Chapter 24 : Human Papillomaviruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Human Papillomaviruses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815974/9781555814625_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555815974/9781555814625_Chap24-2.gif


Human papillomaviruses (HPVs) infect surface epithelia and produce warts or other pathology at the site of multiplication on the skin or the mucous membrane. All of the open reading frames (ORFs) in papillomavirus DNA are located on only one of the two strands, indicating that only one strand carries the genetic information. The importance of the location of the lesion is best exemplified by laryngeal papilloma. The HPVs naturally fall into two groups, cutaneous HPVs and mucosal HPVs. The HPV-associated illnesses and the most common types of virus responsible for recurrent respiratory papillomatosis conditions are listed in this chapter. Specific HPV types are associated with different morphological types of lesions. It is unlikely that the cutaneous HPVs are associated with skin cancers in the same way as genital HPVs are associated with cervical cancer. The incidence of cervical cancer is high in developing countries, where it is the most common female malignancy and accounts for about 24% of all female cancers. A progressive spectrum of abnormalities, classified as low-grade and high-grade squamous intraepithelial neoplasia, precedes invasive cancer. For detection of virus, an immunologic test for viral capsid antigen is considerably more sensitive than demonstration of virus particles by electron microscopy. HPVs can be specifically identified only by nucleic acid based assays because the viruses cannot be grown in culture and type-specific immunologic reagents are not available. Recently, type-specific serological assays for HPV that use recombinant capsid proteins as antigens have been developed.

Citation: Viscidi R, Shah K. 2009. Human Papillomaviruses, p 408-416. In Specter S, Hodinka R, Young S, Wiedbrauk D (ed), Clinical Virology Manual, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815974.ch24
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Phylogenetic tree containing the L1 open reading frame sequences of 118 papilloma-virus types. The numbers at the ends of each of the branches identify HPV types; c-numbers refer to candidate HPV types. All other abbreviations refer to animal papillomavirus types. The outermost bracketed symbols identify papillomavirus genera, e.g., the genus alpha-papillomavirus, beta-papillomavirus, etc. The inner brackets and corresponding numbers refer to species within the individual genus. For example, the upper part of the figure shows that HPV types 7, 40, 43, and c91 together form the HPV species 8 in the genus alpha-papillomavirus. (Adapted from de Villiers et al., 2004.)

Citation: Viscidi R, Shah K. 2009. Human Papillomaviruses, p 408-416. In Specter S, Hodinka R, Young S, Wiedbrauk D (ed), Clinical Virology Manual, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815974.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Percentages of cervical cancer cases attributed to the most frequent HPV types in all world regions combined, as estimated from pooled analysis of 3,085 cases reported to the International Agency for Research on Cancer (A) and meta-analysis of more than 14,500 cases reported in the literature (B). (Adapted from Clifford et al. 2006.)

Citation: Viscidi R, Shah K. 2009. Human Papillomaviruses, p 408-416. In Specter S, Hodinka R, Young S, Wiedbrauk D (ed), Clinical Virology Manual, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815974.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Berkhout, R. J.,, J. N. Bouwes Bavinck, and, J. ter Schegget. 2000. Persistence of human papillomavirus DNA in benign and (pre)malignant skin lesions from renal transplant recipients. J. Clin. Microbiol. 38 :20872096.
2. Bosch, F. X.,, A. Lorincz,, N. Munoz,, C. J. Meijer, and, K. V. Shah. 2002. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol. 55: 244265.
3. Bosch, F. X.,, M. M. Manos,, N. Munoz,, M. Sherman,, A. M. Jansen,, J. Peto,, M. H. Schiffman,, V. Moreno,, R. Kurman,, K. V. Shah, et al. 1995. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. J. Natl. Cancer Inst. 87: 796802.
4. Bosch, F. X.,, N. Munoz,, S. de Sanjose,, E. Guerrerro,, A. M. Ghaffari,, J. Kaldor,, X. Castellsague,, K. V. Shah, and, A. M. Gaffari. 1994. Importance of human papillomavirus endemicity in the incidence of cervical cancer: an extension of the hypothesis on sexual behavior. Cancer Epidemiol. Biomarkers Prev. 3: 375379.
5. Boxman, I. L.,, R. J. Berkhout,, L. H. Mulder,, M. C. Wolkers,, J. N. Bouwes Bavinck,, B. J. Vermeer, and, J. ter Schegget. 1997. Detection of human papillomavirus DNA in plucked hairs from renal transplant recipients and healthy volunteers. J. Investig. Dermatol. 108: 712715.
6. Bunney, M. 1992. Viral Warts: Their Biology and Treatment. Oxford University Press, Oxford, United Kingdom.
7. Centers for Disease Control and Prevention. 2007. Table 42. Selected STDs and complications—initial visits to physicians’ offices, National Disease and Therapeutic Index: United States, 1966–2007. [Online.] http://www.cdc.gov/std/stats07/tables/42.htm.
8. Chuang, T. Y.,, H. O. Perry,, L. T. Kurland, and, D. M. Ilstrup. 1984. Condyloma acuminatum in Rochester, Minn., 1950–1978. I. Epidemiology and clinical features. Arch. Dermatol. 120: 469475.
9. Clifford, G.,, S. Franceschi,, M. Diaz,, N. Munoz, and, L. L. Villa. 2006. Chapter 3: HPV type-distribution in women with and without cervical neoplastic diseases. Vaccine 24 (Suppl. 3) : S26S34.
10. Croissant, O.,, F. Breitburd, and, G. Orth. 1985. Specificity of cytopathic effect of cutaneous human papillomaviruses. Clin. Dermatol. 3: 4355.
11. Cullen, A. P.,, R. Reid,, M. Campion, and, A. T. Lorincz. 1991. Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm. J. Virol. 65: 606612.
12. de Koning, M. N.,, L. Struijk,, J. N. Bavinck,, B. Kleter,, J. ter Schegget,, W. G. Quint, and, M. C. Feltkamp. 2007. Betapapillomaviruses frequently persist in the skin of healthy individuals. J. Gen. Virol. 88: 14891495.
13. de Roda, H.,, J. M. Walboomers,, C. J. Meijer,, E. K. Risse,, M. E. Schipper,, T. M. Helmerhorst,, O. P. Bleker,, H. Delius,, A. J. van den Brule, and, P. J. Snijders. 1994. Analysis of cytomorphologically abnormal cervical scrapes for the presence of 27 mucosotropic human papillomavirus genotypes, using polymerase chain reaction. Int. J. Cancer. 56: 802806.
14. de Villiers, E. M.,, C. Fauquet,, T. R. Broker,, H. U. Bernard, and, H. zur Hausen. 2004. Classification of papillomaviruses. Virology 324: 1727.
15. Dillner, J. 1999. The serological response to papillomaviruses. Semin. Cancer Biol. 9: 423430.
16. D’Souza, G.,, A. R. Kreimer,, R. Viscidi,, M. Pawlita,, C. Fakhry,, W. M. Koch,, W. H. Westra, and, M. L. Gillison. 2007. Case-control study of human papillomavirus and oropharyngeal cancer. N. Engl. J. Med. 356: 19441956.
17. Durst, M.,, D. Glitz,, A. Schneider, and, H. zur Hausen. 1992. Human papillomavirus type 16 (HPV 16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology 189: 132140.
18. Gissmann, L.,, L. Wolnik,, H. Ikenberg,, U. Koldovsky,, H. G. Schnurch, and, H. zur Hausen. 1983. Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proc. Natl. Acad. Sci. USA 80: 560563.
19. Gravitt, P. E.,, C. L. Peyton,, R. J. Apple, and, C. M. Wheeler. 1998. Genotyping of 27 human papillomavirus types by using L1 consensus PCR products by a single-hybridization, reverse line blot detection method. J. Clin. Microbiol. 36: 30203027.
20. Jablonska, S.,, and S. Majewski. 1972. Epidermodysplasia verriciformis: immunolgical and clinical aspects, p. 157–175. In H. zur Hausen (ed.), Human Pathogenic Papillomaviruses. Springer Verlag, Heidelberg, Germany.
21. Jenson, A. B.,, J. D. Rosenthal,, C. Olson,, F. Pass,, W. D. Lancaster, and, K. Shah. 1980. Immunologic relatedness of papillomaviruses from different species. J. Natl. Cancer Inst. 64: 495500.
22. Kirnbauer, R.,, N. L. Hubbert,, C. M. Wheeler,, T. M. Becker,, D. R. Lowy, and, J. T. Schiller. 1994. A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. J. Natl. Cancer Inst. 86: 494499.
23. Koutsky, L. A.,, K. A. Ault,, C. M. Wheeler,, D. R. Brown,, E. Barr,, F. B. Alvarez,, L. M. Chiacchierini, and, K. U. Jansen. 2002. A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med. 347: 16451651.
24. Koutsky, L. A.,, and D. M. Harper. 2006. Chapter 13: current findings from prophylactic HPV vaccine trials. Vaccine 24 (Suppl. 3) : S114S121.
25. Lehtinen, M.,, M. Pawlita,, K. Zumbach,, K. Lie,, M. Hakama,, E. Jellum,, P. Koskela,, T. Luostarinen,, J. Paavonen,, E. Pukkala,, E. Sigstad,, S. Thoresen, and, J. Dillner. 2003. Evaluation of antibody response to human papillomavirus early proteins in women in whom cervical cancer developed 1 to 20 years later. Am. J. Obstet. Gynecol. 188: 4955.
26. Lorincz, A. T. 1996. Hybrid capture method for detection of human papillomavirus DNA in clinical specimens: a tool for clinical management of equivocal Pap smears and for population screening. J. Obstet. Gynaecol. Res. 22: 629636.
27. Manos, M. M.,, Y. Ting,, D. K. Wright,, A. J. Lewis,, T. R. Broker, and, S. M. Wolinsky. 1989. Use of polymerase chain reaction amplification for the detection of genital human papillomaviruses, p. 209–214. In M. Furth and, M. Greaves (ed.), Cancer Cells 7, Molecular Diagnostics of Human Cancer. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
28. Meisels, A.,, C. Morin, and, M. Casas-Cordero. 1982. Human papillomavirus infection of the uterine cervix. Int. J. Gynecol. Pathol. 1: 7594.
29. Mounts, P.,, and K. V. Shah. 1984. Respiratory papillomatosis: etiological relation to genital tract papillomaviruses. Prog. Med. Virol. 29: 90114.
30. Oriel, J. D. 1971. Natural history of genital warts. Br. J. Vener. Dis. 47: 113.
31. Parkin, D. M.,, and F. Bray. 2006. Chapter 2: the burden of HPV-related cancers. Vaccine 24 (Suppl. 3) : S11S25.
32. Pfister, H.,, I. Hettich,, U. Runne,, L. Gissmann, and, G. N. Chilf. 1983. Characterization of human papillomavirus type 13 from focal epithelial hyperplasia Heck lesions. J. Virol. 47: 363366.
33. Pfister, H.,, and J. ter Schegget. 1997. Role of HPV in cutaneous premalignant and malignant tumors. Clin. Dermatol. 15: 335347.
34. Ramoz, N.,, L. A. Rueda,, B. Bouadjar,, L. S. Montoya,, G. Orth, and, M. Favre. 2002. Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat. Genet. 32: 579581.
35. Scheffner, M.,, K. Munger,, J. C. Byrne, and, P. M. Howley. 1991. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc. Natl. Acad. Sci. USA 88: 55235527.
36. Schiller, J. T.,, and D. R. Lowy. 1996. Papillomavirus-like particles and HPV vaccine development. Semin. Cancer Biol. 7: 373382.
37. Schiller, J. T.,, and D. Nardelli-Haefliger. 2006. Chapter 17: second generation HPV vaccines to prevent cervical cancer. Vaccine. 24 (Suppl. 3) : S147S153.
38. Schneider, A.,, and L. A. Koutsky. 1992. Natural history and epidemiologic features of genital HPV infection, p. 25–52. In N. Munoz,, F. X. Bosch,, K. V. Shah, and, A. Meheus (ed.), The Epidemiology of Human Papillomavirus and Cervical Cancer. International Agency for Research on Cancer, Lyon, France.
39. Silins, I.,, E. Avall-Lundqvist,, A. Tadesse,, K. U. Jansen,, U. Stendahl,, P. Lenner,, K. Zumbach,, M. Pawlita,, J. Dillner, and, B. Frankendal. 2002. Evaluation of antibodies to human papillomavirus as prognostic markers in cervical cancer patients. Gynecol. Oncol. 85: 333338.
40. Silverberg, M. J.,, P. Thorsen,, H. Lindeberg,, L. A. Grant, and, K. V. Shah. 2003. Condyloma in pregnancy is strongly predictive of juvenile-onset recurrent respiratory papillomatosis. Obstet. Gynecol. 101: 645652.
41. Skegg, D. C.,, P. A. Corwin,, C. Paul, and, R. Doll. 1982. Importance of the male factor in cancer of the cervix. Lancet ii: 581583.
42. Viscidi, R. P.,, Y. Sun,, B. Tsuzaki,, F. X. Bosch,, N. Munoz, and, K. V. Shah. 1993. Serologic response in human papilloma-virus-associated invasive cervical cancer. Int. J. Cancer. 55: 780784.
43. Walboomers, J. M.,, M. V. Jacobs,, M. M. Manos,, F. X. Bosch,, J. A. Kummer,, K. V. Shah,, P. J. Snijders,, J. Peto,, C. J. Meijer, and, N. Munoz. 1999. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189: 1219.
44. Wu, T. C. 1994. Immunology of the human papilloma virus in relation to cancer. Curr. Opin. Immunol. 6: 746754.


Generic image for table

Papillomavirus ORFs and their functions and products

Citation: Viscidi R, Shah K. 2009. Human Papillomaviruses, p 408-416. In Specter S, Hodinka R, Young S, Wiedbrauk D (ed), Clinical Virology Manual, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815974.ch24
Generic image for table

Clinical associations of HPVs

Citation: Viscidi R, Shah K. 2009. Human Papillomaviruses, p 408-416. In Specter S, Hodinka R, Young S, Wiedbrauk D (ed), Clinical Virology Manual, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815974.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error