Chapter 43 : Laboratory Monitoring of Cytokine Therapy

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Laboratory Monitoring of Cytokine Therapy, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap43-1.gif /docserver/preview/fulltext/10.1128/9781555815905/9781555813642_Chap43-2.gif


The goal of laboratory monitoring for cytokine therapies is to maximize the efficacy and minimize adverse effects of these agents. The optimal monitoring strategy will depend on the characteristics of the specifics of the therapy, but general strategies can be identified. In IFN-β therapy for multiple sclerosis (MS), many of these general strategies have been utilized with significant benefit to MS patients. In other cytokine based therapies (CBTs), monitoring has not been as extensively utilized. There are two major types of laboratory measures used to monitor CBTs: biomarkers of disease and cytokine-induced molecules. Binding-antibody (BAb) assays are generally faster, more sensitive, and more inexpensive than other assays. Enzyme-linked immunosorbent assay (ELISA) technology can be used, which allows for the screening of hundreds of samples in a few hours in an automated fashion. CBTs are a subclass of biologicals that have profound biological effects, many of which are poorly understood. These drugs are recent additions to therapy, and consequently, we are still relatively early in a growth curve about their optimal use. Monitoring of their effects is going to be important for many reasons. One of the major reasons is that these therapies tend to be highly immunogenic and the optimal approach for identification of antidrug antibodies and their potential to neutralize drug effects needs to be identified. Another reason is the high cost of these biologicals, which makes optimal use critical.

Citation: Pachner A. 2006. Laboratory Monitoring of Cytokine Therapy, p 385-392. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch43
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Diagram of cellular effects of IFN-β as a prototype of a CBT. The cellular response to IFN-β is a prototype system in which receptor binding by the cytokine results in upregulation of a host of early, intermediate, and late genes, with complex downstream effects.

Citation: Pachner A. 2006. Laboratory Monitoring of Cytokine Therapy, p 385-392. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Histograms of gene expression of MxA (GEM) in controls without IFN-β injection (top) and MS patients 12 h after IFN-β injection (bottom). The axis represents log of normalization ratios, i.e., 2 to the power (ΔΔCt) where ΔΔCt is (Ct of MxA - Ct of GAPDH) for sample minus (Ct of MxA - Ct of GAPDH) for normal control. The axis represents number of patients. The expected response after injection is a strong increase in level of MxA mRNA as detected by real-time reverse transcription-PCR. In this group of patients the MS patients had a mean of over 16-fold increase in MxA mRNA after injection.

Citation: Pachner A. 2006. Laboratory Monitoring of Cytokine Therapy, p 385-392. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Stages of ADB in IFN-β-treated MS patients. Four stages can be identified in the interplay between antibody and bioactivity of IFN-β as measured by the GEM assay. ♦, Nab level (%); ▀, bioactivity (%). The axis represents percent maximal response, and the axis represents months post initiation of therapy.

Citation: Pachner A. 2006. Laboratory Monitoring of Cytokine Therapy, p 385-392. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Bendtzen, K. 2003. Anti-IFN BAb and NAb antibodies; a minireview. Neurology 61: S6S10.
2. Bertolotto, A.,, F. Gilli,, A. Sala,, L. Audano,, A. Castello,, U. Magliola,, F. Melis, and , M. T. Giordana. 2001. Evaluation of bioavailability of three types of IFNb in multiple sclerosis patients by a new quantitative-competitive-PCR method for MxA quantification. J. Immunol. Methods 256: 141152.
3. Bertolotto, A.,, F. Gilli,, A. Sala,, M. Capobianco,, S. Malucchi,, E. Milano,, F. Melis,, F. Marnetto,, R. L. Lindberg,, R. Bottero,, A. Di Sapio, and , M. T. Giordana. 2003. Persistent neutralizing antibodies abolish the interferon beta bioavailability in MS patients. Neurology 60: 634639.
4. Brickelmaier, M.,, P. S. Hochman,, R. Baciu,, B. Chao,, J. H. Cuervo, and , A. Whitty. 1999. ELISA methods for the analysis of antibody responses induced in multiple sclerosis patients treated with recombinant interferon-β J. Immunol. Methods 227: 121135.
5. Casadevall, N.,, J. Nataf,, B. Viron,, A. Kolta,, J. J. Kiladjian,, P. Martin-Dupont,, P. Michaud,, T. Papo,, V. Ugo,, I. Teyssandier,, B. Varet, and , P. Mayeux. 2002. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 346: 469475.
6. Chan, A.,, R. Seguin,, T. Magnus,, C. Papadimitriou,, K. V. Toyka,, J. P. Antel, and , R. Gold. 2003. Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: termination of CNS autoimmune inflammation and modulation by interferon-beta. Glia 43(3): 231242.
7. Chin, K.-C., and , P. Cresswell. 2001. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. J. Immunol. 98: 1512515130.
8. Cook, S. D.,, J. R. Quinless,, A. Jotkowitz,, P. Beaton, and The Neutralizing Antibody Study Group. 2001. Serum IFN neutralizing antibodies and neopterin levels in a crosssection of MS patients. Neurology 57: 10801084.
9. Deisenhammer, F.,, I. Mayringer,, J. Harvey,, E. Dilitz,, T. Gasse,, D. Stadlbauer,, M. Reindl, and , T. Berger. 2000. A comparative study of the relative bioavailability of different interferon beta preparations. Neurology 54: 20552060.
10. Deisenhammer, F.,, M. Reindl,, J. Harvey,, T. Gasse,, E. Dilitz, and , T. Berger. 1999. Bioavailability of interferon beta 1b in MS patients with and without neutralizing antibodies. Neurology 52: 12391243.
11. Feng, X.,, D. Yau,, C. Holbrook, and , A. T. Reder. 2002. Type I interferons inhibit interleukin-10 production in activated human monocytes and stimulate IL-10 in T cells: implications for Th1-mediated diseases. J. Interferon Cytokine Res. 22: 311319.
12. Floris, S.,, S. R. Ruuls,, A. Wierinckx,, S. M. van der Pol,, E. Dopp,, P. H. van der Meide,, C. D. Dijkstra, and , H. E. De Vries. 2002. Interferon-beta directly influences monocyte infiltration into the central nervous system. J. Neuroimmunol. 127: 6979.
13. Giovannoni, G.,, F. E. Munschauer III, and , F. Deisenhammer. 2002. Neutralising antibodies to interferon beta during the treatment of multiple sclerosis. J. Neurol. Neurosurg. Vsychiatry 73: 465469.
14. Grossberg, S. E.,, Y. Kawade,, M. Kohase, and , J. P. Klein. 2001. The neutralization of interferons by antibody. II. Neutralizing antibody unitage and its relationship to bioassay sensitivity: the tenfold reduction unit. J. Interferon Cytokine Res. 21: 743755.
15. Grossberg, S. E.,, Y. Kawade,, M. Kohase,, H. Yokoyama, and , N. Finter. 2001. The neutralization of interferons by antibody. I. Quantitative and theoretical analyses of the neutralization reaction in different bioassay systems. J. Interferon Cytokine Res. 21: 729742.
16. Han, P. D., and , R. D. Cohen. 2004. Managing immunogenic responses to infliximab: treatment implications for patients with Crohn’s disease. Drugs 64: 17671777.
17. Hanauer, S. B.,, C. L. Wagner,, M. Bala,, L. Mayer,, S. Travers,, R. H. Diamond,, A. Olson,, W. Bao, and , P. Rutgeerts. 2004. Incidence and importance of antibody responses to infliximab after maintenance or episodic treatment in Crohn’s disease. Clin. Gastroenterol. Hepatol. 2: 542553.
18. Hosford, D. A.,, E. H. Lai,, J. H. Riley,, C. F. Xu,, T. M. Danoff, and , A. D. Roses. 2004. Pharmacogenetics to predict drug-related adverse events. Toxicol. Pathol. 32(Suppl. 1): 912.
19. IFNB Multiple Sclerosis Study Group. 1993. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. Neurology 43: 655661.
20. IFNB Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. 1996. Neutralizing antibodies during treatment of multiple sclerosis with interferon beta-1b: experience during the first three years. Neurology 47: 889894.
21. Jacobs, L.,, J. O’Malley,, A. Freeman, and , R. Ekes. 1981. Intrathecal interferon reduces exacerbations of multiple sclerosis. Science 214: 10261028.
22. Koike, F.,, J. Satoh,, S. Miyake,, T. Yamamoto,, M. Kawai,, S. Kikuchi,, K. Nomura,, K. Yokoyama,, K. Ota,, T. Kanda,, T. Fukazawa, and , T. Yamamura. 2003. Microarray analysis identifies interferon beta-regulated genes in multiple sclerosis. J. Neuroimmunol. 139: 109118.
23. Louis, E.,, S. Vermeire,, P. Rutgeerts,, M. De Vos,, A. Van Gossum,, P. Pescatore,, R. Fiasse,, P. Pelckmans,, H. Reynaert,, G. D’Haens,, M. Malaise, and , J. Belaiche. 2002. A positive response to infliximab in Crohn disease: association with a higher systemic inflammation before treatment but not with —308 TNF gene polymorphism. Scand. J. Gastroenterol. 37: 818824.
24. Martinez-Borra, J.,, C. Lopez-Larrea,, S. Gonzalez,, D. Fuentes,, A. Dieguez,, E. M. Deschamps,, J. M. Perez-Pariente,, A. Lopez-Vazquez,, R. de Francisco, and , L. Rodrigo. 2002. High serum tumor necrosis factor-alpha levels are associated with lack of response to infliximab in fistulizing Crohn’s disease. Am. J. Gastroenterol. 97: 23502356.
25. Pachner, A. 2003. Anti-IFNβ antibodies in IFNβ-treated MS patients: summary. Neurology 61(Suppl. 5): 15.
26. Pachner, A. 2004. Anti-interferon antibodies: surprises and lessons. Lancet Neurol. 3: 515.
27. Pachner, A.,, D. Dail,, E. Pak, and , K. Narayan. 2005. The importance of measuring IFN β bioactivity: monitoring in MS patients and the effect of anti-IFNβ antibodies. J. Neuroimmunol. 166: 180188.
28. Pachner, A.,, K. Narayan,, N. Price,, M. Hurd, and , D. Dail. 2003. MxA gene expression analysis as an interferon-beta bioactivity measurement in patients with multiple sclerosis and the identification of antibody-mediated decreased bioactivity. Mol. Diagn. 7: 1725.
29. Pachner, A. R. 1997. Anticytokine antibodies in beta interferon-treated MS patients and the need for testing: plight of the practicing neurologist. Neurology 49: 647650.
30. Pachner, A. R. 2001. Measurement of antibodies to interferon beta in patients with multiple sclerosis. Arch. Neurol. 58: 12991300.
31. Pachner, A. R. 2003. An improved ELISA for screening for neutralizing anti-IFN-beta antibodies in MS patients. Neurology 61: 14441446.
32. Pachner, A. R.,, A. Bertolotto, and , F. Deisenhammer. 2003. Measurement of MxA mRNA or protein as a biomarker of IFNbeta bioactivity: detection of antibody-mediated decreased bioactivity (ADB). Neurology 61(Suppl. 5): S24S26.
33. Pachner, A. R.,, J. Oger, and , J. Palace. 2003. The measurement of antibodies binding to IFNbeta in MS patients treated with IFNbeta. Neurology 61(Suppl. 5): S18S20.
34. PRISMS-4. 2001. Long-term efficacy of interferon-beta-1a in relapsing MS. Neurology 56: 16281636.
35. PRISMS Study Group. 1998. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing remitting multiple sclerosis. Lancet 352: 14981504.
36. Pungor, E., Jr.,, J. G. Files,, J. D. Gabe,, L. T. Do,, W. P. Foley,, J. L. Gray,, J. W. Nelson,, E. Nestaas,, J. L. Taylor, and , S. E. Grossberg. 1998. A novel bioassay for the determination of neutralizing antibodies to IFN-beta1b. J. Interferon Cytokine Res. 18: 10251030.
37. Rudick, R. A.,, R. M. Ransohoff,, J. C. Lee,, R. Peppler,, M. Yu,, P. M. Mathisen, and , V. K. Tuohy. 1998. In vivo effects of interferon beta-1a on immunosuppressive cytokines in multiple sclerosis. Neurology 50: 12941300.
38. Rudick, R. A.,, R. M. Ransohoff,, R. Peppler,, S. VanderBrug Medendorp,, P. Lehmann, and , J. Alam. 1996. Interferon beta induces interleukin-10 expression: relevance to multiple sclerosis. Ann. Neurol. 40: 618627.
39. Rudick, R. A.,, N. A. Simonian,, J. A. Alam,, M. Campion,, J. O. Scaramucci,, W. Jones,, M. E. Coats,, D. E. Goodkin,, B. Weinstock-Guttman,, R. M. Herndon,, M. K. Mass,, J. R. Richert,, A. M. Salazar,, F. E. Munschauer III,, D. L. Cookfair,, J. H. Simon, and L. D. Jacobs for the Multiple Sclerosis Collaborative Research Group (MSCRG). 1998. Incidence and significance of neutralizing antibodies to interferon beta-1a in multiple sclerosis. Neurology 50: 12061208.
40. Rutgeerts, P.,, G. Van Assche, and , S. Vermeire. 2004. Optimizing anti-TNF treatment in inflammatory bowel disease. Gastroenterology 126: 15931610.
41. Schellekens, H. 2002. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat. Rev. 1: 457462.
42. ten Hove, T.,, C. van Montfrans,, M. P. Peppelenbosch, and , S. J. van Deventer. 2002. Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut 50: 206211.
43. Vallittu, A. M.,, M. Halminen,, J. Peltoniemi,, J. Ilonen,, I. Julkunen,, A. Salmi,, J. P. Eralinna, and the Finnish Beta-Interferon Study Group. 2002. Neutralizing antibodies reduce MxA protein induction in interferon-beta-1a-treated MS patients. Neurology 58: 17861790.
44. Van den Brande, J. M.,, H. Braat,, G. R. van den Brink,, H. H. Versteeg,, C. A. Bauer,, I. Hoedemaeker,, C. van Montfrans,, D. W. Hommes,, M. P. Peppelenbosch, and , S. J. van Deventer. 2003. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology 124: 17741785.
45. Van Weyenbergh, J.,, J. Wietzerbin,, D. Rouillard,, M. Barral-Netto, and , R. Liblau. 2001. Treatment of multiple sclerosis patients with interferon-beta primes monocyte-derived macrophages for apoptotic cell death. J. Leukoc. Biol. 70: 745748.
46. Verhelst, D.,, J. Rossert,, N. Casadevall,, A. Kruger,, K. U. Eckardt, and , I. C. Macdougall. 2004. Treatment of erythropoietin-induced pure red cell aplasia: a retrospective study. Lancet 363: 17681771.
47. von Wussow, P.,, D. Jakschies,, H. K. Hochkeppel,, C. Fibich,, L. Penner, and , H. Deicher. 1990. The human intracellular Mx-homologous protein is specifically induced by type I interferons. Eur. J. Immunol. 20: 20152019.
48. Wandinger, K. P.,, C. S. Sturzebecher,, B. Bielekova,, G. Detore,, A. Rosenwald,, L. M. Staudt,, H. F. McFarland, and , R. Martin. 2001. Complex immunomodulatory effects of interferon-beta in multiple sclerosis include the upregulation of T helper 1-associated marker genes. Ann. Neurol. 50: 349357.
49. Williams, G. J., and , P. L. Witt. 1998. Comparative study of the pharmacodynamic and pharmacologic effects of Betaseron and Avonex. J. Interferon Cytokine Res. 18: 967975.
50. Wolinsky, J. S.,, K. V. Toyka,, L. Kappos, and , S. E. Grossberg. 2003. Interferon-beta antibodies: implications for the treatment of MS. Lancet Neurol. 2: 528.


Generic image for table

Partial list of cytokines available for therapy in the autumn of 2004

Citation: Pachner A. 2006. Laboratory Monitoring of Cytokine Therapy, p 385-392. In Detrick B, Hamilton R, Folds J (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815905.ch43

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error