Chapter 34 : Biopreservation of Foods

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Biopreservation of Foods, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap34-1.gif /docserver/preview/fulltext/10.1128/9781555815912/9781555814076_Chap34-2.gif


This chapter provides an overview of the biologically based preservation technologies termed “biopreservation.” Acid production by lactic acid bacteria (LAB) in temperature-abused foods (controlled acidification) is covered in the chapter. Some LAB produce antimicrobial proteins, called bacteriocins, which inhibit spoilage and pathogenic bacteria without changing (e.g., through acidification, protein denaturation, and other processes) the physicochemical nature of the food. While organic acids are usually added to foods, LAB can produce lactic acid in situ. The controlled production of acid in situ is an important form of biopreservation. There are many different ways to use bacteriocins in foods. The first is to add bacteriocins directly to the food for the purpose of inhibiting spoilage or pathogenic bacteria. The second way to use bacteriocins is to add bacteriocinogenic cultures to the food or use them as starter cultures that produce the bacteriocin in situ. A third way to use bacteriocins is to facilitate the use of defined starter cultures in fermented foods. Emulsifiers such as Tween 80 or the entrapment of the pediocin in multilamellar vesicles increases pediocin effectiveness in fatty foods. Nisin is the only bacteriocin approved internationally for use in foods. The biological methods of food preservation covered here mark only the beginning of the biopreservation era in the food industry.

Citation: Montville T, Chikindas M. 2007. Biopreservation of Foods, p 747-764. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch34
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 34.1
Figure 34.1

A generic bacteriocin operon. The structural gene () codes for a prepropeptide which is modified and excreted by the processing gene products (P1 and P2) and may be regulated by a signal transduction pathway coded for by and . For additional abbreviations and explanations, see the text.

Citation: Montville T, Chikindas M. 2007. Biopreservation of Foods, p 747-764. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 34.2
Figure 34.2

Models for pore formation and detergent-like mechanisms of bacteriocin action.

Citation: Montville T, Chikindas M. 2007. Biopreservation of Foods, p 747-764. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abee, T.,, F. M. Rombouts,, J. Hugenholtz,, G. Guihard, and, L. Letellier. 1994. Mode of action of nisin Z against Listeria monocytogenes Scott A grown at high and low temperatures. Appl. Environ. Microbiol. 60: 19621968.
2. Abriouel, H.,, R. Lucas,, N. Ben Omar,, E. Valdivia,, M. Maqueda,, M. Martinez-Canamero, and, A. Galvez. 2005. Enterocin AS-48RJ: a variant of enterocin AS-48 chromosomally encoded by Enterococcus faecium RJ16 isolated from food. Syst. Appl. Microbiol. 28: 383397.
3. Allison, G.,, C. Fremaux,, C. Ahn, and, T. R. Klaenhammer. 1994. Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J. Bacteriol. 176: 22352241.
4. Al-Zoreky, N.,, J. C. Ayres, and, W. Sandine. 1991. Antimicrobial activity of Microgard ® against food spoilage and pathogenic microorganisms. J. Dairy Sci. 74: 758763.
5. Bassler, B. L. 2002. Small talk. Cell-to-cell communication in bacteria. Cell 109: 421424.
6. Berry, E. D.,, R. W. Hutkins, and, R. Mandigo. 1991. The use of bacteriocin producing Pediococcus acidilactici to control post processing Listeria monocytogenes contamination of frankfurters. J. Food Prot. 54: 681686.
7. Bhunia, A. K., and, M. C. Johnson. 1992. Monoclonal antibody-colony immunoblot method specific for isolation of Pediococcus acidilactici from foods and correlation with pediocin (bacteriocin) production. Appl. Environ. Microbiol. 58: 23152320.
8. Bouksaim, M.,, C. Lacroix,, R. Bazin, and, R. E. Simard. 1999. Production and utilization of polyclonal antibodies against nisin in an ELISA and for immuno-location of nisin in producing and sensitive bacterial strains. J. Appl. Microbiol. 87: 500510.
9. Bower, C. K.,, J. McGuire, and, M. A. Daeschel. 1995. Suppression of Listeria monocytogenes colonization following adsorption of nisin onto silica surfaces. Appl. Environ. Microbiol. 61: 992997.
10. Breukink, E.,, I. Wiedemann,, C. van Kraaij,, O. P. Kuipers,, H. Sahl, and, B. de Kruijff. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286: 23612364.
11. Bruno, M. E. C.,, A. Kaiser, and, T. J. Montville. 1992. Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl. Environ. Microbiol. 58: 22552259.
12. Bruno, M. E. C., and, T. J. Montville. 1993. Common mechanistic action of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 59: 30033010.
13. Brurberg, M. B.,, I. F. Nes, and, V. G. Eijsink. 1997. Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol. Microbiol. 26: 347360.
14. Brüsson, H. 2005. Phage therapy: the Escherichia coli experience. Microbiology 151: 21332140.
15. Buchanan, R. L., and, L. A. Klawitter. 1992. Effectiveness of Carnobacterium piscicola LK5 for controlling the growth of Listeria monocytogenes Scott A in refrigerated foods. J. Food Safety 12: 217224.
16. Buchman, G. W.,, S. Banergee, and, J. N. Hansen. 1988. Structure, expression and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J. Biol. Chem. 263: 1626016266.
17. Buyong, N.,, J. Kok, and, J. B. Luchansky. 1998. Use of a genetically enhanced, pediocin-producing starter culture, Lactococcus lactis subsp. lactis MM217, to control Listeria monocytogenes in cheddar cheese. Appl. Environ. Microbiol. 64: 48424845.
18. Chen, Y., and, T. J. Montville. 1995. Efflux of ions and ATP depletion induced by pediocin PA-1 are concomitant with cell death in Listeria monocytogenes Scott A. J. Appl. Bacteriol. 79: 684690.
19. Chikindas, M. L.,, M. J. Garcia-Garcera,, A. J. M. Driessen,, A. M. Ledeboer,, J. Nissen-Meyer,, I. F. Nes,, T. Abee,, W. N. Konings, and, G. Venema. 1993. Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl. Environ. Microbiol. 59: 35773584.
20. Cintas, L. M.,, P. Casaus,, C. Herranz,, L. S. Havarstein,, H. Holo,, P. E. Hernandez, and, I. F. Nes. 2000. Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J. Bacteriol. 182: 68066814.
21. Cociancich, S.,, M. Goyffon,, F. Bontems,, P. Bulet,, F. Bouet,, A. Menez, and, J. Hoffman. 1993. Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarity with insect defensins and scorpion toxins. Biochem. Biophys. Res. Commun. 194: 1722.
22. Daba, H.,, C. Lacroix,, J. Huang,, R. E. Simard, and, L. Lemieux. 1994. Simple method of purification and sequencing of a bacteriocin produced by Pediococcus acidilactici UL5. J. Appl. Bacteriol. 77: 682698.
23. Daeschel, M. A. 1990. Controlling wine malolactic fermentation with nisin and nisin-resistant strains of Leuconostoc oenos. Appl. Environ. Microbiol. 51: 601603.
24. Daeschel, M. A.,, J. McGuire, and, H. Al-Makhlafi. 1992. Antimicrobial activity of nisin adsorbed to hydrophilic and hydrophobic silicon surfaces. J. Food Prot. 55: 731735.
25. Dalet, K.,, C. Briand,, Y. Cenatiempo, and, Y. Hechard. 2000. The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr. Microbiol. 41: 441443.
27. Degnan, A. J.,, N. Buyong, and, J. B. Luchansky. 1993. Anti-listerial activity of pediocin AcH in model food systems in the presence of an emulsifier or encapsulated within liposomes. Int. J. Food Microbiol. 18: 127138.
28. Degnan, A. J., and, J. B. Luchansky. 1992. Influence of beef tallow and muscle on the antilisterial activity of pediocin AcH and liposome-encapsulated pediocin AcH. J. Food Prot. 55: 552554.
29. Degnan, A. J.,, A. E. Yousef, and, J. B. Luchansky. 1992. Use of Pediococcus acidilactici to control Listeria monocytogenes in temperature-abused vacuum-packaged wieners. J. Food Prot. 55: 98103.
30. Delves-Broughton, J.,, G. C. Williams, and, S. Williamson. 1992. The use of the bacteriocin, nisin, as a preservative in pasteurized white egg. Lett. Appl. Microbiol. 15: 133136.
31. de Ruyter, P. G.,, O. P. Kuipers, and, W. M. de Vos. 1996. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 62: 36623667.
32. Diep, D. B.,, L. S. Havarstein,, J. Nissen-Meyer, and, I. F. Nes. 1994. The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl. Environ. Microbiol. 60: 160166.
33. Diep, D. B., and, I. F. Nes. 2002. Ribosomally synthesized antibacterial peptides in Gram-positive bacteria. Curr. Drug Targets 3: 107122.
34. Dodd, H. M.,, N. Horn, and, M. J. Gasson. 1990. Analysis of the genetic determinant for the production of the peptide antibiotic nisin. J. Gen. Microbiol. 136: 555556.
35. Eijsink, V. G.,, L. Axelsson,, D. B. Diep,, L. S. Havarstein,, H. Holo, and, I. F. Nes. 2002. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Leeuwenhoek 81: 639654.
36. Engelke, G.,, Z. Gutowski-Eckel,, M. Hammelmann, and, K. D. Entian. 1992. Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl. Environ. Microbiol. 58: 37303743.
37. Ennahar, S.,, O. Assobhel, and, C. Hasselmann. 1998. Inhibition of Listeria monocytogenes in a smear-surface soft cheese by Lactobacillus plantarum WHE 92, a pediocin AcH producer. J. Food Prot. 61: 186191.
38. Ennahar, S.,, T. Sashihara,, K. Sonomoto, and, A. Ishizaki. 2000. Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol. Rev. 24: 85106.
39. Fang, T. J., and, L. W. Lin. 1994. Inactivation of Listeria monocytogenes on raw pork treated with modified atmosphere packaging and nisin. J. Food Drug Anal. 2: 189200.
40. Farber, J. M. 1993. Current research on Listeria monocytogenes in foods: an overview. J. Food Prot. 56: 640643.
41. Fath, M. J., and, R. Kolter. 1993. ABC transporters: bacterial exporters. Microbiol. Rev. 57: 9951017.
42. Faye, T.,, T. Langsrud,, I. F. Nes, and, H. Holo. 2000. Biochemical and genetic characterization of propionicin T1, a new bacteriocin from Propionibacterium thoenii. Appl. Environ. Microbiol. 66: 42304236.
43. Federal Register. 1988. Nisin preparation: affirmation of GRAS status as a direct human food ingredient. 21CFR Part 184. 53: 1124711251.
44. Fimland, G.,, O. R. Blingsmo,, K. Sletten,, G. Jung,, I. F. Nes, and, J. Nissen-Meyer. 1996. New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl. Environ. Microbiol. 62: 33133318.
45. Fimland G.,, L. Johnsen,, B. Dalhus, and, J. Nissen-Meyer. 2005. Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J. Pept. Sci. 11: 688696.
46. Foegeding, P. M.,, A. B. Thomas,, D. H. Pinkerton, and, T. R. Klaenhammer. 1992. Enhanced control of Listeria monocytogenes by in situ-produced pediocin during dry fermented sausage production. Appl. Environ. Microbiol. 58: 884890.
47. Fremaux, C.,, Y. Hechard, and, Y. Cenatiempo. 1995. Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology 141: 16371645.
48. Gao, F. H.,, T. Abee, and, W. N. Konings. 1991. The mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome C oxidase proteoliposomes. Appl. Environ. Microbiol. 57: 21642170.
49. Garcia-Garcera, M. J. G.,, G. L. Elferink,, J. M. Driessen, and, W. N. Konings. 1993. In vitro pore-forming activity of the lantibiotic nisin. Role of PMF force and lipid composition. Eur. J. Biochem. 212: 417422.
50. Garver, K. I., and, P. M. Muriana. 1993. Detection, identification and characterization of bacteriocin-producing lactic acid bacteria from retail food products. Int. J. Food Microbiol. 19: 241258.
51. Gonzalez, C. F. 1988. Method for inhibiting bacterial spoilage and composition for this purpose. European Patent Application 88101624.
52. Goode, D.,, V. M. Allen, and, P. A. Barrow. 2003. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophage. Appl. Environ. Microbiol. 69: 50325036.
53. Gravesen, A.,, K. Sorensen,, F. M. Aarestrup, and, S. Knochel. 2001. Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics. Microb. Drug Resist. 7: 127135.
54. Greer, G. G. 2005. Bacteriophage control of foodborne bacteria. J. Food Prot. 68: 11021111.
55. Gross, E., and, J. L. Morell. 1967. The presence a of dehydroalanine in the antibiotic nisin and its relationship to activity. J. Am. Chem. Soc. 89: 27912792.
56. Gross, E., and, J. L. Morell. 1971. The structure of nisin. J. Am. Chem. Soc. 93: 46344635.
57. Guder, A.,, I. Wiedemann, and, H. G. Sahl. 2000. Posttranslationally modified bacteriocins—the lantibiotics. Biopolymers 2000 55: 6273.
58. Hanlin, M. B.,, N. Kalchayan,, P. Ray, and, B. Ray. 1993. Bacteriocins of lactic acid bacteria in combination have greater antibacterial activity. J. Food Prot. 56: 252255.
59. Harris, L. J.,, H. P. Fleming, and, T. R. Klaenhammer. 1991. Sensitivity and resistance of Listeria monocytogenes ATCC 19115 Scott A and VAL 500 to nisin. J. Food Prot. 54: 836840.
60. Harris, L. J.,, H. P. Fleming, and, T. R. Klaenhammer. 1992. Novel paired starter culture system for sauerkraut, consisting of a nisin-resistant Leuconostoc mesenteroides strain and a nisin-producing Lactococcus lactis strain. Appl. Environ. Microbiol. 58: 14841489.
61. Herranz, C.,, Y. Chen,, H. J. Chung,, L. M. Cintas,, P. E. Hernandez,, T. J. Montville, and, M. L Chikindas. 2001. Enterocin P selectively dissipates the membrane potential of Enterococcus faecium T136. 2001. Appl. Environ. Microbiol. 67: 16891692.
62. Holo, H.,, O. Nissen, and, I. F. Nes. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173: 38793887.
63. Hoover, G., and, L. R. Steenson. 1993. Bacteriocins of Lactic Acid Bacteria. Academic Press, New York, N.Y.
64. Horn, N.,, S. Swindell,, H. Dodd, and, M. Gasson. 1991. Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol. Gen. Genet. 228: 129135.
65. Reference deleted.
66. Reference deleted.
67. Hudson,, J. A. C. Billington,, G. Carey-Smith, and, G. Greening. 2005. Bacteriophages as biocontrol agents in food. J. Food Prot. 68: 426437.
68. Hutton, M. T.,, P. A. Chehak, and, J. H. Hanlin. 1991. Inhibition of botulism toxin production by Pediococcus acidilactici in temperature abused refrigerated foods. J. Food Safety 11: 255267.
69. Institute of Food Technologists. 2001. Analysis and evaluation of preventive control measures for the control and reduction/elimination of microbial hazards on fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Safety 2( Suppl. 1): 1337.
70. Jack, R. W., and, G. Jung. 2000. Lantibiotics and microcins: polypeptides with unusual chemical diversity. Curr. Opin. Chem. Biol. 4: 310317.
71. Jager, K., and, S. Harlander. 1992. Characterization of a bacteriocin from Pediococcus acidilactici PC and comparison of bacteriocin-producing strains using molecular typing procedures. Appl. Microbiol. Biotechnol. 37: 631637.
72. Jarvis, B., and, J. Farr. 1971. Partial purification, specificity and mechanism of the nisin-inactivating enzyme from Bacillus cereus. Biochim. Biophys. Acta 227: 232240.
73. Juneja, V. K., and, P. M. Davidson. 1993. Influence of altered fatty acid composition on resistance of Listeria monocytogenes to antimicrobials. J. Food Prot. 56: 302305.
74. Kalchayanand, N.,, M. B. Hanlin, and, B. Ray. 1992. Sublethal injury makes Gram-negative and resistant Gram-positive bacteria sensitive to the bacteriocins, pediocin AcH and nisin. Lett. Appl. Microbiol. 15: 239243.
75. Kalchayanand, N.,, T. Sikes,, C. P. Dunne, and, B. Ray. 1994. Hydrostatic pressure and electroporation have increased bactericidal efficiency in combination with bacteriocins. Appl. Environ. Microbiol. 60: 41744177.
76. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 3986.
77. Kleerebezem, M. 2004. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25: 14051414.
78. Kok, J.,, H. Holo,, M. J. van Belkum,, A. J. Haandrikman, and, I. F. Nes. 1993. Nonnisin bacteriocins in lactococci: biochemistry, genetics and mode of action, p. 121150. In D. G. Hoover and, L. R. Steenson (ed.), Bacteriocins of Lactic Acid Bacteria. Academic Press, New York, N.Y.
79. Konisky, J. 1982. Colicins and other bacteriocins with established modes of action. Annu. Rev. Microbiol. 36: 125144.
80. Kuipers, O. P.,, M. M. Beerthuyzen,, R. J. Siezen, and, W. M. de Vos. 1993. Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis: requirement of expression of the nisA and nisI gene for producer immunity. Eur. J. Biochem. 216: 281292.
81. Leverentz, B.,, W. S. Conway,, M. J. Camp,, W. J. Janisiewcz,, T. Abuladze,, M. Yang,, R. Saftner, and, A. Sulakvelidze. 2003. Control of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl. Environ. Microbiol. 69: 45194526.
82. Lins, L.,, P. Ducarme,, E. Breukink, and, R. Brasseur. 1999. Computational study of nisin interaction with model membrane. Biochim. Biophys. Acta 1420: 111120.
83. Luchansky, J. B.,, K. A. Glass,, K. D. Harrsono,, A. J. Degnan,, N. G. Faith,, B. Cauvin,, G. Bascus-Taylor,, K. Arihara,, B. Bater,, A. J. Maurer, and, R. G. Cassers. 1992. Genomic analysis of Pediococcus starter cultures used to control Listeria monocytogenes in turkey summer sausage. Appl. Environ. Microbiol. 58: 30533059.
84. Lyon, W. J.,, J. E. Sethi, and, B. A. Glatz. 1993. Inhibition of psychrotrophic organisms by propionicin PLG-1, a bacteriocin produced by Propionibacterium thoenii. J. Dairy Sci. 76: 15061513.
85. Martinez, J. M.,, M. I. Martinez,, C. Herranz,, A. Suarez,, M. F. Fernandez,, L. M. Cintas,, J. M. Rodriguez, and, P. E. Hernandez. 1999. Antibodies to a synthetic 1–9-N-terminal amino acid fragment of mature pediocin PA-1: sensitivity and specificity for pediocin PA-1 and cross-reactivity against Class IIa bacteriocins. Microbiology 145: 27772787.
86. Martinez, B.,, M. Fernandez,, J. E. Suarez, and, A. Rodriguez. 1999. Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA 972, depends on the expression of a plasmid-encoded bicistronic operon. Microbiology 145: 31553161.
87. Marugg, J. D.,, C. F. Gonzalez,, B. S. Kunka,, A. M. Ledeboer,, M. J. Pucci,, M. Y. Toonen,, S. A. Walker,, L. C. M. Zoetmulder, and, P. A. Vandenbergh. 1992. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC 1.0. Appl. Environ. Microbiol. 58: 23602367.
88. Mayr-Harting, A.,, A. J. Hedges, and, R. C. W. Beerkley. 1972. Methods for studying bacteriocins. Methods Microbiol. 7A: 313342.
89. Mazzotta, A. S.,, A. D. Crandall, and, T. J. Montville. 1997. Nisin resistance in Clostridium botulinum spores and vegetative cells. Appl. Environ. Microbiol. 63: 26542659.
90. Mazzotta, A. S., and, T. J. Montville. 1999. Characterization of fatty acid composition, spore germination, and thermal resistance in a nisin-resistant mutant of Clostridium botulinum 169B and in the wild-type strain. Appl. Environ. Microbiol. 65: 659664.
91. Miller, K. W.,, P. Ray,, T. Steinmetz,, T. Hanekamp, and, B. Ray. 2005. Gene organization and sequences of pediocin AcH/PA-1 production operons in Pediococcus and Lactobacillus plasmids. Lett. Appl. Microbiol. 40: 5662.
92. Ming, X., and, M. A. Daeschel. 1993. Nisin resistance of foodborne bacteria and the specific resistance responses of Listeria monocytogenes Scott A. J. Food Prot. 11: 944948.
93. Modi, K. D.,, M. L. Chikindas, and, T. J. Montville. 2000. Sensitivity of nisin-resistant Listeria monocytogenes to heat and the synergistic action of heat and nisin. Lett. Appl. Microbiol. 30: 249253.
94. Moll, G. N.,, E. van den Akker,, H. H. Hauge,, J. Nissen-Meyer,, I. F. Nes,, W. N. Konings, and, A. J. Driessen. 1999. Complementary and overlapping selectivity of the two-peptide bacteriocins plantaricin EF and JK. J. Bacteriol. 181: 48484852.
95. Montville, T. J., and, M. E. C. Bruno. 1994. Evidence that dissipation of proton motive force is a common mechanism of action for bacteriocins and other antimicrobial proteins. Int. J. Food Microbiol. 24: 5374.
96. Montville, T. J.,, A. M. Rogers, and, A. Okereke. 1992. Differential sensitivity of Clostridium botulinum strains to nisin. J. Food Prot. 56: 444448.
97. Montville, T. J.,, K. Winkowski, and, R. D. Ludescher. 1995. Models and mechanisms for bacteriocin action and application. Int. Dairy J. 5: 797815.
98. Mortvedt, C. I.,, J. Nissen-Meyer,, K. Sletten, and, I. F. Nes. 1991. Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl. Environ. Microbiol. 57: 18291834.
99. Mulders, J. W.,, I. J. Boerrigter,, H. S. Rollema,, R. J. Siezen, and, W. M. de Vos. 1991. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem. 201: 581584.
100. Nes, I. F., and, H. Holo. 2000. Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55: 5061.
101. Nettles, C. G., and, S. F. Barefoot. 1993. Biochemical and genetic characteristics of bacteriocins of food-associated lactic acid bacteria. J. Food Prot. 56: 338356.
102. Nielsen, J. W.,, J. S. Dickson, and, J. D. Crouse. 1990. Use of a bacteriocin produced by Pediococcus acidilactici to inhibit Listeria monocytogenes associated with fresh meat. Appl. Environ. Microbiol. 56: 21422145.
103. Nilsson, L.,, Y. Chen,, M. L. Chikindas,, H. H. Huss,, L. Gram, and, T. J. Montville. 2000. Carbon dioxide and nisin act synergistically on Listeria monocytogenes. Appl. Environ. Microbiol. 66: 769774.
104. Nissen-Meyer, J.,, H. Holo,, L. S. Havarstein,, K. Sletten, and, I. F. Nes. 1992. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J. Bacteriol. 174: 56865692.
105. Nussbaum, A., and, A. Cohen. 1988. Use of a bioluminescence gene reporter for the investigation of red-dependent and gam-dependent plasmid recombination in E. coli K12. J. Mol. Biol. 203: 391402.
106. O’Flynn, G.,, R. P. Ross,, G. F. Fitzgerald, and, A. Coffey. 2004. Evaluation of a cocktail of three bacteriophages for control of Escherichia coli O157:H7. Appl. Environ. Microbiol. 70: 34173424.
107. Ojcius, D. M., and, J. D. E. Young. 1991. Cytolytic pore-forming proteins and peptides: is there a common structural motif? Trends Biochem. Sci. 16: 225229.
108. Oscroft, C. A.,, J. G. Banks, and, S. McPhee. 1990. Inhibition of thermally-stressed Bacillus spores by combinations of nisin, pH and organic acids. Lebensm. Wiss. Technol. 23: 538544.
109. Pavan, S.,, P. Hols,, J. Delcour,, M. C. Geoffroy,, C. Grangette,, M. Kleerebezem, and, A. Mercenier. 2000. Adaptation of the nisin-controlled expression system in Lactobacillus plantarum: a tool to study in vivo biological effects. Appl. Environ. Microbiol. 66: 44274432.
110. Piard, J. C.,, O. P. Kuipers,, H. S. Rollema,, M. J. Desmazeaud, and, W. M. de Vos. 993. Structure, organization, and expression of the lct gene for lacticin 481, a novel lantibiotic produced by Lactococcus lactis. J. Biol. Chem. 268: 1636116368.
111. Radler, F. 1990. Possible use of nisin in winemaking. I. Action of nisin against lactic acid bacteria and wine yeasts in solid and liquid media. Am. J. Enol. Vitic. 41: 16.
112. Radler, F. 1990. Possible use of nisin in winemaking. II. Experiments to control lactic acid bacteria in the production of wine. Am. J. Enol. Vitic. 41: 711.
113. Rauch, P. J. G., and, W. M. deVos. 1992. Characterization of the novel nisin-sucrose conjugative transposon TN5276 and its insertion in Lactococcus lactis. J. Bacteriol. 174: 12801287.
114. Ray, B., and, M. A. Daeschel. 1992. Food Biopreservation of Microbial Origin. CRC Press, Boca Raton, Fla.
115. Ray, B.,, R. Schamber, and, K. W. Miller. 1999. The pediocin AcH precursor is biologically active. Appl. Environ. Microbiol. 65: 22812286.
116. Rekhif, N.,, A. Atrih, and, G. Lefebvre. 1995. Selection and properties of spontaneous mutants of Listeria monocytogenes ATCC 15313 resistant to different bacteriocins produced by lactic acid bacteria strains. Curr. Microbiol. 230: 827853.
117. Roberts, R. E., and, E. A. Zottola. 1993. Shelf-life of pasteurized process cheese spreads made from cheddar cheese manufactured with a nisin producing starter culture. J. Dairy Sci. 76: 18301836.
118. Rodriguez, J. M.,, L. M. Cintas,, P. Casaus,, N. Horn,, H. M. Dodd,, P. E. Hernandez, and, M. J. Gasson. 1995. Isolation of nisin-producing Lactococcus lactis strains from dry fermented sausages. J. Appl. Bacteriol. 78: 109115.
119. Rogers, A. M., and, T. J. Montville. 1994. Quantification of factors influencing nisin’s inhibition of Clostridium botulinum 56A in a model food system. J. Food Sci. 59: 663668, 686.
120. Sablon, E.,, B. Contreras, and, E. Vandamme. 2000. Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. Adv. Biochem. Eng. Biotechnol. 68: 2160.
121. Saleh, M. A., and, Z. J. Ordal. 1955. Studies on growth and toxin production of Clostridium botulinum in pre-cooked frozen food. II. Inhibition by lactic acid bacteria. Food Res. 20: 340346.
122. Scott, V. N., and, S. L. Taylor. 1981. Effect of nisin on outgrowth of Clostridium botulinum spores. J. Food Sci. 46: 117120.
123. Scott, V. N., and, S. L. Taylor. 1981. Temperature, pH, and spore load on the ability of nisin to prevent the outgrowth of Clostridium botulinum spores. J. Food Sci. 46: 121126.
124. Sears, P. M.,, B. S. Smith,, W. K. Stewart,, R. Gonzalez,, S. O. Rubino,, S. A. Gusik,, E. S. Kulisek,, S. J. Projan, and, P. Blackburn. 1992. Evaluation of a nisin-based germicidal formulation on teat skin of live cows. J. Dairy Sci. 75: 31853190.
125. Severina, E.,, A. Severin, and, A. Tomasz. 1998. Antibacterial efficacy of nisin against multidrug-resistant Gram-positive pathogens. J. Antimicrob. Chemother. 41: 341347.
126. Siegers, K., and, K. D. Entian. 1995. Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl. Environ. Microbiol. 61: 10821089.
127. Somers, E. B., and, S. L. Taylor. 1987. Antibotulinal effectiveness of nisin in pasteurized process cheese spreads. J. Food Prot. 50: 842848.
128. Stevens, K. A.,, B. W. Sheldon,, N. A. Klapes, and, T. R. Klaenhammer. 1992. Effect of treatment conditions on nisin inactivation of Gram-negative bacteria. J. Food Prot. 55: 763767.
129. Stoddard, G. W.,, J. P. Petzel,, M. J. van Belkum,, J. Kok, and, L. L. McKay. 1992. Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl. Environ. Microbiol. 58: 19521961.
130. Stoffels, G.,, J. Nissen-Meyer,, A. Gudmundsdottir,, K. Sletten,, H. Holo, and, I. F. Nes. 1992. Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Appl. Environ. Microbiol. 58: 14171422.
131. Tagg, J. R.,, A. S. Dajani, and, L. W. Wannamaker. 1976. Bacteriocins of Gram-positive bacteria. Bacteriol. Rev. 40: 722756.
132. Tanaka, N. E.,, E. Traisman,, M. H. Lee, and, R. Casses. 1980. Inhibition of botulism toxin formation in bacon by acid development. J. Food Prot. 43: 450452.
133. Taylor, L. Y.,, O. O. Cann, and, B. J. Welch. 1990. Anti-botulinal properties of nisin in fresh fish packaged in an atmosphere of carbon dioxide. J. Food Prot. 53: 953957.
134. Thompson, L. V., and, J. Delves-Broughton. 2005. Nisin, p. 239275. In P. M. Davidson,, J. N. Sofos, and, A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, Fla.
135. Tramer, J., and, G. G. Fowler. 1964. Estimation of nisin in foods. J. Sci. Food Agric. 15: 522528.
136. Vadyvaloo, V.,, S. Arous,, A. Gravesen,, Y. Héchard,, R. Chauhan-Haubrock,, J. W. Hasting, and, M. Rautenbach. 2004. Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology 150: 30253033.
137. van Belkum, M. J.,, B. J. Hayema,, R. E. Jeeninga,, J. Kok, and, G. Venema. 1991. Organization and nucleotide sequence of two lactococcal bacteriocin operons. Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. Appl. Environ. Microbiol. 57: 492498.
138. van Belkum, M. J.,, J. Kok,, G. Venema,, H. Holo,, I. F. Nes,, W. N. Konings, and, T. Abee. 1991. The bacteriocin lactococcin A specifically increases the permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J. Bacteriol. 173: 79347941.
139. van Belkum, M. J.,, R. W. Worobo, and, M. E. Stiles. 1997. Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol. Microbiol. 23: 12931301.
140. Vandenbergh, P. A. 1993. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev. 12: 221238.
141. Vandenbergh, P. A.,, M. J. Pucci,, B. S. Kunka, and, E. B. Vedamuthu. 1989. Method for inhibiting Listeria monocytogenes using a bacteriocin. European Patent Application 89101126.6.
142. van der Meer, J. R.,, J. Polman,, M. M. Beerthuyzen,, R. J. Siezen,, O. P. Kuipers, and, W. M. de Vos. 1993. Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J. Bacteriol. 175: 25782588.
143. Van Reenen, C. A.,, M. L. Chikindas,, W. H. Van Zyl, and, L. M. Dicks. 2003. Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int. J. Food Microbiol. 81: 2940.
144. Venema, K.,, T. Abee,, A. J. Haandrikman,, K. J. Leenhouts,, J. Kok,, W. N. Konings, and, G. Venema. 1993. Mode of action of lactococcin B, a thiol-activated bacteriocin from Lactococcus lactis. Appl. Environ. Microbiol. 59: 10411048.
145. Vogel, R. F.,, B. S. Pohle,, P. S. Tichaczek, and, W. Hammes. 1993. The competitive advantage of Lactobacillus curvatus LTH 1174 in sausage fermentations is caused by formation of curvacin. Syst. Appl. Microbiol. 16: 457462.
146. Wahlstrom, G., and, P. E. Saris. 1999. A nisin bioassay based on bioluminescence. Appl. Environ. Microbiol. 65: 37423745.
147. Whole Foods Market. 2000–2006. Health Info. Reference library: ingredients: nisin. [Online.] http://www.wholefoods.com/healthinfo/nisin.html. Accessed 23 January 2006.
148. Winkowski, K.,, M. E. C. Bruno, and, T. J. Montville. 1994. Correlation of bioenergetic parameters with cell death in Listeria monocytogenes cells exposed to nisin. Appl. Environ. Microbiol. 60: 41864187.
149. Winkowski, K.,, A. D. Crandall, and, T. J. Montville. 1993. Inhibition of Listeria monocytogenes by Lactobacillus bavaricus MN in meat systems at refrigeration temperatures. Appl. Environ. Microbiol. 59: 25522557.
150. Winkowski, K., and, T. J. Montville. 1992. Use of a meat isolate, Lactobacillus bavaricus MN, to inhibit Listeria monocytogenes growth in a model meat gravy system. J. Food Safety 13: 1931.
151. Worobo, R. W.,, M. J. van Belkum,, H. Sailer,, K. L. Roy,, J. C. Vederas, and, M. E. Stiles. 1995. A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J. Bacteriol. 177: 31433149.


Generic image for table
Table 34.1

Parallel mechanisms of antibiotic and bacteriocin resistance

Citation: Montville T, Chikindas M. 2007. Biopreservation of Foods, p 747-764. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch34
Generic image for table
Table 34.2

Analogies between the use of insecticides in production agriculture and the use of antimicrobials for food safety

Citation: Montville T, Chikindas M. 2007. Biopreservation of Foods, p 747-764. In Doyle M, Beuchat L (ed), Food Microbiology: Fundamentals and Frontiers, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815912.ch34

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error