Chapter 23 : Multimeric Major Histocompatibility Complex Reagents for the Detection and Quantitation of Specific T-Cell Populations

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Multimeric Major Histocompatibility Complex Reagents for the Detection and Quantitation of Specific T-Cell Populations, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap23-2.gif


T cells play essential effector and regulatory roles in adaptive immune responses. For accurate measurements of T-cell immunity as it exists in vivo, the act of in vitro expansion creates at least two significant problems. First, the efficiency of the expansion is highly variable and therefore the results are semiquantitative at best. Second, the stimuli required for in vitro expansion of specific T cells unavoidably alter their phenotype, inducing changes in the patterns of cell surface molecules involved in crucial functions such as cell adhesion and trafficking, as well as potentially altering effector functions such as cytokine secretion profiles. The major histocompatibility complex (MHC) tetramer version was the first to be described and has the largest publication record behind it. Identification of antigen-specific T cells by antigen-binding methods requires no assumptions with respect to the potential functions of the target cells. By far the most popular fluorophore labels for MHC tetramers are the algae-derived phycobiliproteins R-phycoerythrin and allophycocyanin. MHC tetramer stains are nearly always combined with an anti-CD3 antibody as well as either a CD8 antibody (for class I tetramers) or a CD4 antibody (for class II tetramers). Human leukocyte antigens (HLA) tetramer staining for flow cytometry can be performed using relevant single-cell suspensions from any source. A flow cytometer with a minimum of three fluorescent channels is required for collection of data from HLA tetramerstained cells. In addition to the flow cytometer, a variety of standard laboratory equipment-tabletop centrifuges, pipettes, vortex mixers, microscopes and hemacytometers is required.

Citation: Altman J. 2006. Multimeric Major Histocompatibility Complex Reagents for the Detection and Quantitation of Specific T-Cell Populations, p 215-221. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch23
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Allan, D. S.,, E. J. Lepin,, V. M. Braud,, C. A. O’Callaghan, and , A. J. McMichael. 2002. Tetrameric complexes of HLA-E, HLA-F, and HLA-G. J. Immunol. Methods 268: 4350.
2. Altman, D., and , M. Davis. 2003. MHC-peptide tetramers to visualize antigen-specific T cells, p. In E. Bierer et al. (ed.), Current Protocols in Immunology. John Wiley & Sons, Inc., New York, N.Y.
3. Altman, J. D.,, P. A. Moss,, P. J. Goulder,, D. H. Barouch,, M. G. McHeyzer-Williams,, J. I. Bell,, A. J. McMichael, and , M. M. Davis. 1996. Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 9496.
4. Appay, V.,, D. F. Nixon,, S. M. Donahoe,, G. M. Gillespie,, T. Dong,, A. King,, G. S. Ogg,, H. M. Spiegel,, C. Conlon,, C. A. Spina,, D. V. Havlir,, D. D. Richman,, A. Waters,, P. Easterbrook,, A. J. McMichael, and , S. L. Rowland-Jones. 2000. HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J. Exp. Med. 192: 6375.
5. Appay, V., and , S. L. Rowland-Jones. 2002. The assessment of antigen-specific CD8+ T cells through the combination of MHC class I tetramer and intracellular staining. J. Immunol. Methods 268: 919.
6. Ballou, W. R.,, M. Arevalo-Herrera,, D. Carucci,, T. L. Richie,, G. Corradin,, C. Diggs,, P. Druilhe,, B. K. Giersing,, A. Saul,, D. G. Heppner,, K. E. Kester,, D. E. Lanar,, J. Lyon,, A. V. Hill,, W. Pan, and , J. D. Cohen. 2004. Update on the clinical development of candidate malaria vaccines. Am. J. Trop. Med. Hyg. 71: 239247.
7. Betts, M. R.,, J. M. Brenchley,, D. A. Price,, S. C. De Rosa,, D. C. Douek,, M. Roederer, and , R. A. Koup. 2003. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 281: 6578.
8. Bodinier, M.,, M. A. Peyrat,, C. Tournay,, F. Davodeau,, F. Romagne,, M. Bonneville, and , F. Lang. 2000. Efficient detection and immunomagnetic sorting of specific T cells using multimers of MHC class I and peptide with reduced CD8 binding. Nat. Med. 6: 707710.
9. Cameron, T. O.,, P. J. Norris,, A. Patel,, C. Moulon,, E. S. Rosenberg,, E. D. Mellins,, L. R. Wedderburn, and , L. J. Stern. 2002. Labeling antigen-specific CD4(+) T cells with class II MHC oligomers. J. Immunol. Methods 268: 5169.
10. Choi, E. M.-L.,, J.-L. Chen,, L. Wooldridge,, M. Salio,, A. Lissina,, N. Lissin,, I. F. Hermans,, J. D. Silk,, F. Mirza,, M. J. Palmowski,, P. R. Dunbar,, B. K. Jakobsen,, A. K. Sewell, and , V. Cerundolo. 2003. High avidity antigen-specific CTL identified by CD8-independent tetramer staining. J. Immunol. 171: 51165123.
11. Cohen, G. B.,, A. Kaur, and , R. P. Johnson. 2005. Isolation of viable antigen-specific CD4 T cells by CD40L surface trapping. J. Immunol. Methods 302: 103115.
12. Czerkinsky, C.,, G. Andersson,, H. P. Ekre,, L. A. Nilsson,, L. Klareskog, and , O. Ouchterlony. 1988. Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secreting cells. J. Immunol. Methods 110: 2936.
13. Daniels, M. A., and , S. C. Jameson. 2000. Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J. Exp. Med. 191: 335346.
14. Day, C. L.,, N. P. Seth,, M. Lucas,, H. Appel,, L. Gauthier,, G. M. Lauer,, G. K. Robbins,, Z. M. Szczepiorkowski,, D. R. Casson,, R. T. Chung,, S. Bell,, G. Harcourt,, B. D. Walker,, P. Klenerman, and , K. W. Wucherpfennig. 2003. Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J. Clin. Investig. 112: 831842.
15. de Vries, I. J.,, M. R. Bernsen,, W. J. Lesterhuis,, N. M. Scharenborg,, S. P. Strijk,, M.-J. Gerritsen,, D. J. Ruiter,, C. G. Figdor,, C. J. Punt, and , G. J. Adema. 2005. Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J. Clin. Oncol. 23: 57795787.
16. Fourneau, J. M.,, H. Cohen, and , P. M. van Endert. 2004. A chaperone-assisted high yield system for the production of HLA-DR4 tetramers in insect cells. J. Immunol. Methods 285: 253264.
17. Greten, T. F.,, J. E. Slansky,, R. Kubota,, S. S. Soldan,, E. M. Jaffee,, T. P. Leist,, D. M. Pardoll,, S. Jacobson, and , J. P. Schneck. 1998. Direct visualization of antigen-specific T cells: HTLV-1 Tax11-19-specific CD8(+) T cells are activated in peripheral blood and accumulate in cere-brospinal fluid from HAM/TSP patients. Proc. Natl. Acad. Sci. USA 95: 75687573.
18. Haanen, J. B.,, M. G. van Oijen,, F. Tirion,, L. C. Oomen,, A. M. Kruisbeek,, F. A. Vyth-Dreese, and , T. N. Schumacher. 2000. In situ detection of virus- and tumorspecific T-cell immunity. Nat. Med. 6: 10561060.
19. He, X. S.,, B. Rehermann,, F. X. López-Labrador,, J. Boisvert,, R. Cheung,, J. Mumm,, H. Wedemeyer,, M. Berenguer,, T. L. Wright,, M. M. Davis, and , H. B. Greenberg. 1999. Quantitative analysis of hepatitis C virus-specific CD8(+) T cells in peripheral blood and liver using peptide-MHC tetramers. Proc. Natl. Acad. Sci. USA 96: 56925697.
20. Heijnen, I. A.,, D. Barnett,, M. J. Arroz,, S. M. Barry,, M. Bonneville,, B. Brando,, J. L. D’hautcourt,, F. Kern,, T. H. Tötterman,, E. W. Marijt,, D. Bossy,, F. W. Preijers,, G. Rothe,, J. W. Gratama, and the European Working Group on Clinical Cell Analysis. 2004. Enumeration of antigen-specific CD8+T lymphocytes by single-platform, HLA tetramer-based flow cytometry: a European multicenter evaluation. Cytometry B Clin. Cytom. 62: 113.
21. Hernández, J.,, P. P. Lee,, M. M. Davis, and , L. A. Sherman. 2000. The use of HLA A2.1/p53 peptide tetramers to visualize the impact of self tolerance on the TCR repertoire. J. Immunol. 164: 596602.
22. Hoffmann, T. K.,, V. S. Donnenberg,, U. Friebe-Hoffmann,, E. M. Meyer,, C. R. Rinaldo,, A. B. DeLeo,, T. L. Whiteside, and , A. D. Donnenberg. 2000. Competition of peptide-MHC class I tetrameric complexes with anti-CD3 provides evidence for specificity of peptide binding to the TCR complex. Cytometry 41: 321328.
23. Holman, P. O.,, E. R. Walsh, and , S. C. Jameson. 2005. Characterizing the impact of CD8 antibodies on class I MHC multimer binding. J. Immunol. 174: 39863991.
24. Kalandadze, A.,, M. Galleno,, L. Foncerrada,, J. L. Strominger, and , K. W. Wucherpfennig. 1996. Expression of recombinant HLA-DR2 molecules. Replacement of the hydrophobic transmembrane region by a leucine zipper dimerization motif allows the assembly and secretion of soluble DR alpha beta heterodimers. J. Biol. Chem. 271: 2015620162.
25. Kaufmann, S. H., and , A. J. McMichael. 2005. Annulling a dangerous liaison: vaccination strategies against AIDS and tuberculosis. Nat. Med. 11: S3344.
26. Kita, H.,, X. S. He, and , M. E. Gershwin. 2003. Application of tetramer technology in studies on autoimmune diseases. Autoimmun. Rev. 2: 4349.
27. Klenerman, P.,, V. Cerundolo, and , P. R. Dunbar. 2002. Tracking T cells with tetramers: new tales from new tools. Nat. Rev. Immunol. 2: 263272.
28. Klenerman, P., and , A. Hill. 2005. T cells and viral persistence: lessons from diverse infections. Nat. Immunol. 6: 873879.
29. Kozono, H.,, J. White,, J. Clements,, P. Marrack, and , J. Kappler. 1994. Production of soluble MHC class II proteins with covalently bound single peptides. Nature 369: 151154.
30. Lalvani, A.,, R. Brookes,, S. Hambleton,, W. J. Britton,, A. V. Hill, and , A. J. McMichael. 1997. Rapid effector function in CD8+memory T cells. J. Exp. Med. 186: 859865.
31. Letvin, N. L. 2005. Progress toward an HIV vaccine. Annu. Rev. Med. 56: 213223.
32. Lyons, A. B.,, J. Hasbold, and , P. D. Hodgkin. 2001. Flow cytometric analysis of cell division history using dilution of carboxyfluorescein diacetate succinimidyl ester, a stably integrated fluorescent probe. Methods Cell. Biol. 63: 375398.
33. Maino, V. C., and , H. T. Maecker. 2004. Cytokine flow cytometry: a multiparametric approach for assessing cellular immune responses to viral antigens. Clin. Immunol. 110: 222231.
34. Matsuda, J. L.,, O. V. Naidenko,, L. Gapin,, T. Nakayama,, M. Taniguchi,, C.-R. Wang,, Y. Koezuka, and , M. Kronenberg. 2000. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192: 741754.
35. McGavern, D. B.,, U. Christen, and , M. B. Oldstone. 2002. Molecular anatomy of antigen-specific CD8(+) T cell engagement and synapse formation in vivo. Nat. Immunol. 3: 918925.
36. McMichael, A. J., and , C. A. O’Callaghan. 1998. A new look at T cells. J. Exp. Med. 187: 13671371.
37. McShane, H.,, A. A. Pathan,, C. R. Sander,, S. M. Keating,, S. C. Gilbert,, K. Huygen,, H. A. Fletcher, and , A. V. Hill. 2004. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med. 10: 12401244.
38. Molldrem, J. J.,, P. P. Lee,, S. Kant,, E. Wieder,, W. Jiang,, S. Lu,, C. Wang, and , M. M. Davis. 2003. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J. Clin. Invest. 111: 639647.
39. Molldrem, J. J.,, P. P. Lee,, C. Wang,, K. Felio,, H. M. Kantarjian,, R. E. Champlin, and , M. M. Davis. 2000. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat. Med. 6: 10181023.
40. Moore, A.,, J. Grimm,, B. Han, and , P. Santamaria. 2004. Tracking the recruitment of diabetogenic CD8+ T-cells to the pancreas in real time. Diabetes 53: 14591466.
41. Muraro, P. A.,, K.-P. Wandinger,, B. Bielekova,, B. Gran,, A. Marques,, U. Utz,, H. F. McFarland,, S. Jacobson, and , R. Martin. 2002. Molecular tracking of antigen-specific T cell clones in neurological immunemediated disorders. Brain 126: 2031.
42. Novak, E. J.,, A. W. Liu,, G. T. Nepom, and , W. W. Kwok. 1999. MHC class II tetramers identify peptide-specific human CD4(+) T cells proliferating in response to influenza A antigen. J. Clin. Investig. 104: R63R67.
43. Ogg, G. S.,, X. Jin,, S. Bonhoeffer,, P. R. Dunbar,, M. A. Nowak,, S. Monard,, J. P. Segal,, Y. Cao,, S. L. Rowland-Jones,, V. Cerundolo,, A. Hurley,, M. Markowitz,, D. D. Ho,, D. F. Nixon, and , A. J. McMichael. 1998. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279: 21032106.
44. Perfetto, S. P.,, P. K. Chattopadhyay, and , M. Roederer. 2004. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4: 648655.
45. Peters, B.,, J. Sidney,, P. Bourne,, H. H. Bui,, S. Buus,, G. Doh,, W. Fieri,, M. Kronenberg,, R. Kubo,, O. Lund,, D. Nemazee,, J. V. Ponomarenko,, M. Sathiamurthy,, S. P. Schoenberger,, S. Stewart,, P. Surko,, S. Way,, S. Wilson, and , A. Sette. 2005. The design and implementation of the immune epitope database and analysis resource. Immunogenetics 57: 326336.
46. Plunkett, F. J.,, M. V. D. Soares,, N. Annels,, A. Hislop,, K. Ivory,, M. Lowdell,, M. Salmon,, A. Rickinson, and , A. N. Akbar. 2001. The flow cytometric analysis of telomere length in antigen-specific CD8+T cells during acute Epstein-Barr virus infection. Blood 97: 700707.
47. Roederer, M. 2001. Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45: 194205.
48. Roederer, M. 2002. Compensation in flow cytometry, p. In J. P. Robinson et al. (ed.), Current Protocols in Cytometry. John Wiley & Sons, New York, N.Y.
49. Romero, P.,, P. R. Dunbar,, D. Valmori,, M. Pittet,, G. S. Ogg,, D. Rimoldi,, J.-L. Chen,, D. Lienard,, J.-C. Cerottini, and , V. Cerundolo. 1998. Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J. Exp. Med. 188: 16411650.
50. Seth, A.,, I. Ourmanov,, M. J. Kuroda,, J. E. Schmitz,, M. W. Carroll,, L. S. Wyatt,, B. Moss,, M. A. Forman,, V. M. Hirsch, and , N. L. Letvin. 1998. Recombinant modified vaccinia virus Ankara-simian immunodeficiency virus gag pol elicits cytotoxic T lymphocytes in rhesus monkeys detected by a major histocompatibility complex class I/peptide tetramer. Proc. Natl. Acad. Sci. USA 95: 1011210116.
51. Skinner, P. J.,, M. A. Daniels,, C. S. Schmidt,, S. C. Jameson, and , A. T. Haase. 2000. Cutting edge: in situ tetramer staining of antigen-specific T cells in tissues. J. Immunol. 165: 613617.
52. Suni, M. A.,, V. C. Maino, and , H. T. Maecker. 2005. Ex vivo analysis of T-cell function. Curr. Opin. Immunol. 17: 434440.
53. Tully, G.,, C. Kortsik,, H. Höhn,, I. Zehbe,, W. E. Hitzler,, C. Neukirch,, K. Freitag,, K. Kayser, and , M. J. Maeurer. 2005. Highly focused T cell responses in latent human pulmonary Mycobacterium tuberculosis infection. J. Immunol. 174: 21742184.
54. Valmori, D.,, V. Dutoit,, D. Liénard,, D. Rimoldi,, M. J. Pittet,, P. Champagne,, K. Ellefsen,, U. Sahin,, D. Speiser,, F. Lejeune,, J. C. Cerottini, and , P. Romero. 2000. Naturally occurring human lymphocyte antigen-A2 restricted CD8 + T-cell response to the cancer testis antigen NY-ESO-1 in melanoma patients. Cancer Res. 60: 44994506.
55. van Lier, R. A.,, I. J. ten Berge, and , L. E. Gamadia. 2003. Human CD8(+) T-cell differentiation in response to viruses. Nat. Rev. Immunol. 3: 931939.
56. Waldrop, S. L.,, C. J. Pitcher,, D. M. Peterson,, V. C. Maino, and , L. J. Picker. 1997. Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J. Clin. Investig. 99: 17391750.
57. Whelan, J. A.,, P. R. Dunbar,, D. A. Price,, M. A. Purbhoo,, F. Lechner,, G. S. Ogg,, G. Griffiths,, R. E. Phillips,, V. Cerundolo, and , A. K. Sewell. 1999. Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent. J. Immunol. 163: 43424348.
58. Wherry, E. J., and , R. Ahmed. 2004. Memory CD8 T-cell differentiation during viral infection. J. Virol. 78: 55355545.
59. Wooldridge, L.,, H. A. van den Berg,, M. Glick,, E. Gostick,, B. Laugel,, S. L. Hutchinson,, A. Milicic,, J. M. Brenchley,, D. C. Douek,, D. A. Price, and , A. K. Sewell. 2005. Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor-antigen complexes at the cell surface. J. Biol. Chem. 280: 2749127501.
60. Zajac, A. J.,, J. N. Blattman,, K. Murali-Krishna,, D. J. D. Sourdive,, M. Suresh,, J. D. Altman, and , R. Ahmed. 1998. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188: 22052213.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error