Chapter 7 : Immunoglobulin Genes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Immunoglobulin Genes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap07-2.gif


Resolution of immunoglobulin structure has revealed how Immunoglobulin molecules can have such great diversity in antigen-binding activities while maintaining conserved effector functions, such as complement activation. IgG is the predominant antibody produced during a secondary immune response. IgG molecules can penetrate extravascular spaces and cross the placental barrier to provide immunity to the fetus. IgA antibodies are the primary antibodies in saliva, tears, and colostrum and in the fluids of the gastrointestinal, respiratory, and urinary tracts. IgM is the predominant class found during a primary immune response. IgD molecules are thought to function as B-cell membrane receptors for antigens and may help in the recruitment of B cells for specific antigen-driven responses. Plasma IgE levels may increase (5 to 20 times the baseline) in parasitic infections and children with atopic diseases. Duplication of an immunoglobulin V gene(s) results in some haplotypes’ having identical immunoglobulin V genes belonging to distinct loci, each possibly differing from their respective alleles by one or more nucleotide base substitutions. Immunoglobulin class-switching recombination (CSR) occurs in or near the α switch region upstream of the μ gene and any one of the switch regions of the other heavy-chain isotype genes. Resolution of the junctional sequences in the rearranged immunoglobulin genes expressed by a tumor can provide a specific tumor marker. This marker can be used to examine for any tumor-derived immunoglobulin gene fragments amplified by PCR performed on genomic DNA of lymphoid tissue.

Citation: Kipps T. 2006. Immunoglobulin Genes, p 56-68. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Immunoglobulin heavy-chain gene complex. The heavy-chain exons encoding the constant regions are represented by black boxes, and the associated intronic switch (S) regions are indicated by lines. A ψ next to the heavy-chain isotype designation indicates that the gene is a pseudogene. J segments and D segments are indicated by lines. Each V gene locus is labeled on the right of each symbol. Identified polymorphic insertions and/or duplications are indicated with brackets. Black squares represent V gene loci that are known to be functional. White circles represent V pseudogenes. At the ends of the line connecting the symbols are arrows that indicate the direction to the centromere or the telomere. The white boxes denote loci that apparently are functional V genes but that rarely, if at all, are expressed into protein. The arrows indicate the direction of transcription of the gene segments.

Citation: Kipps T. 2006. Immunoglobulin Genes, p 56-68. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Immunoglobulin light-chain gene complexes. The left panel depicts the κ light-chain gene complex on chromosome (Chr) 2p11-12. The black rectangles in this figure represent the Kde or the Cκ constant-region exon as indicated to the right of each rectangle. The J segments are indicated by lines labeled “J.” The κ light-chain enhancer (labeled E) is located between the J segments and the C exon. The V genes that can encode functional κ light-chain variable regions are represented by black boxes, and the V pseudogenes are indicated by white boxes. Immediately adjacent to and to the right of each box is a Roman numeral that denotes the subgroup to which the respective V gene belongs, followed by its designated name. The arrows indicate the direction of transcription of the gene segments. A is used to label the proximal arm of the V gene complex, and is used to label the distal arm. The right panel depicts the λ light-chain gene complex on chromosome 22q11.2. The black boxes represent functional J-C exons, whereas white boxes represent J-C pseudogenes. Each of the J-C exon pairs is indicated to the right of each symbol. Each V gene is represented by a black box. To the right of each box is a tentative designation indicating the subgroup (first number) followed by a number indicating the rank order of the particular V in the λ light-chain gene complex. The V genes are organized into three clusters, designated A, B, and C, that are indicated to the left of each cluster. The gene encoding VpreB is located near the C cluster. The direction to the telomere or the centromere is as indicated at the top. The arrows indicate the direction of transcription of the gene segments.

Citation: Kipps T. 2006. Immunoglobulin Genes, p 56-68. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Immunoglobulin gene rearrangement. Diagonal double lines indicate that there is a large distance between flanking genes depicted as rectangular boxes (not drawn to scale). Depicted on the left side of each immunoglobulin gene complex are exemplary immunoglobulin V genes (V′, V″, and V′″), immunoglobulin κ light-chain genes (V′ V″, and V′″), or immunoglobulin λ light-chain genes (V′, V″, and V′″). D designates the diversity gene segments of the antibody heavy-chain locus. J, J, and J indicate the joining gene segments of the antibody heavy chain, κ light chain, and λ light chain, respectively. C and C are the constant-region exons of the μ and δ heavy chains, respectively. Below each is a possible immunoglobulin gene rearrangement comprising a V-D-J segment for the antibody heavy-chain gene or a V-J or a V-J segment for the κ or λ light-chain gene, respectively. Below the representative λ constant-region loci in row C are listed the names of the lambda nonallelic genetic markers, Mcg, Ke Oz, Ke Oz, and Ke Oz, on C1, C2, C3, and C7, respectively. As indicated, C4, C5, and C6 are pseudogenes (ψ gene) that do not encode protein.

Citation: Kipps T. 2006. Immunoglobulin Genes, p 56-68. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Schematic representation of the PCR-ELISA technique. Following anchored PCR, a nested PCR attaches a biotin molecule (white box) to the antisense strand of the PCR product. This allows the strand to bind to streptavidin (StrepAv)-coated wells of an ELISA plate. The sense strand is removed by alkaline wash, allowing for hybridization of the tethered antisense strand with digoxigenin-labeled immunoglobulin V oligonucleotide probes (represented by the ball and stick figures). Hybridized and bound oligonucleotides then are detected using peroxidase-conjugated antidigoxigenin antibodies (anti-digoxigenin peroxidase-conj. Ab). The peroxidase-conjugated antibodies are developed with chromogen, and the plates are read using an ELISA plate reader.

Citation: Kipps T. 2006. Immunoglobulin Genes, p 56-68. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abe, M.,, S. Ozaki,, D. Wolfenbarger,, M. deBram-Hart,, D. T. Weiss, and , A. Solomon. 1994. Variable-region subgroup distribution among lambda-type immunoglobulins in normal human serum. J. Clin. Lab. Anal. 8: 49.
2. Bassing, C. H.,, H. Suh,, D. O. Ferguson,, K. F. Chua,, J. Manis,, M. Eckersdorff,, M. Gleason,, R. Bronson,, C. Lee, and , F. W. Alt. 2003. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114: 359370.
3. Calame, K. L.,, K. I. Lin, and , C. Tunyaplin. 2003. Regulatory mechanisms that determine the development and function of plasma cells. Annu. Rev. Immunol. 21: 205230.
4. Celeste, A.,, S. Difilippantonio,, M. J. Difilippantonio,, O. Fernandez-Capetillo,, D. R. Pilch,, O. A. Sedelnikova,, M. Eckhaus,, T. Ried,, W. M. Bonner, and , A. Nussenzweig. 2003. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114: 371383.
5. Chen, X.,, K. Kinoshita, and , T. Honjo. 2001. Variable deletion and duplication at recombination junction ends: implication for staggered double-strand cleavage in class-switch recombination. Proc. Natl. Acad. Sci. USA 98: 1386013865.
6. Chuchana, P.,, A. Blancher,, F. Brockly,, D. Alexandre,, G. Lefranc, and , M. P. Lefranc. 1990. Definition of the human immunoglobulin variable lambda (IGLV) gene subgroups. Eur. J. Immunol. 20: 13171325.
7. Cook, G. P., and , I. M. Tomlinson. 1995. The human immunoglobulin VH repertoire. Immunol. Today 16: 237242.
8. Corcos, D.,, O. Dunda,, C. Butor,, J. Y. Cesbron,, P. Lorès,, D. Bucchini, and , J. Jami. 1995. Pre-B-cell development in the absence of lambda 5 in transgenic mice expressing a heavy-chain disease protein. Curr. Biol. 5: 11401148.
9. Corthesy, B., and , J. P. Kraehenbuhl. 1999. Antibody-mediated protection of mucosal surfaces. Curr. Top. Microbiol. Immunol. 236: 93111.
10. Cox, J. P.,, I. M. Tomlinson, and , G. Winter. 1994. A directory of human germ-line V kappa segments reveals a strong bias in their usage. Eur. J. Immunol. 24: 827836.
11. Dariavach, P.,, G. Lefranc, and , M. P. Lefranc. 1987. Human immunoglobulin C lambda 6 gene encodes the Kern+Oz-lambda chain and C lambda 4 and C lambda 5 are pseudogenes. Proc. Natl. Acad. Sci. USA 84: 90749078.
12. Dorner, T.,, S. J. Foster,, H. P. Brezinschek, and , P. E. Lipsky. 1998. Analysis of the targeting of the hyper-mutational machinery and the impact of subsequent selection on the distribution of nucleotide changes in human VHDJH rearrangements. Immunol. Rev. 162: 161171.
13. Dudley, D. D.,, J. Chaudhuri,, C. H. Bassing, and , F. W. Alt. 2005. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv. Immunol. 86: 43112.
14. Durandy, A.,, P. Revy, and , A. Fischer. 2004. Human models of inherited immunoglobulin class switch recombination and somatic hypermutation defects (hyper-IgM syndromes). Adv. Immunol. 82: 295330.
15. Edelman, G. M. 1991. Antibody structure and molecular immunology. Scand. J. Immunol. 34: 122.
16. Feeney, A. J.,, M. J. Atkinson,, M. J. Cowan,, G. Escuro, and , G. Lugo. 1996. A defective Vκ A2 allele in Navajos which may play a role in increased susceptibility to Haemophilus influenzae type b disease. J. Clin. Investig. 97: 22772282.
17. Ferrari, S., and , A. Plebani. 2002. Cross-talk between CD40 and CD40L: lessons from primary immune deficiencies. Curr. Opin. Allergy Clin. Immunol. 2: 489494.
18. Frippiat, J. P.,, S. C. Williams,, I. M. Tomlinson,, G. P. Cook,, D. Cherif,, D. Le Paslier,, J. E. Collins,, I. Dunham,, G. Winter, and , M. P. Lefranc. 1995. Organization of the human immunoglobulin lambda light-chain locus on chromosome 22q11.2. Hum. Mol. Genet. 4: 983991.
19. Gellert, M. 1997. Recent advances in understanding V(D)J recombination. Adv. Immunol. 64: 3964.
20. Ghanem, N.,, P. Dariavach,, M. Bensmana,, J. Chibani,, G. Lefranc, and , M. P. Lefranc. 1988. Polymorphism of immunoglobulin lambda constant region genes in populations from France, Lebanon and Tunisia. Exp. Clin. Immunogenet. 5: 186195.
21. Gould, H. J.,, B. J. Sutton,, A. J. Beavil,, R. L. Beavil,, N. McCloskey,, H. A. Coker,, D. Fear, and , L. Smurthwaite. 2003. The biology of IGE and the basis of allergic disease. Annu. Rev. Immunol. 21: 579628.
22. Graninger, W. B.,, P. L. Goldman,, C. C. Morton,, S. J. O’Brien, and , S. J. Korsmeyer. 1988. The kappa-deleting element. Germline and rearranged, duplicated and dispersed forms. J. Exp. Med. 167: 488501.
23. Grawunder, U.,, R. B. West, and , M. R. Lieber. 1998. Antigen receptor gene rearrangement. Curr. Opin. Immunol. 10: 172180.
24. Gu, Y.,, J. Sekiguchi,, Y. Gao,, P. Dikkes,, K. Frank,, D. Ferguson,, P. Hasty,, J. Chun, and , F. W. Alt. 2000. Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc. Natl. Acad. Sci. USA 97: 26682673.
25. Harris, L. J.,, S. B. Larson,, K. W. Hasel,, J. Day,, A. Greenwood, and , A. McPherson. 1992. The three-dimensional structure of an intact monoclonal antibody for canine lymphoma. Nature 360: 369372.
26. Hilschmann, N. 1987. The immunoglobulin receptor. Behring Inst. Mitt. 1987: 9899.
27. Honjo, T.,, K. Kinoshita, and , M. Muramatsu. 2002. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20: 165196.
28. Huber, C.,, E. Huber,, A. Lautner-Rieske,, K. F. Schable, and , H. G. Zachau. 1993. The human immunoglobulin kappa locus. Characterization of the partially duplicated L regions. Eur. J. Immunol. 23: 28602867.
29. Huye, L. E.,, M. M. Purugganan,, M. M. Jiang, and , D. B. Roth. 2002. Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase. Mol. Cell. Biol. 22: 34603473.
30. Imai, K.,, G. Slupphaug,, W. I. Lee,, P. Revy,, S. Nonoyama,, N. Catalan,, L. Yel,, M. Forveille,, B. Kavli,, H. E. Krokan,, H. D. Ochs,, A. Fischer, and , A. Durandy. 2003. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat. Immunol. 4: 10231028.
31. Jefferis, R.,, J. Lund, and , M. Goodall. 1995. Recognition sites on human IgG for Fc gamma receptors: the role of glycosylation. Immunol. Lett. 44: 111117.
32. Joiner, K. A.,, L. F. Fries, and , M. M. Frank. 1987. Studies of antibody and complement function in host defense against bacterial infection. Immunol. Lett. 14: 197202.
33. Kavli, B.,, S. Andersen,, M. Otterlei,, N. B. Liabakk,, K. Imai,, A. Fischer,, A. Durandy,, H. E. Krokan, and , G. Slupphaug. 2005. B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. J. Exp. Med. 201: 20112021.
34. Kawasaki, K.,, S. Minoshima,, E. Nakato,, K. Shibuya,, A. Shintani,, S. Asakawa,, T. Sasaki,, H. G. Klobeck,, G. Combriato,, H. G. Zachau, and , N. Shimizu. 2001. Evolutionary dynamics of the human immunoglobulin kappa locus and the germline repertoire of the Vkappa genes. Eur. J. Immunol. 31: 10171028.
35. Kawasaki, K.,, S. Minoshima,, E. Nakato,, K. Shibuya,, A. Shintani,, J. L. Schmeits,, J. Wang, and , N. Shimizu. 1997. One-megabase sequence analysis of the human immunoglobulin lambda gene locus. Genome Res. 7: 250261.
36. Khanna, K. K., and , S. P. Jackson. 2001. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet. 27: 247254.
37. Kipps, T. J. 1997. Human B cell biology. Int. Rev. Immunol. 15: 243264.
38. Kirkham, P. M.,, F. Mortari,, J. A. Newton, and , H. W. Schroeder, Jr. 1992. Immunoglobulin VH clan and family identity predicts variable domain structure and may influence antigen binding. EMBO J. 11: 603609.
39. Kirsch, I. R.,, C. C. Morton,, K. Nakahara, and , P. Leder. 1982. Human immunoglobulin heavy chain genes map to a region of translocations in malignant B lymphocytes. Science 216: 301303.
40. Kitamura, D.,, A. Kudo,, S. Schaal,, W. Muller,, F. Melchers, and , K. Rajewsky. 1992. A critical role of lambda 5 protein in B cell development. Cell 69: 823831.
41. Klein, R., and , H. G. Zachau. 1995. Expression and hyper-mutation of human immunoglobulin kappa genes. Ann. N. Y. Acad. Sci. 764: 7483.
42. Komori, T.,, A. Okada,, V. Stewart, and , F. W. Alt. 1993. Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 261: 11711175.
43. Lamm, M. E.,, J. G. Nedrud,, C. S. Kaetzel, and , M. B. Mazanec. 1995. IgA and mucosal defense. APMIS 103: 241246.
44. Lautner-Rieske, A.,, C. Huber,, A. Meindl,, W. Pargent,, K. F. Schable,, R. Thiebe,, I. Zocher, and , H. G. Zachau. 1992. The human immunoglobulin kappa locus. Characterization of the duplicated A regions. Eur. J. Immunol. 22: 10231029.
45. Lee, Y. K.,, J. W. Brewer,, R. Hellman, and , L. M. Hendershot. 1999. BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly. Mol. Biol. Cell 10: 22092219.
46. Lewis, S. M. 1994. The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv. Immunol. 56: 27150.
47. Lyczak, J. B.,, K. Zhang,, A. Saxon, and , S. L. Morrison. 1996. Expression of novel secreted isoforms of human immunoglobulin E proteins. J. Biol. Chem. 271: 34283436.
48. Ma, Y.,, U. Pannicke,, K. Schwarz, and , M. R. Lieber. 2002. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in non-homologous end joining and V(D)J recombination. Cell 108: 781794.
49. Ma, Y.,, K. Schwarz, and , M. R. Lieber. 2005. The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair (Amsterdam) 4: 845851.
50. Maclennan, I. C. 2005. Germinal centers still hold secrets. Immunity 22: 656657.
51. Matsuda, F.,, K. Ishii,, P. Bourvagnet,, K. Kuma,, H. Hayashida,, T. Miyata, and , T. Honjo. 1998. The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J. Exp. Med. 188: 21512162.
52. Meek, K.,, T. Eversole, and , J. D. Capra. 1991. Conservation of the most JH proximal Ig VH gene segment (VHVI) throughout primate evolution. J. Immunol. 146: 24342438.
53. Melchers, F.,, H. Karasuyama,, D. Haasner,, S. Bauer,, A. Kudo,, N. Sakaguchi,, B. Jameson, and , A. Rolink. 1993. The surrogate light chain in B-cell development. Immunol. Today 14: 6068.
54. Mestecky, J.,, C. Lue, and , M. W. Russell. 1991. Selective transport of IgA. Cellular and molecular aspects. Gastroenterol. Clin. North Am. 20: 441471.
55. Michael, N.,, T. E. Martin,, D. Nicolae,, N. Kim,, K. Padjen,, P. Zhan,, H. Nguyen,, C. Pinkert, and , U. Storb. 2002. Effects of sequence and structure on the hypermutability of immunoglobulin genes. Immunity 16: 123134.
56. Milner, E. C.,, W. O. Hufnagle,, A. M. Glas,, I. Suzuki, and , C. Alexander. 1995. Polymorphism and utilization of human VH genes. Ann. N.Y. Acad. Sci. 764: 5061.
57. Minegishi, Y.,, E. Coustan-Smith,, Y. H. Wang,, M. D. Cooper,, D. Campana, and , M. E. Conley. 1998. Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia. J. Exp. Med. 187: 7177.
58. Muramatsu, M.,, K. Kinoshita,, S. Fagarasan,, S. Yamada,, Y. Shinkai, and , T. Honjo. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553563.
59. Niles, M. J.,, L. Matsuuchi, and , M. E. Koshland. 1995. Polymer IgM assembly and secretion in lymphoid and non-lymphoid cell lines: evidence that J chain is required for pentamer IgM synthesis. Proc. Natl. Acad. Sci. USA 92: 28842888.
60. Oettinger, M. A.,, D. G. Schatz,, C. Gorka, and , D. Baltimore. 1990. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248: 15171523.
61. Oettinger, M. A.,, B. Stanger,, D. G. Schatz,, T. Glaser,, K. Call,, D. Housman, and , D. Baltimore. 1992. The recombination activating genes, RAG 1 and RAG 2, are on chromosome 11p in humans and chromosome 2p in mice. Immunogenetics 35: 97101.
62. Ollila, J., and , M. Vihinen. 2005. B cells. Int. J. Biochem. Cell. Biol. 37: 518523.
63. Ouyang, H.,, A. Nussenzweig,, A. Kurimasa,, V. C. Soares,, X. Li,, C. Cordon-Cardo,, W. Li,, N. Cheong,, M. Nussenzweig,, G. Iliakis,, D. J. Chen, and , G. C. Li. 1997. Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination in vivo. J. Exp. Med. 186: 921929.
64. Pallarès, N.,, J. P. Frippiat,, V. Giudicelli, and , M. P. Lefranc. 1998. The human immunoglobulin lambda variable (IGLV) genes and joining (IGLJ) segments. Exp. Clin. Immunogenet. 15: 818.
65. Pascual, V., and , J. D. Capra. 1991. Human immunoglobulin heavy-chain variable region genes: organization, polymorphism, and expression. Adv. Immunol. 49: 174.
66. Rassenti, L. Z., and , T. J. Kipps. 1997. Lack of allelic exclusion in B cell chronic lymphocytic leukemia. J. Exp. Med. 185: 14351445.
67. Rassenti, L. Z.,, H. Kohsaka, and , T. J. Kipps. 1995. Analysis of immunoglobulin V H gene repertoire by an anchored PCR-ELISA. Ann. N. Y. Acad. Sci. 764: 463473.
68. Ravetch, J. V., and , S. Bolland. 2001. IgG Fc receptors. Annu. Rev. Immunol. 19: 275290.
69. Revy, P.,, T. Muto,, Y. Levy,, F. Geissmann,, A. Plebani,, O. Sanal,, N. Catalan,, M. Forveille,, R. Dufourcq-Labelouse,, A. Gennery,, I. Tezcan,, F. Ersoy,, H. Kayserili,, A. G. Ugazio,, N. Brousse,, M. Muramatsu,, L. D. Notarangelo,, K. Kinoshita,, T. Honjo,, A. Fischer, and , A. Durandy. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102: 565575.
70. Roes, J., and , K. Rajewsky. 1993. Immunoglobulin D (IgD)-deficient mice reveal an auxiliary receptor function for IgD in antigen-mediated recruitment of B cells. J. Exp. Med. 177: 4555.
71. Rogozin, I. B.,, N. E. Sredneva, and , N. A. Kolchanov. 1996. Somatic hypermutagenesis in immunoglobulin genes. III. Somatic mutations in the chicken light chain locus. Biochim. Biophys. Acta 1306: 171178.
72. Ruiz, M.,, N. Pallarès,, V. Contet,, V. Barbi, and , M. Lefranc. 1999. The human immunoglobulin heavy diversity (IGHD) and joining (IGHJ) segments. Exp. Clin. Immunogenet. 16: 173184.
73. Sanz, I.,, P. Kelly,, C. Williams,, S. Scholl,, P. Tucker, and , J. D. Capra. 1989. The smaller human VH gene families display remarkably little polymorphism. EMBO J. 8: 37413748.
74. Sasso, E. H.,, T. Johnson, and , T. J. Kipps. 1996. Expression of the Ig VH gene 51p1 is proportional to its germline gene copy number. J. Clin. Investig. 97: 20742080.
75. Shinkai, Y.,, G. Rathbun,, K. P. Lam,, E. M. Oltz,, V. Stewart,, M. Mendelsohn,, J. Charron,, M. Datta,, F. Young, and , A. M. Stall. 1992. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68: 855867.
76. Stavnezer, J., and , C. T. Amemiya. 2004. Evolution of isotype switching. Semin. Immunol. 16: 257275.
77. Steen, S. B.,, L. Gomelsky,, S. L. Speidel, and , D. B. Roth. 1997. Initiation of V(D)J recombination in vivo: role of recombination signal sequences in formation of single and paired double-strand breaks. EMBO J. 16: 26562664.
78. Storb, U.,, H. M. Shen,, N. Michael, and , N. Kim. 2001. Somatic hypermutation of immunoglobulin and non-immunoglobulin genes. Philos. Trans. R. Soc. Lond. B 356: 1319.
79. Taccioli, G. E.,, A. G. Amatucci,, H. J. Beamish,, D. Gell,, X. H. Xiang,, M. I. Torres Arzayus,, A. Priestley,, S. P. Jackson,, A. Marshak Rothstein,, P. A. Jeggo, and , V. L. Herrera. 1998. Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9: 355366.
80. ten Boekel, E.,, T. Yamagami,, J. Andersson,, A. G. Rolink, and , F. Melchers. 1999. The formation and selection of cells expressing preB cell receptors and B cell receptors. Curr. Top. Microbiol. Immunol. 246: 310.
81. Thomas, J. O., and , A. A. Travers. 2001. HMG1 and 2, and related “architectural” DNA-binding proteins. Trends Biochem. Sci. 26: 167174.
82. Tomlinson, I. M.,, J. P. Cox,, E. Gherardi,, A. M. Lesk, and , C. Chothia. 1995. The structural repertoire of the human V kappa domain. EMBO J. 14: 46284638.
83. Tomlinson, I. M.,, G. Walter,, J. D. Marks,, M. B. Llewelyn, and , G. Winter. 1992. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J. Mol. Biol. 227: 776798.
84. Tonegawa, S. 1993. The Nobel Lectures in Immunology. The Nobel Prize for Physiology or Medicine, 1987. Somatic generation of immune diversity. Scand. J. Immunol. 38: 303319.
85. Tsai, C. L.,, A. H. Drejer, and , D. G. Schatz. 2002. Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination. Genes Dev. 16: 19341949.
86. Tsuganezawa, K.,, N. Kiyokawa,, Y. Matsuo,, F. Kitamura,, N. Toyama-Sorimachi,, K. Kuida,, J. Fujimoto, and , H. Karasuyama. 1998. Flow cytometric diagnosis of the cell lineage and developmental stage of acute lymphoblastic leukemia by novel monoclonal antibodies specific to human pre-B-cell receptor. Blood 92: 43174324.
87. Vasicek, T. J., and , P. Leder. 1990. Structure and expression of the human immunoglobulin lambda genes. J. Exp. Med. 172: 609620.
88. Villa, A.,, S. Santagata,, F. Bozzi,, L. Imberti, and , L. D. Notarangelo. 1999. Omenn syndrome: a disorder of Rag1 and Rag2 genes. J. Clin. Immunol. 19: 8797.
89. Virella, G., and , A. C. Wang. 1993. Immunoglobulin structure. Immunol. Ser. 58: 7590.
90. Wang, C. L., and , M. Wabl. 2004. DNA acrobats of the Ig class switch. J. Immunol. 172: 58155821.
91. Williams, S. C.,, J. P. Frippiat,, I. M. Tomlinson,, O. Ignatovich,, M. P. Lefranc, and , G. Winter. 1996. Sequence and evolution of the human germline V lambda repertoire. J. Mol. Biol. 264: 220232.
92. Zachau, H. G. 1993. The immunoglobulin kappa locus-or-what has been learned from looking closely at one-tenth of a percent of the human genome. Gene 135: 167173.


Generic image for table

Physical properties of human immunoglobulins

Citation: Kipps T. 2006. Immunoglobulin Genes, p 56-68. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch7
Generic image for table

Oligonucleotide primers corresponding to the sense strand of the leader sequences of each of the major V gene subgroups

Citation: Kipps T. 2006. Immunoglobulin Genes, p 56-68. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error