Chapter 28 : Recent Developments in Rapid Detection Methods

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Recent Developments in Rapid Detection Methods, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815936/9781555814595_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555815936/9781555814595_Chap28-2.gif


The continued presence of pathogenic microorganisms and their toxins in food and drinking water has necessitated the ongoing need for newer, more sensitive and robust analytical systems capable of rapid detection of these contaminants in complex samples. The ideal detection method should be capable of rapidly detecting and confirming the presence of food-borne pathogenic microorganisms directly from complex samples with no false-positive or false-negative results. Rapid detection methods including immunological detection, cell/tissue-based assays and nucleic acid-based assays have been discussed in this chapter. Conventional culture techniques continue to be the gold standard for the isolation, detection, and identification of target pathogens. These methods increase detection times by hours to days, causing preliminary test results to be delayed. These assays are defined as affinity, cell/ tissue, and nucleic acid technologies. Antibody-based detection systems are still considered to be the gold standard of affinity-based testing methods. Aptamers offer several advantages over the use of antibodies in the identification of food-borne microorganisms and toxins. Any microorganism that contains DNA or RNA can be detected using nucleic acid-based assays, but a limitation of these diagnostics is their inability to detect protein-based agents of disease, such as toxins or prions.

Citation: Goodridge L, Griffiths M. 2010. Recent Developments in Rapid Detection Methods, p 450-459. In Juneja V, Sofos J (ed), Pathogens and Toxins in Foods. ASM Press, Washington, DC. doi: 10.1128/9781555815936.ch28
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Abd el-Galil, K. H,, M. A. El-Sokkary,, S. M. Kheira,, A. M. Salazar,, M. V. Yates,, W. Chen,, and A. Mulchandani. 2005. Real-time nucleic acid sequence-based amplification assay for detection of hepatitis A virus. Appl. Environ. Microbiol. 71: 71137116.
2. Arnold, D. L.,, R. W. Jackson,, N. R. Waterfield,, and J. W. Mansfield. 2007. Evolution of microbial virulence: the benefits of stress. Trends Genet. 23: 293300.
3. Baeumner, A. J.,, R. N. Cohen,, V. Miksic,, and J. Min. 2003. RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens. Bioelectron. 18: 405413.
4. Bannantine, J. P.,, T. J. Radosevich,, J. R. Stabel,, S. Sreevatsan,, V. Kapur,, and M. L. Paustian. 2007. Development and characterization of monoclonal antibodies and aptamers against major antigens of Mycobacterium avium subsp. paratuberculosis. Clin. Vaccine Immunol. 14: 518526.
5. Bashir, R. 2004. BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 56: 122.
6. Beattie, K. L. 1997. Genomic fingerprinting using oligonucleotide arrays. In G. Caetano-Anollés and, P. M. Gresshoff (ed.), Protocols, Applications, and Overviews. Wiley-Liss, New York, NY.
7. Bhattacharya, S.,, J. Jang,, L. Yang,, D. Akin,, and R. Bashir. 2007. Biomems and nanotechnology-based approaches for rapid detection of biological entities. J. Rapid Methods Automation Microbiol. 15: 132.
8. Binning, G.,, C. F. Quate,, and C. Gerber. 1986. Atomic force microscope. Phys. Rev. Lett. 56: 930933.
9. Brody, E. N.,, and L. Gold. 2000. Aptamers as therapeutic and diagnostic agents. J. Biotechnol. 4: 513.
10. Call, D. N. R.,, F. J. Brockman,, and D. P. Chandler. 2001. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. Int. J. Food Microbiol. 67: 7180.
11. Campbell, G. A.,, and R. Mutharasan. 2005. Escherichia coli O157:H7 detection limit of millimeter-sized PZT cantilever sensors is 700 cells/mL. Anal Sci. 21: 355357.
12. Cantor, C. R.,, and C. L. Smith. 1999. Analysis of DNA sequences by hybridization, p. 120–125. In Genomics: the Science and Technology behind the Human Genome Project. Wiley Inter-Science Publication, Hoboken, NJ.
13. Casper, E. T.,, S. S. Patterson,, M. C. Smith,, and J. H. Paul. 2005. Development and evaluation of a method to detect and quantify enteroviruses using NASBA and internal control RNA (IC-NASBA). J. Virol. Methods 124: 149155.
14. Cook, N. 2003. The use of NASBA for the detection of microbial pathogens in food and environmental samples. J. Microbiol. Methods 53: 165174.
15. Davila, A.,, J. Jang,, A. Gupta,, T. Walter,, A. Aronson,, and R. Bashir. 2007. Micro-resonator mass sensors for detection of Bacillus anthracis sterne spores in air and water. Biosens. Bioelectron. [Epub ahead of print.] doi 10.1016/j.bios.2007.01.012.
16. de Boer, E.,, and R. R. Beumer. 1999. Methodology for detection and typing of foodborne microorganisms. Int. J. Food Microbiol. 50: 119130.
17. Deiman, B.,, P. van Aarle,, and P. Sillekens. 2002. Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol. Biotechnol. 20: 163180.
18. DeYoung, H. G. 1983. Biosensors, the mating of biology and electronics. High Technol. 11: 4149.
19. D’Souza, D. H.,, and L. A. Jaykus. 2003. Nucleic acid sequence based amplification for the rapid and sensitive detection of Salmonella enterica from foods. J. Appl. Microbiol. 95: 13431350.
20. Ellington, A. D.,, and J. W. Szostak. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818822.
21. Emanuel, P. A.,, J. Dang,, J. S. Gebhardt,, J. Aldrich,, E. A. Garber,, H. Kulaga,, P. Stopa,, J. J. Valdes,, and A. Dion-Schultz. 2000. Recombinant antibodies: a new reagent for biological agent detection. Biosens. Bioelectron. 14: 751759.
22. Famulok, M.,, G. Mayer,, and M. Blind. 2000. Nucleic acid aptamers—from selection in vitro to application in vivo. Acc. Chem. Res. 33: 591599.
23. Feng, P. 1997. Impact of molecular biology on the detection of foodborne pathogens. Mol. Biotechnol. 7: 267278.
24. Filpula, D. 2007. Antibody engineering and modification technologies. Biomol. Eng. 24: 201215.
25. Fung, D. Y. 2002. Predictions for rapid methods and automation in food microbiology. J. AOAC Int. 85: 10001002.
26. Gfeller, K.,, N. Nugaeva,, and M. Hegner. 2005. Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. Biosens. Bioelectron. 21: 528533.
27. Ghosh, G.,, L. G. Bachas,, and K. W. Anderson. 2007. Biosensor incorporating cell barrier architectures for detecting Staphylococcus aureus alpha toxin. Anal. Bioanal. Chem. 387: 567574.
28. Goldschmidt, M. C. 2006. The use of biosensor and microarray techniques in the rapid detection and identification of salmonellae. J. AOAC Int. 89: 530537.
29. Griffiths, D.,, and G. Hall. 1993. Biosensors—what real progress is being made? Trends Biotechnol. 11: 122130.
30. Gupta, A.,, D. Akin,, and R. Bashir. 2004a. Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators. J. Vac. Sci. Technol. B 22: 27852791.
31. Gupta, A.,, D. Akin,, and R. Bashir. 2004b. Single virus particle detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 84: 19761978.
32. Hill, W. E. 1996. The polymerase chain reaction: applications for the detection of foodborne pathogens. Crit. Rev. Food Sci. Nutr. 36: 123173.
33. Hock, B.,, M. Seifert,, and K. Kramer. 2002. Engineering receptors and antibodies for biosensors. Biosensor. Bioelectron. 17: 239249.
34. Illic, B.,, D. Czaplewski,, M. Zalalutdinov,, H. G. Craighead,, P. Neuzil,, C. Campaglono,, and C. Batt. 2001. Single cell detection with micromechanical oscillators. J. Vac. Sci. Technol. B 19: 28252840.
35. Iqbal, S. S.,, M. W. Mayo,, J. G. Bruno,, B. V. Bronk,, C. A. Batt,, and J. P. Chambers. 2000. A review of molecular recognition technologies for detection of biological threat agents. Biosensor. Bioelect. 15: 549578.
36. Jain, K. K. 2003. Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev. Mol. Diagn. 3: 153161.
37. Keramas, G.,, D. D. Bang,, M. Lund,, M. Madsen,, S. E. Rasmussen,, H. Bunkenborg,, P. Telleman,, and C. B. Christensen. 2004. Development of a sensitive DNA microarray suitable for rapid detection of Campylobacter spp. Mol. Cell. Probes 17: 187196.
38. Kim, H.,, M. D. Kaneb,, S. Kimc,, W. Dominguezc,, B. M. Applegate,, and S. Savikhin. 2007. A molecular beacon DNA microarray system for rapid detection of E. coli O157:H7 that eliminates the risk of a false negative signal. Biosens. Bioelectron. 22: 10411047.
39. Klussmann, S.,, A. Nolte,, R. Bald,, V. A. Erdmann,, and J. P. Furst. 1996. Mirror image RNA that binds D-adenosine. Nat. Biotechnol. 14: 11121115.
40. Kostic, T.,, A. Weilharter,, S. Rubino,, G. Delogu,, S. Uzzau,, K. Rudic,, A. Sessitsch,, and L. Bodrossy. 2007. A microbial diagnostic microarray technique for the sensitive detection and identification of pathogenic bacteria in a background of nonpathogens. Anal. Biochem. 360: 244254.
41. Kou, X.,, Q. Wu,, J. Zhang,, and H. Fan. 2006. Rapid detection of noroviruses in fecal samples and shellfish by nucleic acid sequence-based amplification. J. Microbiol. 44: 403408.
42. Kovacs, G. T. A. 2003. Electronic sensors with living cellular components. Proc. IEEE 91: 915929.
43. Kramer, K.,, M. Fiedler,, A. Skerra,, and B. Hock. 2002a. A generic strategy for subcloning antibody variable regions from the scFv phage display vector pCANTAB 5 E into pASK85 permits the economical production of Fab fragments and leads to improved recombinant immunoglobulin stability. Biosensor. Bioelectron. 17: 305313.
44. Kramer, M. F.,, T. B. Tims,, and D. V. Lim. 2002b. Recovery of Escherichia coli O157:H7 from optical waveguides used for rapid biosensor detection. J. Rapid Methods Automat. Microbiol. 10: 93106.
45. Lim, D. V.,, J. M. Simpson,, E. A. Kearns,, and M. F. Kramer. 2005. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin. Microbiol. Rev. 18: 583607.
46. Malorny, B.,, P. T. Tassios,, P. Radstrom,, N. Cook,, M. Wagner,, and J. Hoorfar. 2003. Standardization of diagnostic PCR for the detection of foodborne pathogens. Int. J. Food Microbiol. 83: 3948.
47. McMasters, S.,, and D. N. Stratis-Cullum. 2006. Evaluation of aptamers as molecular recognition elements for pathogens using capillary electrophoretic analysis. Proc. SPIE 6380, 63800B. doi:10.1117/12.686357.
48. Mead, P. S.,, L. Slutsker,, V. Dietz,, L. F. McCaig,, J. S. Bresee,, C. Shapiro,, P. M. Griffin,, and R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5: 607625.
49. Mozola, M. A. 2006. Genetics-based methods for detection of Salmonella spp. in foods. J. AOAC Int. 89: 517529.
50. Nadal, A.,, A. Coll,, N. Cook,, and M. Pla. 2007. A molecular beacon-based real time NASBA assay for detection of Listeria monocytogenes in food products: role of target mRNA secondary structure on NASBA. J. Microbiol. Methods 68: 623632.
51. Newsome, R. 2003. Dormant microbes: research needs. 2003. Food Technol. 57: 3842.
52. Nugaeva, N.,, K. Gfeller,, N. Backmann,, H. Lang,, M. Düggelin,, and M. Hegner. 2005. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens. Bioelectron. 21: 849856.
53. Panicker, G.,, D. R. Call,, M. J. Krug,, and A. K. Bej. 2004. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl. Environ. Microbiol. 70: 74367444.
54. Petrenko, V. A.,, and V. J. Vodyanoy. 2003. Phage display for detection of biological threat agents. J. Microbiol. Methods 53: 253262.
55. Petrenko, V. A.,, and I. B. Sorokulova. 2004. Detection of biological threats. A challenge for directed molecular evolution. J. Microbiol. Methods 58: 147168.
56. Pieken, W.,, D. B. Olsen,, F. Benseler,, H. Aurup,, and F. Eckstein. 1991. Kinetic characterization of ribonuclease-resistant 20-modified hammerhead ribozymes. Science 253: 314317.
57. Richter, E. R. 1993. Biosensors: applications for dairy food industry. J. Dairy Sci. 76: 31143117.
58. Rider, T. H.,, M. S. Petrovick,, F. E. Nargi,, J. D. Harper,, E. D. Schwoebel,, R. H. Mathews,, D. J. Blanchard,, L. T. Bortolin,, A. M. Young,, J. Chen,, and M. A. Hollis. 2003. A B cell-based sensor for rapid identification of pathogens. Science 301: 213215.
59. Rodriguez-Lazaro, D.,, J. Lloyd,, A. Herrewegh,, J. Ikonomopoulos,, M. D’Agostino,, M. Pla,, and N. Cook. 2004. A molecular beacon-based realtime NASBA assay for detection of Mycobacterium avium subsp. Paratuberculosis in water and milk. FEMS Microbiol. Lett. 237: 119126.
60. Salazar, N. M.,, and G. Caetano-Anollés. 1996. Nucleic acid scanning by hybridization of enterohemorrhagic Escherichia coli isolates using oligodeoxynucleotide arrays. Nucleic Acids Res. 24: 50565057.
61. Sarid, D. 1991. Scanning Force Microscopy. Oxford University Press, New York, NY.
62. Schneider, P.,, L. Wolters,, G. Schoone,, H. Schallig,, P. Sillekens,, R. Hermsen,, and R. Sauerwein. 2005. Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. J. Clin. Microbiol. 43: 402405.
63. Teunis, P.,, K. Takumi,, and K. Shinagawa. 2004. Dose response for infection by Escherichia coli O157:H7 from outbreak data. Risk Anal. 24: 401407.
64. Tombelli, S.,, M. Minunni,, and M. Mascini. 2007. Aptamers-based assays for diagnostics, environmental and food analysis. Bio. Eng. 24: 191200.
65. Tsai, T. Y.,, W. J. Lee,, Y. J. Huang,, K. L. Chen,, and T. M. Pan. 2006. Detection of viable enterohemorrhagic Escherichia coli O157 using the combination of immunomagnetic separation with the reverse transcription multiplex TaqMan PCR system in food and stool samples. J. Food Prot. 69: 23202328.
66. Tuerk, C.,, and L. Gold. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505510.
67. Vivekananda, J.,, and J. L. Kiel. 2006. Anti- Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by aptamer-linked immobilized sorbent assay. Lab Invest. 86: 610618.
68. Volokhov, D.,, A. Rasooly,, K. Chumakov,, and V. Chizhikov. 2002. Identification of Listeria species by microarray-based assay. J. Clin. Microbiol. 40: 47204728.
69. Willse, A.,, T. M. Straub,, S. Wunschell,, J. A. Small,, D. R. Call,, D. Daly,, and D. P. Chandler. 2004. Quantitative oligonucleotide microarray fingerprinting of closely related Salmonella enterica isolates. Nucleic Acids Res. 32: 18481856.
70. Wilson, W. J.,, C. L. Strout,, T. Z. DeSantis,, J. L. Stilwell,, A. V. Carrano,, and G. L. Andersen. 2002. Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol. Cell. Probes 16: 119127.
71. Yoo, J. H.,, J. H. Choi,, S. M. Choi,, D. Lee,, W. S. Shin,, W. Min,, and C. C. Kim. 2005. Application of nucleic acid sequence-based amplification for diagnosis of and monitoring the clinical course of invasive aspergillosis in patients with hematologic diseases. Clin. Infect. Dis. 40: 392398.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error