16:0, 10Me 17:0, 17:1ω9c, and sum 9. (B) Ordination biplot of the sample and the environmental variable scores. Each sample point is the average of three treatment replicates. Black squares indicate +C samples, and gray circles indicate –C samples. Following statistical analysis, circles were added to the biplots to indicate treatment groupings, but these circles do not indicate confidence ellipsoids. In both plots (A and B) the environmental variables are plotted as discrete points. Reprinted with permission from Drenovsky et al. ( ).

Citation: Lucía Córdova-Kreylos A, Scow K. 2007. Lipid Fingerprinting of Soil Microbial Communities, p 781-792. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch64
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

CCA of 42 sites classified by nine land use types. Vectors represent soil characteristics, and centroids show statistically significant management factors. Reprinted with permission from Steenwerth et al. ( ).

Citation: Lucía Córdova-Kreylos A, Scow K. 2007. Lipid Fingerprinting of Soil Microbial Communities, p 781-792. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch64
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abaye, D. A.,, K. Lawlor,, P. R. Hirsch, and, P. C. Brookes. 2005. Changes in the microbial community of an arable soil caused by long-term metal contamination. Eur. J. Soil. Sci. 56: 93102.
2. Allison, V. J.,, R. M. Miller,, J. D. Jastrow,, R. Matamala, and, D. R. Zak. 2005. Changes in soil microbial community structure in a tallgrass prairie chronosequence. Soil Sci. Soc. Am. J. 69: 14121421.
3. Almeida, J. S.,, A. Sonesson,, D. B. Ringelberg, and, D. C. White. 1995. Application of artificial neural networks to the detection of Mycobacterium tuberculosis, its antibiotic resistance and prediction of pathogenicity amongst Myco-bacterium spp based on signature lipid biomarkers. Binary Comput. Microbiol. 7: 159166.
4. Avidano, L.,, E. Gamalero,, G. P. Cossa, and, E. Carraro. 2005. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl. Soil. Ecol. 30: 2133.
5. Bååth, E.,, and T. H. Anderson. 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 35: 955963.
6. Bååth, E.,, M. Díaz-Raviña, and, L. R. Bakken. 2005. Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microb. Ecol. 50: 496505.
7. Bååth, E.,, M. Díaz-Raviña,, A. Frostegård, and, C. D. Campbell. 1998. Effect of metal-rich sludge amendments on the soil microbial community. Appl. Environ. Microbiol. 64: 238245.
8. Bååth, E.,, A. Frostegård,, M. Díaz-Raviña, and, A. Tunlid. 1998. Microbial community-based measurements to estimate heavy metal effects in soil: the use of phospholipid fatty acid patterns and bacterial community tolerance. Ambio 27: 5861.
9. Bååth, E.,, A. Frostegård,, T. Pennanen, and, H. Fritze. 1995. Microbial community structure and pH response in relation to soil organic-matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol. Biochem. 27: 229240.
10. Bartelt-Ryser, J.,, J. Joshi,, B. Schmid,, H. Brandl, and, T. Balser. 2005. Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Perspect. Plant Ecol. Evol. Syst. 7: 2749.
11. Batten, K. M.,, and K. M. Scow. 2003. Sediment microbial community composition and methylmercury pollution at four mercury mine-impacted sites. Microb. Ecol. 46: 429441.
12. Ben-David, E. A.,, P. J. Holden,, D. J. M. Stone,, B. D. Harch, and, L. J. Foster. 2004. The use of phospholipid fatty acid analysis to measure impact of acid rock drainage on microbial communities in sediments. Microb. Ecol. 48: 300315.
13. Bligh, E.,, and W. Dyer. 1959. A rapid method of lipid extraction and purification. Can. J. Biochem. Phys. 39: 911917.
14. Boschker, H. T. S.,, and J. J. Middelburg. 2002. Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol. Ecol. 40: 8595.
15. Boschker, H. T. S.,, S. C. Nold,, P. Wellsbury,, D. Bos,, W. de Graaf,, R. Pel,, R. J. Parkes, and, T. E. Cappenberg. 1998. Direct linking of microbial populations to specific biogeochemical processes by C-13-labelling of biomarkers. Nature 392: 801805.
16. Bossio, D. A.,, M. S. Girvan,, L. Verchot,, J. Bullimore,, T. Borelli,, A. Albrecht,, K. M. Scow,, A. S. Ball,, J. N. Pretty, and, A. M. Osborn. 2005. Soil microbial community response to land use change in an agricultural landscape of Western Kenya. Microb. Ecol. 49: 5062.
17. Bossio, D. A.,, and K. M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35: 265278.
18. Bossio, D. A.,, K. M. Scow,, N. Gunapala, and, K. J. Graham. 1998. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36: 112.
19. Bruno, G. 2005. Compound-specific stable-isotope (d13C) analysis in soil science. J. Plant Nutr. Soil Sci. 168: 633648.
20. Bundy, J. G.,, G. I. Paton, and, C. D. Campbell. 2004. Combined microbial community level and single species biosensor responses to monitor recovery of oil polluted soil. Soil Biol. Biochem. 36: 11491159.
21. Bundy, J. G.,, G. I. Paton, and, C. D. Campbell. 2002. Microbial communities in different soil types do not converge after diesel contamination. J. Appl. Microbiol. 92: 276288.
22. Burke, R. A.,, M. Molina,, J. E. Cox,, L. J. Osher, and, M. C. Piccolo. 2003. Stable carbon isotope ratio and composition of microbial fatty acids in tropical soils. J. Environ. Qual. 32: 198206.
23. Butler, J. L.,, M. A. Williams,, P. J. Bottomley, and, D. D. Myrold. 2003. Microbial community dynamics associated with rhizosphere carbon flow. Appl. Environ. Microbiol. 69: 67936800.
24. Calderon, F. J.,, L. E. Jackson,, K. M. Scow, and, D. E. Rolston. 2001. Short-term dynamics of nitrogen, microbial activity, and phospholipid fatty acids after tillage. Soil Sci. Soc. Am. J. 65: 118126.
25. Chang, Y. J.,, P. E. Long,, R. Geyer,, A. D. Peacock,, C. T. Resch,, K. Sublette,, S. Pfiffner,, A. Smithgall,, R. T. Anderson,, H. A. Vrionis,, J. R. Stephen,, R. Dayvault,, I. Ortiz-Bernad,, D. R. Lovley, and, D. C. White. 2005. Microbial incorporation of C-13-labeled acetate at the field scale: detection of microbes responsible for reduction of U(VI). Environ. Sci. Technol. 39: 90399048.
26. Charles, M. S. 2002. Measurement and applications of stable isotopes in fatty acids. Eur. J. Lipid Sci. Technol. 104: 5759.
27. Cookson, W. R.,, D. A. Abaye,, P. Marschner,, D. V. Murphy,, E. A. Stockdale, and, K. W. T. Goulding. 2005. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biol. Biochem. 37: 17261737.
28. Córdova-Kreylos, A. L.,, Y. Cao,, P. G. Green,, H.-M. Hwang,, K. M. Kuivila,, M. G. LaMontagne,, L. C. Van De Werfhorst,, P. A. Holden, and, K. M. Scow. 2006. Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments. Appl. Environ. Microbiol. 72: 33573366.
29. Crossman, Z. M.,, P. Ineson, and, R. P. Evershed. 2005. The use of C-13 labelling of bacterial lipids in the characterisation of ambient methane-oxidising bacteria in soils. Org. Geochem. 36: 769778.
30. DeGrood, S. H.,, V. P. Claassen, and, K. M. Scow. 2005. Microbial community composition on native and drastically disturbed serpentine soils. Soil Biol. Biochem. 37: 14271435.
31. Dollhopf, S. L.,, S. A. Hashsham, and, J. M. Tiedje. 2001. Interpreting 16S rDNA T-RFLP data: application of self-organizing maps and principal component analysis to describe community dynamics and convergence. Microb. Ecol. 42: 495505.
32. Drenovsky, R. E.,, G. N. Elliott,, K. J. Graham, and, K. M. Scow. 2004. Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities. Soil Biol. Biochem. 36: 17931800.
33. Drijber, R. A.,, J. W. Doran,, A. M. Parkhurst, and, D. J. Lyon. 2000. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol. Biochem. 32: 14191430.
34. Elhottova, D.,, T. Szili-Kovacs, and, J. Triska. 2002. Soil microbial community of abandoned sand fields. Folia Microbiol. 47: 435440.
35. Ettema, C. H.,, and D. A. Wardle. 2002. Spatial soil ecology. Trends Ecol. Evol. 17: 177183.
36. Fang, C. W.,, M. Radosevich, and, J. J. Fuhrmann. 2001. Characterization of rhizosphere microbial community structure in five similar grass species using FAME and BIOLOG analyses. Soil Biol. Biochem. 33: 679682.
37. Federle, T. W.,, R. M. Ventullo, and, D. C. White. 1990. Spatial-distribution of microbial biomass, activity, community structure, and the biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in the subsurface. Microb. Ecol. 20: 297313.
38. Fierer, N.,, J. P. Schimel, and, P. A. Holden. 2003. Influence of drying-rewetting frequency on soil bacterial community structure. Microb. Ecol. 45: 6371.
39. Frostegård, A.,, E. Bååth, and, A. Tunlid. 1993. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty-acid analysis. Soil Biol. Biochem. 25: 723730.
40. Gessner, M. O.,, M. A. Bauchrowitz, and, M. Escautier. 1991. Extraction and quantification of ergosterol as a measure of fungal biomass in leaf litter. Microb. Ecol. 22: 285291.
41. Giacomini, M.,, C. Ruggiero,, L. Calegari, and, S. Bertone. 2000. Artificial neural network based identification of environmental bacteria by gas-chromatographic and electrophoretic data. J. Microbiol. Methods 43: 4554.
42. Grant, W. D.,, and A. W. West. 1986. Measurement of ergosterol, diaminopimelic acid and glucosamine in soil—evaluation as indicators of microbial biomass. J. Microbiol. Methods 6: 4753.
43. Grayston, S. J.,, C. D. Campbell,, R. D. Bardgett,, J. L. Mawdsley,, C. D. Clegg,, K. Ritz,, B. S. Griffiths,, J. S. Rodwell,, S. J. Edwards,, W. J. Davies,, D. J. Elston, and, P. Millard. 2004. Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl. Soil. Ecol. 25: 6384.
44. Green, C. T.,, and K. M. Scow. 2000. Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeol. J. 8: 126141.
45. Greigsmith, P. 1980. The development of numerical classification and ordination. Vegetatio 42: 19.
46. Griffiths, R. I.,, A. S. Whiteley,, A. G. O’Donnell, and, M. J. Bailey. 2003. Influence of depth and sampling time on bacterial community structure in an upland grassland soil. FEMS Microbiol. Ecol. 43: 3543.
47. Hansen, L. D.,, C. Nestler,, D. Ringelberg, and, R. Bajpai. 2004. Extended bioremediation of PAH/PCP contaminated soils from the POPILE wood treatment facility. Chemosphere 54: 14811493.
48. Hanson, J. R.,, J. L. Macalady,, D. Harris, and, K. M. Scow. 1999. Linking toluene degradation with specific microbial populations in soil. Appl. Environ. Microbiol. 65: 54035408.
49. Harris, J. A. 2003. Measurements of the soil microbial community for estimating the success of restoration. Eur. J. Soil. Sci. 54: 801808.
50. Harvey, H. R.,, R. D. Fallon, and, J. S. Patton. 1986. The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments. Geochim. Cosmochim. Acta 50: 795804.
51. Hinojosa, M. B.,, J. A. Carreira,, R. Garcia-Ruiz, and, R. P. Dick. 2005. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. J. Environ. Qual. 34: 17891800.
52. Hiraishi, A. 1999. Isoprenoid quinones as biomarkers of microbial populations in the environment. J. Biosci. Bioeng. 88: 449460.
53. Holubar, P.,, L. Zani,, M. Hager,, W. Froschl,, Z. Radak, and, R. Braun. 2000. Modelling of anaerobic digestion using self-organizing maps and artificial neural networks. Water Sci. Technol. 41: 149156.
54. Jackson, D. A. 1997. Compositional data in community ecology: the paradigm or peril of proportions? Ecology 78: 929940.
55. Jackson, L. E.,, F. J. Calderon,, K. L. Steenwerth,, K. M. Scow, and, D. E. Rolston. 2003. Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma 114: 305317.
56. Johnsen, A. R.,, A. Winding,, U. Karlson, and, P. Roslev. 2002. Linking of microorganisms to phenanthrene metabolism in soil by analysis of C-13-labeled cell lipids. Appl. Environ. Microbiol. 68: 61066113.
57. Katayama, A.,, K. Funasaka, and, K. Fujie. 2001. Changes in the respiratory quinone profile of a soil treated with pesticides. Biol. Fertil. Soils 33: 454459.
58. Katayama, A.,, H. Y. Hu,, M. Nozawa,, S. Takahashi, and, K. Fujie. 2002. Changes in the microbial community structure in soils treated with a mixture of glucose and peptone with reference to the respiratory quinone profile. Soil Sci. Plant Nutr. 48: 841846.
59. Katayama, A.,, H. Y. Hu,, M. Nozawa,, H. Yamakawa, and, K. Fujie. 1998. Long-term changes in microbial community structure in soils subjected to different fertilizing practices revealed by quinone profile analysis. Soil Sci. Plant Nutr. 44: 559569.
60. Kaur, A.,, A. Chaudhary,, A. Kaur,, R. Choudhary, and, R. Kaushik. 2005. Phospholipid fatty acid—a bioindicator of environment monitoring and assessment in soil ecosystem. Curr. Sci. 89: 11031112.
61. Kelly, J. J.,, M. M. Hägblom, and, R. L. Tate. 2003. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol. Fertil. Soils 38: 6571.
62. Kenkel, N. C.,, D. A. Derksen,, A. G. Thomas, and, P. R. Watson. 2002. Multivariate analysis in weed science research. Weed Sci. 50: 281292.
63. Kourtev, P. S.,, J. G. Ehrenfeld, and, M. Hägblom. 2003. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol. Biochem. 35: 895905.
64. Lepš, J.,, and P. Šmilauer. 2003. Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press, Cambridge, United Kingdom.
65. Lorber, A.,, L. E. Wangen, and, B. R. Kowalski. 1987. A theoretical foundation for the PLS algorithm. J. Chemometr. 1: 1931.
66. Lovell, C. R.,, C. E. Bagwell,, M. Czako,, L. Marton,, Y. M. Piceno, and, D. B. Ringelberg. 2001. Stability of a rhizosphere microbial community exposed to natural and manipulated environmental variability. FEMS Microbiol. Ecol. 38: 6976.
67. Ludvigsen, L.,, H. J. Albrechtsen,, H. Holst, and, T. H. Christensen. 1997. Correlating phospholipid fatty acids (PLFA) in a landfill leachate polluted aquifer with biogeochemical factors by multivariate statistical methods. FEMS Microbiol. Rev. 20: 447460.
68. Macnaughton, S. J.,, T. L. Jenkins,, S. Alugupalli, and, D. C. White. 1997. Quantitative sampling of indoor air biomass by signature lipid biomarker analysis: feasibility studies in a model system. Am. Ind. Hyg. Assoc. J. 58: 270277.
69. McKinley, V. L.,, A. D. Peacock, and, D. C. White. 2005. Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biol. Biochem. 37: 19461958.
70. McMahon, S. K.,, M. A. Williams,, P. J. Bottomley, and, D. D. Myrold. 2005. Dynamics of microbial communities during decomposition of carbon-13 labeled ryegrass fractions in soil. Soil Sci. Soc. Am. J. 69: 12381247.
71. Meier-Augenstein, W. 2002. Stable isotope analysis of fatty acids by gas chromatography-isotope ratio mass spectrometry. Anal. Chim. Acta 465: 6379.
72. Merila, P.,, R. Strommer, and, H. Fritze. 2002. Soil microbial activity and community structure along a primary succession transect on the land-uplift coast in western Finland. Soil Biol. Biochem. 34: 16471654.
73. Murata, T.,, M. Kanao-Koshikawa, and, T. Takamatsu. 2005. Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities. Water Air Soil Pollut. 164: 103118.
74. Murata, T.,, K. Takagi,, M. Ishizaka, and, K. Yokoyama. 2004. Effects of mefenacet and pretilachlor applications on phospholipid fatty acid profiles of soil microbial communities in rice paddy soil. Soil Sci. Plant Nutr. 50: 349356.
75. Myers, R. T.,, D. R. Zak,, D. C. White, and, A. Peacock. 2001. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci. Soc. Am. J. 65: 359367.
76. Navarrete, A.,, A. Peacock,, S. J. Macnaughton,, J. Urmeneta,, J. Mas-Castella,, D. C. White, and, R. Guerrero. 2000. Physiological status and community composition of microbial mats of the Ebro Delta, Spain, by signature lipid biomarkers. Microb. Ecol. 39: 9299.
77. Newell, S. Y.,, T. L. Arsuffi, and, R. D. Fallon. 1988. Fundamental procedures for determining ergosterol content of decaying plant-material by liquid-chromatography. Appl. Environ. Microbiol. 54: 18761879.
78. Nielsen, P.,, and S. O. Petersen. 2000. Ester-linked polar lipid fatty acid profiles of soil microbial communities: a comparison of extraction methods and evaluation of interference from humic acids. Soil Biol. Biochem. 32: 12411249.
79. Noble, P. A.,, J. S. Almeida, and, C. R. Lovell. 2000. Application of neural computing methods for interpreting phospholipid fatty acid profiles of natural microbial communities. Appl. Environ. Microbiol. 66: 694699.
80. O’Donnell, A. G.,, M. Seasman,, A. Macrae,, I. Waite, and, J. T. Davies. 2001. Plants and fertilisers as drivers of change in microbial community structure and function in soils. Plant Soil 232: 135145.
81. Olsson, P. A. 1999. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol. Ecol. 29: 303310.
82. Olsson, P. A.,, and N. C. Johnson. 2005. Tracking carbon from the atmosphere to the rhizosphere. Ecol. Lett. 8: 12641270.
83. Palmborg, C.,, A. Nordgren, and, E. Bååth. 1998. Multivariate modeling of soil microbial variables in forest soil contaminated by heavy metals using wet chemical analyses and pyrolysis GC/MS. Soil Biol. Biochem. 30: 345357.
84. Palmer, M. Ordination Methods for Ecologists. Botany Department, Oklahoma State University, Stillwater. [Online.] http://ordination.okstate.edu/index.html.
85. Pankhurst, C. E.,, A. Pierret,, B. G. Hawke, and, J. M. Kirby. 2002. Microbiological and chemical properties of soil associated with macropores at different depths in a red-duplex soil in NSW Australia. Plant Soil 238: 1120.
86. Pelz, O.,, W. R. Abraham,, M. Saurer,, R. Siegwolf, and, J. Zeyer. 2005. Microbial assimilation of plant-derived carbon in soil traced by isotope analysis. Biol. Fertil. Soils 41: 153162.
87. Pennanen, T. 2001. Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH—a summary of the use of phospholipid fatty acids, Biolog (R) and H-3-thymidine incorporation methods in field studies. Geoderma 100: 91126.
88. Pennanen, T.,, H. Fritze,, P. Vanhala,, O. Kiikkilä,, S. Neuvonen, and, E. Bååth. 1998. Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Appl. Environ. Microbiol. 64: 21732180.
89. Petersen, S. O.,, P. S. Frohne, and, A. C. Kennedy. 2002. Dynamics of a soil microbial community under spring wheat. Soil Sci. Soc. Am. J. 66: 826833.
90. Pinkart, H. C.,, D. B. Ringelberg,, Y. M. Piceno,, S. J. Macnaughton, and, D. C. White. 2002. Biochemical approaches to biomass measurements and community structure analysis, p. 101–113. In C. J. Hurst,, R. L. Crawford,, G. R. Knudsen,, M. J. McInerney, and, L. D. Stetzenbach (ed.), Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, D.C.
91. Pombo, S. A.,, O. Pelz,, M. H. Schroth, and, J. Zeyer. 2002. Field-scale C-13-labeling of phospholipid fatty acids (PLFA) and dissolved inorganic carbon: tracing acetate assimilation and mineralization in a petroleum hydrocarbon-contaminated aquifer. FEMS Microbiol. Ecol. 41: 259267.
92. Potvin, C.,, and D. A. Roff. 1993. Distribution-free and robust statistical-methods—viable alternatives to parametric statistics. Ecology 74: 16171628.
93. Ramadan, Z.,, P. K. Hopke,, M. J. Johnson, and, K. M. Scow. 2005. Application of pls and back-propagation neural networks for the estimation of soil properties. Chemom. Intell. Lab. Syst. 75: 2330.
94. Ramadan, Z.,, X. H. Song,, P. K. Hopke,, M. J. Johnson, and, K. M. Scow. 2001. Variable selection in classification of environmental soil samples for partial least square and neural network models. Anal. Chim. Acta 446: 233244.
95. Ramsey, P. W.,, M. C. Rillig,, K. P. Feris,, N. S. Gordon,, J. N. Moore,, W. E. Holben, and, J. E. Gannon. 2005. Relationship between communities and processes; new insights from a field study of a contaminated ecosystem. Ecol. Lett. 8: 12011210.
96. Ravit, B.,, J. G. Ehrenfeld, and, M. M. Hägblom. 2003. A comparison of sediment microbial communities associated with Phragmites australis and Spartina alterniflora in two brackish wetlands of New Jersey. Estuaries 26: 465474.
97. Rethemeyer, J.,, C. Kramer,, G. Gleixner,, B. John,, T. Yamashita,, H. Flessa,, N. Andersen,, M. J. Nadeau, and, P. M. Grootes. 2005. Transformation of organic matter in agricultural soils: radiocarbon concentration versus soil depth. Geoderma 128: 94105.
98. Rhine, E. D.,, J. J. Fuhrmann, and, M. Radosevich. 2003. Microbial community responses to atrazine exposure and nutrient availability: linking degradation capacity to community structure. Microb. Ecol. 46: 145160.
99. Ringelberg, D. B.,, J. O. Stair,, J. Almeida,, R. J. Norby,, E. G. Oneill, and, D. C. White. 1997. Consequences of rising atmospheric carbon dioxide levels for the below-ground microbiota associated with white oak. J. Environ. Qual. 26: 495503.
100. Ritz, K.,, W. McNicol,, N. Nunan,, S. Grayston,, P. Millard,, D. Atkinson,, A. Gollotte,, D. Habeshaw,, B. Boag,, C. D. Clegg,, B. S. Griffiths,, R. E. Wheatley,, L. A. Glover,, A. E. McCaig, and, J. I. Prosser. 2004. Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microbiol. Ecol. 49: 191205.
101. Rossi, R. E.,, D. J. Mulla,, A. G. Journel, and, E. H. Franz. 1992. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol. Monogr. 62: 277314.
102. Runion, G. B.,, S. A. Prior,, D. W. Reeves,, H. H. Rogers,, D. C. Reicosky,, A. D. Peacock, and, D. C. White. 2004. Microbial responses to wheel-traffic in conventional and no-tillage systems. Commun. Soil Sci. Plant. Anal. 35: 28912903.
103. Rutgers, M.,, and A. M. Breure. 1999. Risk assessment, microbial communities, and pollution-induced community tolerance. Hum. Ecol. Risk Assess. 5: 661670.
104. Saetre, P.,, and E. Bååth. 2000. Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand. Soil Biol. Biochem. 32: 909917.
105. Saitou, K.,, K. Nagasaki,, H. Yamakawa,, H. Y. Hu,, K. Fujie, and, A. Katayama. 1999. Linear relation between the amount of respiratory quinones and the microbial biomass in soil. Soil Sci. Plant Nutr. 45: 775778.
106. Schutter, M. E.,, and R. P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64: 16591668.
107. Seitz, L. M.,, H. E. Mohr,, R. Burroughs, and, D. B. Sauer. 1977. Ergosterol as an indicator of fungal invasion in grains. Cereal Chem. 54: 12071217.
108. Shi, W.,, J. Becker,, M. Bischoff,, R. F. Turco, and, A. E. Konopka. 2002. Association of microbial community composition and activity with lead, chromium, and hydrocarbon contamination. Appl. Environ. Microbiol. 68: 38593866.
109. Slater, G. F.,, H. K. White,, T. I. Eglinton, and, C. M. Reddy. 2005. Determination of microbial carbon sources in petroleum contaminated sediments using molecular C-14 analysis. Environ. Sci. Technol. 39: 25522558.
110. Soderberg, K. H.,, A. Probanza,, A. Jumpponen, and, E. Bååth. 2004. The microbial community in the rhizo-sphere determined by community-level physiological profiles (CLPP) and direct soil- and cfu-PLFA techniques. Appl. Soil. Ecol. 25: 135145.
111. Song, D.,, and A. Katayama. 2005. Monitoring microbial community in a subsurface soil contaminated with hydrocarbons by quinone profile. Chemosphere 59: 305314.
112. Song, X. H.,, P. K. Hopke,, M. A. Bruns,, D. A. Bossio, and, K. M. Scow. 1998. A fuzzy adaptive resonance theory supervised predictive mapping neural network applied to the classification of multivariate chemical data. Chemom. Intell. Lab Syst. 41: 161170.
113. Song, X. H.,, P. K. Hopke,, M. A. Bruns,, K. Graham, and, K. Scow. 1999. Pattern recognition of soil samples based on the microbial fatty acid contents. Environ. Sci. Technol. 33: 35243530.
114. Stahl, P. D.,, and T. B. Parkin. 1996. Relationship of soil ergosterol concentration and fungal biomass. Soil Biol. Biochem. 28: 847855.
115. Steenwerth, K. L.,, L. E. Jackson,, F. J. Calderon,, M. R. Stromberg, and, K. M. Scow. 2002. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol. Biochem. 34: 15991611.
116. Steer, J.,, and J. A. Harris. 2000. Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera. Soil Biol. Biochem. 32: 869878.
117. Steger, K.,, A. Jarvis,, S. Smars, and, I. Sundh. 2003. Comparison of signature lipid methods to determine microbial community structure in compost. J. Microbiol. Methods 55: 371382.
118. Stenberg, B. 1999. Monitoring soil quality of arable land: microbiological indicators. Acta Agric. Scand. B Soil Plant Sci. 49: 124.
119. Stenstrom, J.,, K. Svensson, and, M. Johansson. 2001. Reversible transition between active and dormant microbial states in soil. FEMS Microbiol. Ecol. 36: 93104.
120. Straube, W. L.,, C. C. Nestler,, L. D. Hansen,, D. Ringleberg,, P. H. Pritchard, and, J. Jones-Meehan. 2003. Remediation of polyaromatic hydrocarbons (PAHs) through landfarming with biostimulation and bioaugmentation. Acta Biotechnol. 23: 179196.
121. Sylvia, D. M.,, J. J. Fuhrmann,, P. G. Hartel, and, D. A. Zuberer. 1999. Principles and Applications of Soil Microbiology. Prentice Hall, Upper Saddle River, N.J.
122. Tabachnick, B.,, and L. Fidell. 1983. Using Multivariate Statistics. Harper & Row, New York, N.Y.
123. ter Braak, C. J. F.,, and P. Šmilauer. 1998. CANOCO Reference Manual and User’s Guide to CANOCO for Windows: Software for Canonical Community Ordination (Version 4). Microcomputer Power, Ithaca, N.Y., and Centre for Biometry Wageningen, Wageningen, The Netherlands.
124. Thorndike, R. 1978. Correlational Procedures for Research. Gardner Press, Inc., New York, N.Y.
125. Treonis, A. M.,, N. J. Ostle,, A. W. Stott,, R. Primrose,, S. J. Grayston, and, P. Ineson. 2004. Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol. Biochem. 36: 533537.
126. Tscherko, D.,, U. Hammesfahr,, M. C. Marx, and, E. Kandeler. 2004. Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biol. Biochem. 36: 16851698.
127. Turpeinen, R.,, T. Kairesalo, and, M. M. Hägblom. 2004. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiol. Ecol. 47: 3950.
128. Urakawa, H.,, T. Yoshida,, M. Nishimura, and, K. Ohwada. 2005. Characterization of depth-related changes and site-specific differences of microbial communities in marine sediments using quinone profiles. Fish. Sci. 71: 174182.
129. Vepsalainen, M.,, K. Erkomaa,, S. Kukkonen,, M. Vestberg,, K. Wallenius, and, R. M. Niemi. 2004. The impact of crop plant cultivation and peat amendment on soil microbial activity and structure. Plant Soil 264: 273286.
130. White, D. C.,, W. M. Davis,, J. S. Nickels,, J. D. King, and, R. J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40: 5162.
131. White, D. C.,, J. O. Stair, and, D. B. Ringelberg. 1996. Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. J. Ind. Microbiol. 17: 185196.
132. Widmer, F.,, A. Fliessbach,, E. Laczko,, J. Schulze-Aurich, and, J. Zeyer. 2001. Assessing soil biological characteristics: a comparison of bulk soil community DNA-, PLFA-, and Biolog (TM)-analyses. Soil Biol. Biochem. 33: 10291036.
133. Wilke, B. M.,, M. Mai,, A. Gattinger,, M. Schloter, and, P. Gong. 2005. Effects of fresh and aged copper contaminations on soil microorganisms. J. Plant Nutr. Soil Sci. 168: 668675.
134. Wilkinson, S. C.,, and J. M. Anderson. 2001. Spatial patterns of soil microbial communities in a Norway spruce ( Picea abies) plantation. Microb. Ecol. 42: 248255.
135. Xu, M.,, K. J. Voorhees, and, T. L. Hadfield. 2003. Repeatability and pattern recognition of bacterial fatty acid profiles generated by direct mass spectrometric analysis of in situ thermal hydrolysis/methylation of whole cells. Talanta 59: 577589.
136. Yang, X.,, S. Li,, G. Bengtsson, and, N. Torneman. 2005. Spatial variation of microbial properties in a creosote-contaminated soil. Ying Yong Sheng Tai Xue Bao 16: 939944. (In Chinese.)
137. Zak, D. R.,, W. E. Holmes,, D. C. White,, A. D. Peacock, and, D. Tilman. 2003. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84: 20422050.
138. Zak, D. R.,, D. B. Ringelberg,, K. S. Pregitzer,, D. L. Randlett,, D. C. White, and, P. S. Curtis. 1996. Soil microbial communities beneath Populus grandidentata crown under elevated atmospheric CO2. Ecol. Appl. 6: 257262.
139. Zelles, L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertil. Soils 29: 111129.
140. Zhang, C. L. 2002. Stable carbon isotopes of lipid bio-markers: analysis of metabolites and metabolic fates of environmental microorganisms. Curr. Opin. Biotechnol. 13: 2530.
141. Zhang, W. J.,, W. Y. Rui,, C. Tu,, H. G. Diab,, F. J. Louws,, J. P. Mueller,, N. Creamer,, M. Bell,, M. G. Wagger, and, S. Hu. 2005. Responses of soil microbial community structure and diversity to agricultural deintensification. Pedosphere 15: 440447.
142. Zhao, X. R.,, Q. Lin, and, P. C. Brookes. 2005. Does soil ergosterol concentration provide a reliable estimate of soil fungal biomass? Soil Biol. Biochem. 37: 311317.
143. Ziegler, S. E.,, P. M. White,, D. C. Wolf, and, G. J. Thoma. 2005. Tracking the fate and recycling of C-13-labeled glucose in soil. Soil. Sci. 170: 767778.
144. Zogg, G. P.,, D. R. Zak,, D. B. Ringelberg,, N. W. MacDonald,, K. S. Pregitzer, and, D. C. White. 1997. Compositional and functional shifts in microbial communities due to soil warming. Soil Sci. Soc. Am. J. 61: 475481.


Generic image for table

Common multivariate methods for fatty acid fingerprint analysis

Citation: Lucía Córdova-Kreylos A, Scow K. 2007. Lipid Fingerprinting of Soil Microbial Communities, p 781-792. In Hurst C, Crawford R, Garland J, Lipson D, Mills A, Stetzenbach L (ed), Manual of Environmental Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815882.ch64

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error