Chapter 100 : Investigation of Signal Transduction Defects

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Investigation of Signal Transduction Defects, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap100-1.gif /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap100-2.gif


This chapter discusses antigen-receptor signal transduction pathways for both T cells and B cells and describes methods to evaluate these pathways in children with inherited immune deficiencies. ZAP-70 deficiency was the first described T-cell receptor (TCR)-associated protein tyrosine kinases (PTKs) defect in humans. Moreover, intracellular cytokine expression using fluorescence-activated cell sorter (FACS) analysis may be useful in characterizing the scope of T-cell defects. Fluorimetric methods require more cells but do not require concomitant cell staining with potentially stimulatory MAbs. This assay is best done using fresh peripheral blood mononuclear cells (PBMC), but bone marrow-derived lymphocytes, B-cell lines (BCL), or T-cell lines (TCL) rested overnight in medium without IL-2 or mitogen may also be used. Distal TCR signal transduction events, as well as the interleukin 2 (IL-2) pathway, may be analyzed by measurement of IL-2 production in response to TCR-mediated stimuli. In vitro T-cell proliferative studies are useful in the screening of immunodeficient patients for proximal signal transduction defects. TCL and BCL may be the only source of patient cells; therefore, analysis of signal transduction defects using transformed lines may be complicated by the effects of HTLV-1 and EBV, and possibly HVS, on lymphocyte signaling pathways. The described methods in this chapter are valuable both to screen and to diagnose signaling defects in patients with inherited T- or B-cell immune deficiencies. Signaling pathways resulting in abnormal T- or B-cell activation and development of immune deficiency are the focus of much investigation at present.

Citation: Elder M. 2006. Investigation of Signal Transduction Defects, p 901-905. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch100
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Arnaiz-Villena, A.,, M. Timon,, A. Corell,, P. Perez-Aciego,, J. M. Martin-Villa, and , J. R. Regueiro. 1992. Primary immunodeficiency caused by mutations in the gene encoding the CD3-γ subunit of the T-lymphocyte receptor. N. Engl. J. Med. 327: 529533.
2. Arpaia, E.,, M. Shahar,, H. Dadi,, A. Cohen, and , C. M. Roifman. 1994. Defective T cell receptor signaling and CD8 + thymic selection in humans lacking ZAP-70 kinase. Cell 76: 947958.
3. Buckley, R. H. 2004. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu. Rev. Immunol. 22: 625655.
4. Cabanillas, J. A.,, R. Cambronero,, A. Pacheco-Castro,, M. C. Garcia-Rodriguez,, J. M. Martin-Fernandez,, G. Fontan, and , J. R. Regueiro. 2002. Characterization of Herpesvirus saimiri-transformed T lymphocytes from common variable immunodeficiency patients. Clin. Exp. Immunol. 127: 366373.
5. Chan, A. C.,, T. A. Kadlecek,, M. E. Elder,, A. H. Filipovich,, W.-L. Kuo,, M. Iwashima,, T. G. Parslow, and , A. Weiss. 1994. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 264: 15991601.
6. Dadi, H. K.,, A. J. Simon, and , C. M. Roifman. 2003. Effect of CD38 deficiency on maturation of a/(3 and 7/8 T cell lineages in severe combined immunodeficiency. N. Engl. J. Med. 349: 18211828.
7. de Saint Basile, G.,, F. Geissmann,, E. Flori,, B. Lambert,, C. Soudais,, M. Cavazzana-Colvo,, A. Durandy,, N. Jabado,, A. Fischer, and , F. Le Diest. 2004. Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3. J. Clin. Investig. 114: 15121517.
8. Elder, M. E. 2000. T-cell immunodeficiencies. Pediatr. Clin. N. Am. 47: 12531274.
9. Elder, M. E.,, D. Lin,, J. Clever,, A. C. Chan,, T. J. Hope,, A. Weiss, and , T. G. Parslow. 1994. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 264: 15961599.
10. Elder, M. E.,, S. Skoda-Smith,, T. A. Kadlecek,, F. L. Wang,, J. Wu, and , A. Weiss. 2001. Distinct T cell developmental consequences in humans and mice expressing identical mutations in the DLAARN motif of ZAP-70. J. Immunol. 166: 656661.
11. Hermiston, M. L.,, Z. Xu, and , A. Weiss. 2003. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21: 107137.
12. Kelly, M. E., and , A. C. Chan. 2000. Regulation of B cell function by linker proteins. Curr. Opin. Immunol. 12: 267275.
13. Kung, C.,, J. T. Pingel,, M. Heikinheimo,, T. Klemola,, K. Varkila,, L. I. Yoo,, K. Vuopala,, M. Poyhonen,, M. Uhari,, M. Rogers,, S. H. Speck,, T. Chatila, and , M. L. Thomas. 2000. Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency. Nat. Med. 6: 343345.
14. Levitsky, V., and , M. G. Masucci. 2002. Manipulation of immune responses by Epstein-Barr virus. Virus Res. 88: 7186.
15. Macchi, P.,, A. Villa,, S. Gillani,, M. G. Sacco,, A. Frattini,, F. Porta,, A. G. Ugazio,, J. A. Johnston,, F. Candotti,, J. J. O’Shea,, P. Vezzoni, and , L. D. Notarangelo. 1995. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377: 6568.
16. Matsuda, S.,, T. Suzuki-Fujimoto,, A. Minowa,, H. Ueno,, K. Katamura, and , S. Koyasu. 1999. Temperature-sensitive ZAP70 mutants degrading through a proteasome-independent pathway. J. Biol. Chem. 274: 3451534518.
17. Minegishi, Y,, J. Rohrer,, E. Coustan-Smith,, H. M. Lederman,, R. Pappu,, D. Campana,, A. C. Chan, and , M. E. Conley. 1999. An essential role for BLNK in human B cell development. Science 286: 19541957.
18. Negishi, I.,, N. Motoyama,, K.-I. Nakayama,, K. Nakayama,, S. Senju,, S. Hatakeyama,, Q. Zhang,, A. C. Chan, and , D. Y. Loh. 1995. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376: 435438.
19. Noguchi, M.,, H. Yi,, H. M. Rosenblatt,, A. H. Filipovich,, S. Adelstein,, W. S. Modi,, O. W. McBride, and , W J. Leonard. 1993. Interleukin-2 receptor γ chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73: 147157.
20. Noraz, N.,, K. Schwarz,, M. Steinberg,, V. Dardalhon,, C. Rebouissou,, R. Hipskind,, W Friedrich,, H. Yssel,, K. Bacon, and , N. Taylor. 2000. Alternative antigen receptor (TCR) signaling in T cells derived from ZAP-70-deficient patients expressing high levels of Syk. J. Biol. Chem. 275: 1583215838.
21. O’Shea, J. J.,, M. Husa,, D. Li,, S. R. Hofmann,, W. Watford,, J. L. Roberts,, R. H. Buckley,, P. Changelian, and , F. Candotti. 2004. Jak3 and the pathogenesis of severe combined immunodeficiency. Mol. Immunol. 41: 727737.
22. Palacios, E. H., and , A. Weiss. 2004. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23: 79908000.
23. Pappu, R.,, A. M. Cheng,, B. Li,, Q. Gong,, C. Chiu,, N. Griffin,, M. White,, B. P. Sleckman, and , A. C. Chan. 1999. Requirement for B cell linker protein (BLNK) in B cell development. Science 286: 19491954.
24. Qian, D., and , A. Weiss. 1997. T cell antigen receptor signal transduction. Curr. Opin. Cell Biol. 9: 205212.
25. Rudd, C. E. 1999. Adaptors and molecular scaffolds in immune cell signaling. Cell 96: 58.
26. Schmalstieg, F. C., and , A. S. Goldman. 2002. Immune consequences of mutations in the human common 7-chain gene. Mol. Genet. Metab. 76: 163171.
27. Sieomi, L.,, S. Kliche,, J. Lindquist, and , B. Schraven. 2004. Adaptors and linkers in T and B cells. Curr. Opin. Immunol. 16: 304313.
28. Soudais, C.,, J. P. Villartay,, F. Le Diest,, A. Fischer, and , B. Lisowska-Grospierre. 1993. Independent mutations of the human CD3-ε gene resulting in a T cell receptor/CD3 complex immunodeficiency. Nat. Genet. 3: 7781.
29. Tan, J. E.,, S. C. Wong,, S. K. Gan,, S. Xu, and , K. P. Lam. 2001. The adaptor protein BLNK is required for B-cell antigen receptor-induced activation of NF-κB and cell cycle entry and survival of B lymphocytes. J. Biol. Chem. 276: 2005520063.
30. Tchilian, E. Z.,, D. L. Wallace,, R. S. Wells,, D. R. Flower,, G. Morgan, and , P. C. Beverley. 2001. A deletion in the gene encoding the CD45 antigen in a patient with SCID. J. Immunol. 166: 13081313.
31. Toyabe, S.-I.,, A. Watanabe,, W Harada,, T. Karasawa, and , M. Uchiyama. 2001. Specific immunoglobulin E responses in ZAP-70-deficient patients are mediated by Syk-dependent T-cell receptor signaling. Immunology 103: 164171.
32. Tsukada, S.,, D. C. Saffran,, D. J. Rawlings,, O. Parolini,, R. C. Allen,, I. Klisak,, R. S. Sparkes,, H. Kubagawa,, T. Mohandas,, S. Quan,, J. W. Belmont,, M. D. Cooper,, M. E. Conley, and , O. N. Witte. 1993. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72: 279290.
33. Weiss, A., and , A. L. DeFranco. 1999. Signal transduction by T and B lymphocyte antigen receptors, p. 6681. In H. D. Ochs,, C. I. E. Smith, and , J. M. Puck (ed.), Primary Immunodeficiency Diseases: a Molecular and Genetic Approach. Oxford University Press, New York, N.Y.
34. Zhang, W.,, J. Sloan-Lancaster,, J. Kitchen,, R. P. Trible, and , L. E. Samelson. 1998. LAT the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92: 8392.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error