Chapter 14 : Bacteriophages Encoding Botulinum and Diphtheria Toxins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Bacteriophages Encoding Botulinum and Diphtheria Toxins, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap14-2.gif


Bacteriophages have long been recognized to harbor genes that encode various classes of virulence factors, including protein toxins. Some classic examples of phage conversion of grampositive hosts to toxinogenesis are the production of diphtheria toxin (DT) in and the production of botulinum neurotoxins (BoNTs) in types C and D of . DT has generally been considered mainly responsible for the gross symptoms of diphtheria, and the lack of genetic systems for has prevented the identification of other virulence factors associated with its pathogenicity. The association of DT with phages provides a classic example of lysogenic conversion, whereby the bacterial cell acquires traits as a consequence of phage infection. has attracted much interest in recent years, largely due to advances in the study of the structure, function, and genetics of the neurotoxins it encodes and in the therapeutic applications of these toxins for the treatment of several neurologic disorders. BoNTs and tetanus neurotoxin (TeNT) act by selectively blocking the neurotransmission of presynaptic nerve terminals in the peripheral and central nervous systems. The characterization of genes for BoNT and associated proteins of the toxin complexes indicated that these genes are located on the chromosome, on pseudolysogenic bacteriophages, or on plasmids, depending on the serotype. Converting and nonconverting phages from types C and D have been isolated and partially characterized.

Citation: Johnson E. 2005. Bacteriophages Encoding Botulinum and Diphtheria Toxins, p 280-296. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Relationships of bacteriophages and toxins produced by types C and D. Adapted from reference with permission of the publisher.

Citation: Johnson E. 2005. Bacteriophages Encoding Botulinum and Diphtheria Toxins, p 280-296. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, M. H. 1959. Bacteriophages. Wiley Interscience, New York, N.Y.
2. Anderson, N. G. 1970. Evolutionary significance of virus infection. Nature 207: 1346 1347.
3. Arnon, S. S.,, R. Schechter,, T. H. Inglesby,, D. A. Henderson,, J. G. Bartlett,, M. S. Ascher,, E. Eitzen,, A. D. Fine,, J. Hauer,, J. Layton,, S. Lillibridge,, M. T. Osterholm,, T. O’Toole,, G. Parker,, T. M. Perl,, P. K. Russell,, D. L. Swerdlow,, and K. Tonat for the Working Group on Civilian Biodefense. 2001. Botulinum toxin as a biological weapon. Medical and public health management. JAMA 285: 1059 1070.
4. Barksdale, L. 1959. Lysogenic conversion in bacteria. Bacteriol. Rev. 23: 202 212.
5. Barksdale, L. 1970. Corynebacterium diphtheriae and its relatives. Bacteriol. Rev. 34: 378 422.
6.Barksdale L. 1971. The gene, tox +, of Corynebacterium diphtheriae, p. 215232. In J. Monod, and E. Borek (ed.), Of Microbes and Life. Columbia University Press, New York, N. Y.
7. Barksdale, L,, and S. B. Arden. Persisting bacteriophage infections, lysogeny, and phage conversions. Annu. Rev. Microbiol. 28: 265 269.
8. Barksdale, W. L.,, and A. M. Pappenheimer, Jr. 1954. Phage-host relationships in toxigenic and nontoxigenic diphtheria bacilli. J. Bacteriol. 67: 220 232.
9. Barondess, J. J.,, and J. Beckwith. 1990. A bacterial virulence determinant encoded by lysogenic coliphage λ. Nature 346: 871 873.
10. Betz, J. V. 1968. Some properties of bacteriophages active on the obligate anaerobe Clostridium sporogenes. Virology 36: 9 19.
11. Bishai, W. R.,, and J. R. Murphy,. 1988. Bacteriophage gene products that cause human disease, p. 683 724. In R. Calendar (ed.), the Bacteriophages, vol. 2. Plenum Press, New York, N.Y.
12. Brock, T. D. 1990. The Emergence of Bacterial Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
13. Buck, G. A.,, R. E. Cross,, T. P. Wong,, J. Loera,, and N. Groman. 1985. DNA relationships among some tox-bearing cornynebacteriophages. Infect. Immun. 49: 679 684.
14. Burgi, E.,, and A. D. Hershey. 1963. Sedimentation rate as a measure of molecular weight of DNA. Biophys. J. 3: 309 321.
15. Campbell, A. M. 1992. Chromosomal insertion sites for phages and plasmids. J. Bacteriol. 174: 7496 7499.
16. Canchaya, C.,, G. Fournous,, S. Chibani-Chennoufi,, M.-L. Dillman,, and H. Brüssow. 2003. Phages as agents of lateral gene transfer. Curr. Opin. Microbiol. 6: 417 424.
17. Canchaya, C.,, C. Proux,, G. Fournous,, A. Bruttin,, and H. Brüssow. 2003. Prophage genomics. Microbiol. Mol. Biol. Rev. 67: 238 276.
18. Casjens, S. 2003. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49: 277 300.
19. Cerdeño-Tárraga, A. M.,, A. Efstratiou,, L. G. Dover,, M. T. G. Holden,, M. Pallen,, S. D. Bentley,, G. S. Besra,, C. Churcher,, K. D. James,, A. De Zoysa,, T. Chillingworth,, A. Cronin,, L. Dowd,, T. Feltwell,, N. Hamlin,, S. Holroyd,, K. Jagels,, S. Moule,, M. A. Quail,, E. Rabbinowotsch,, K. M. Rutherford,, N. R. Thompson,, L. Unwin,, S. Whitehead,, B. G. Barrell,, and J. Parkhill. 2003. The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res. 31: 6516 6523.
20. Cheetham, B. F.,, and M. E. Katz. 1995. A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol. Microbiol. 18: 201 208.
21. Cianciotto, N. P.,, and N. B. Groman. 1996. Extended host range of a β-related corynebacteriophage. FEMS Microbiol. Lett. 140: 221 225.
22. Collier, R. J. 1975. Diphtheria toxin: mode of action and structure. Bacteriol. Rev. 39: 54 85.
23. Collier, R. J. 2001. Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39: 1793 1803.
24. Dolman, C. E.,, and E. Chang. 1972. Bacteriophages of Clostridium botulinum. Can. J. Microbiol. 18: 67 76.
25. Eklund, M. W.,, F. T. Poysky,, and E. S. Boatman. 1969. Bacteriophages of Clostridium botulinum types A, b, E, and F and nontoxigenic strains resembling type E. J. Virol. 3: 270 274.
26. Eklund, M. W.,, F. T. Poysky,, and W. H. Habig,. 1989. Bacteriophages and plasmids in Clostridium botulinum and Clostridium tetani and their relationship to production of toxins, p. 25 51. In L. L. Simpson (ed.), Botulinum Neurotoxin and Tetanus Toxin. Academic Press, San Diego, Calif.
27. Eklund, M. W.,, F. T. Poysky,, S. M. Reed,, and C. A. Smith. 1971. Bacteriophage and toxigenicity of Clostridium botulinum type C. Science 172: 480 482.
28. Eklund, M. W.,, F. T. Poysky,, and S. M. Reed. 1972. Bacteriophages and the toxigenicity of Clostridium botulinum type D. Nat. New Biol. 235: 16 17.
29. Eklund, M. W.,, and F. T. Poysky. 1974. Interconversion of types C and D strains of Clostridium botulinum by specific bacteriophages. Appl. Microbiol. 27: 251 258.
30. Eklund, M. W.,, F. T. Poysky,, J. A. Meyers,, and G. A. Pelroy. 1974. Interspecies conversion of Clostridium botulinum type C to Clostridium novyi by bacteriophage. Science 186: 456 458.
31. Eklund, M. W.,, L. Poysky,, M. Mseiteif,, and M. S. Strom. 1988. Evidence for plasmid-mediated toxin and bacteriocin production in Clostridium botulinum type G. Appl. Environ. Microbiol. 54: 1405 1408.
32. Franciosa, G.,, J. L. Ferreira,, and C. L. Hatheway. 1994. Detection of type A, b, and E botulism neurotoxin genes in Clostridium botulinum and other Clostridium species by PCR: evidence of unexpressed type B toxin genes in type A toxigenic organisms. J. Clin. Microbiol. 32: 1911 1917.
33. Freeman, V. J. 1951. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J. Bacteriol. 63: 675 688.
34. Freeman, V. J.,, and I. U. Morse. 1952. Further observations on the change to virulence of bacteriophage- infected avirulent strains of Corynebacterium diphtheriae. J. Bacteriol. 63: 407 414.
35. Friedman, D. I.,, and D. L. Court. 2001. Bacteriophage lambda: alive and well and still doing its thing. Curr. Opin. Microbiol. 4: 201 207.
36. Fujinaga, Y.,, K. Inoue,, S. Shimazaki,, K. Tomochika,, K. Tsuzuki,, N. Fujii,, T. Watanabe,, T. Ohyama,, K. Takeshi,, K. Inoue,, and K. Oguma. 1994. Molecular construction of Clostridium botulinum type C progenitor toxin and its gene organization. Biochem. Biophys. Res. Commun. 205: 1291 1298.
37. Galazka, A. 2000. The changing epidemiology of diphtheria in the vaccine era. J. Infect. Dis. 181( Suppl. 1): S2 S9.
38. Galazka, A. 2000. Implications of the diphtheria epidemic in the former Soviet Union for immunization programs. J. Infect. Dis. 18( Suppl. 1): S244 S248.
39. Gentry-Weeks, P.,, S. Coburn,, and M. S. Gilmore. 2002. Phages and other mobile virulence elements in gram-positive pathogens. Curr. Top. Microbiol. Immunol. 264: 79 94.
40. Giannini, G.,, R. Rappuoli,, and G. Ratti. 1984. The amino acid sequence of two nontoxic mutants of diphtheria toxin CRM45 and CRM197. Nucleic Acids Res. 12: 4063 4069.
41. Gill, D. M. 1982. Bacterial toxins: a table of lethal amounts. Bacteriol. Rev. 46: 86 94.
42. Gill, D. M.,, T. Uchida,, and R. A. Singer. 1972. Expression of diphtheria toxin genes carried by integrated and nonintegrated phage beta. Virology 50: 664 668.
43. Greenfield, L. 1992. Diphtheria toxin cloning and expression in Corynebacterium diphtheriae. Targeted Diagn. Ther. 7: 273 305.
44. Greenfield, L.,, M. J. Bjorn,, G. Horn,, D. Fong,, G. A. Buck,, R. J. Collier,, and D. A. Kaplan. 1983. Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage β. Proc. Natl. Acad. Sci. USA 80: 6853 6857.
45. Groman, N. B. 1953. Evidence for the induced nature of the change from nontoxigenicity to toxigenicity in Corynebacterium diphtheriae as a result of exposure to specific bacteriophage. J. Bacteriol. 66: 184 191.
46. Groman, N. B. 1955. Evidence for the active role of bacteriophage in the conversion of nontoxigenic Corynebacterium diphtheriae to toxin production. J. Bacteriol. 69: 6 15.
47. Groman, N. B.,, and M. Eaton. 1955. Genetic factors in Corynebacterium diphtheriae conversion. J. Bacteriol. 70: 637 640.
48. Guedon, E.,, and J. D. Helmann. 2003. Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol. Microbiol. 48: 495 497.
49. Hacker, J.,, and J. B. Kaper. 2000. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54: 641 679.
50. Hadfield, T. L.,, P. McEvoy,, Y. Polotsky,, V. A. Tzinserling,, and A. A. Yakolev. 2000. The pathology of diphtheria. J. Infect. Dis. 181( Suppl. 1): S116 S120.
51. Hariharan, H.,, and W. R. Mitchell. 1976. Observations on bacteriophages of Clostridium botulinum type C isolates from different sources and the role of certain phages in toxigenicity. Appl. Environ. Microbiol. 32: 145 158.
52. Hatheway, C. L.,, and E. A. Johnson,. 1998. Clostridium: the spore-bearing anaerobes, p. 731 782. In L. Collier,, A. Balows,, and M. Sussman (ed.), Topley andWilson’s Microbiology and Microbial Infections, 9th ed., vol. 2. Arnold, London, United Kingdom.
53. Hauser, D.,, M. W. Eklund,, P. Boquet,, and M. R. Popoff. 1994. Organization of the botulinum neurotoxin C1 gene and its associated nontoxic protein genes in Clostridium botulinum C468. Mol. Gen. Genet. 243: 631 640.
54. Hauser, D.,, P. Gibert,, P. Boquet,, and M. R. Popoff. 1992. Plasmid localization of a type E botulinal neurotoxin gene homologue in toxigenic Clostridium butyricum strains, and the absence of this gene in non-toxigenic C. butyricum strains. FEMS Microbiol. Lett. 99: 251 256.
55. Hauser, D.,, M. Gibert,, M. W. Eklund,, P. Boquet,, and M. R. Popoff. 1993. Comparative analysis of C3 and botulinal neurotoxin genes and their environment in Clostridium botulinum types C and D. J. Bacteriol. 175: 7260 7268.
56. Hauser, D.,, M. Gibert,, J. C. Marvaud,, M. W. Eklund,, and M. R. Popoff. 1995. Botulinal neurotoxin C1 complex genes, clostridial neurotoxin homology and genetic transfer in Clostridium botulinum. Toxicon 33: 515 526.
57. Hendrix, R. W. 2003. Bacteriophage genomics. Curr. Opin. Microbiol. 6: 506 511.
58. Hendrix, R. W.,, M. C. M. Smith,, R. N. Burns,, M. E. Ford,, and G. F. Hatfull. 1999. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl. Acad. Sci. USA 96: 2192 2197.
59. Holmes, R. K. 1976. Characterization and genetic mapping of nontoxinogenic ( tox) mutants of corynebacteriophage beta. J. Virol. 19: 195 207.
60. Holmes, R. K. 2000. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J. Infect. Dis. 181( Suppl. 1): S156 S157.
61. Holmes, R. K.,, and L. Barksdale. 1969. Genetic analysis of tox + and tox bacteriophages of Corynebacterium diphtheriae. J. Virol. 3: 586 598.
62. Hull, T. G. 1963. Diseases Transmitted from Animals to Man, 5th ed. Charles C Thomas, Springfield, Ill.
63. Hutson, R. A.,, Y. Zhou,, M. D. Collins,, E. A. Johnson,, C. L. Hatheway,, and H. Sugiyama. 1996. Genetic characterization of Clostridium botulinum type A containing silent type B neurotoxin gene sequences. J. Biol. Chem. 271: 10786 10792.
64. Inoue, K.,, and H. Iida. 1968. Bacteriophages of Clostridium botulinum. J. Virol. 2: 537 540.
65. Inoue, K.,, and H. Iida. 1970. Conversion of toxigenicity in Clostridium botulinum type C. Jpn. J. Microbiol. 14: 87 89.
66. Inoue, K.,, and H. Iida. 1971. Phage conversion of toxigenicity in Clostridium botulinum types C and D. Jpn. J. Med. Sci. 24: 53 56.
67. Johnson, E. A.,, J. H. Nelson,, and M. Johnson. 1990. Microbiological safety of cheese made from heat-treated milk. Part II. Microbiology. J. Food Prot. 53: 519 540.
68. Johnson, E. A.,, and M. C. Goodenough,. 1998. Botulism, p. 723 741. In L. Collier,, A. Balows,, and M. Sussman (ed.), Topley and Wilson’s Microbiology and Microbial Infections, 9th ed., vol. 3. Arnold, London, United Kingdom.
69. Johnson, E. A. 1999. Clostridial toxins as therapeutic agents: benefits of nature’s most toxic proteins. Annu. Rev. Microbiol. 53: 551 575.
70. Johnson, E. A.,, w.-J. Lin,, Y.-T. Zhou,, and M. Bradshaw. 1997. Characterization of neurotoxin mutants in Clostridium botulinum type A. Clin. Infect. Dis. 25( Suppl. 2): S168 S170.
71. Kaczorek, M.,, F. Delpeyroux,, N. Chenciner,, R. E. Streeck,, J. R. Murphy,, P. Boquet,, and P. Tiollais. 1983. Nucleotide sequence and expression of the diphtheria tox228 gene in Escherichia coli. Science 221: 855 858.
72. Kaplan, D. A.,, L. Naumovski,, and R. J. Collier. 1981. Chromogenic detection of antigen in bacteriophage plaques: a microplaque method applicable to large-scale screening. Gene 13: 211 220.
73. Kimura, K.,, N. Fujii,, K. Tsuzuki,, T. Murakami,, T. Indoh,, N. Yokosawa,, K. Takeshi,, B. Syuto,, and K. Oguma. 1990. The complete nucleotide sequence of the gene coding for botulinum type C1 toxin in the C-ST phage genome. Biochem. Biophys. Res. Commun. 171: 1304 1311.
74. Kinouchi, t.,, K. Takumi,, and T. Kawata. 1981. Characterization of two inducible bacteriophages, α-1 and α-2, isolated from Clostridium botulinum type A 190L and their deoxyribonucleic acids. Microbiol. Immunol. 25: 915 927.
75. Krüger, D. H.,, and T. A. Bickle. 1983. Bacteriophage survival:multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol. Rev. 47: 345 360.
76. Laird, W.,, and N. Groman. 1976. Prophage map of converting corynebacteriophage beta. J. Virol. 19: 208 219.
77. Laird, W.,, and N. Groman. 1976. Orientation of the tox gene in the prophage of corynebacteriophage beta. J. Virol. 19: 228 231.
78. Leong, D.,, and J. R. Murphy. 1985. Characterization of the diphtheria tox transcript in Corynebacterium diphtheriae and Escherichia coli. J. Bacteriol. 163: 1114 1119.
79. Levin, B. R.,, and C. T. Bergstrom. 2000. Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. Proc. Natl. Acad. Sci. USA 97: 6981 6985.
80. Lin, W.-J.,, and E. A. Johnson. 1995. Genome analysis of Clostridium botulinum type A by pulsedfield gel electrophoresis. Appl. Environ. Microbiol. 61: 4441 4447.
81. Lipsky, B. A.,, A. C. Goldberger,, L. S. Tomkins,, and J. J. Plorde. 1982. Infections caused by nondiphtheria corynebacteria. Rev. Infect. Dis. 4: 1220 1235.
82. Love, J. F.,, and J. R. Murphy,. 2000. Corynebacterium diphtheriae: iron-mediated activation of DtxR and regulation of diphtheria toxin expression, p. 573 582. In V. A. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.), Gram-Positive Pathogens. ASM Press, Washington, D. C.
83. Lwoff, A. 1953. Lysogeny. Bacteriol. Rev. 17: 269 337.
84. Matsuda, M.,, and L. Barksdale. 1966. Phagedirected synthesis of diphtherial toxin in nontoxigenic Corynebacterium diphtheriae. Nature 210: 911 913.
85. Matsuda, M.,, and L. Barksdale. 1967. System for the investigation of the bacteriophage-directed synthesis of diphtheria toxin. J. Bacteriol. 93: 722 730.
86. Miao, E. A.,, and S. I. Miller. 1999. Bacteriophages in the evolution of pathogen-host interactions. Proc. Natl. Acad. Sci. USA 96: 9452 9454.
87. Minton, N. P., 1995. Molecular genetics of clostridial neurotoxins, p. 161 194. In C. Montecucco (ed.), Clostridial Neurotoxins. Springer, Berlin, Germany.
88. Moriishi, K.,, M. Koura,, N. Abe,, N. Fujii,, Y. Fujinaga,, K. Inoue,, and K. Oguma. 1996. Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D organisms. Biochim. Biophys. Acta 1307: 123 126.
89. Moriishi, K.,, M. Koura,, N. Fujii,, Y. Fujinaga,, K. Inoue,, B. Syuto,, and K. Oguma. 1996. Molecular cloning of the gene encoding the mosaic neurotoxin, composed of parts of botulinum neurotoxin types C1 and D, and PCR detection of the gene from Clostridium botulinum type C organisms. Appl. Environ. Microbiol. 62: 662 667.
90. Mueller, J. H. 1941. The influence of iron on the production of diphtheria toxin. J. Immunol. 42: 343 351.
91. Mueller, J. H.,, and P. A. Miller. 1941. Production of diphtheria toxin of high potency (100 Lf) on a reproducible medium. J. Immunol. 40: 21 32.
92. Murphy, J. R.,, A. M. Pappenheimer, Jr.,, and S. T. de Borms. 1974. Synthesis of diphtheria tox-gene products in Escherichia coli extracts. Proc. Natl. Acad. Sci. USA 71: 11 15.
93. Nako, H.,, J. M. Pruckler,, I. K. Mazurova,, O. V. Narvskaia,, T. Glushkevich,, V. F. Marijevski,, A. N. Kravetz,, B. S. Fields,, I. K. Wachsmuth,, and T. Popovic. 1996. Heterogeneity of the diphtheria toxin gene, t ox, and its regulatory element dtxR, in Corynebacterium diphtheriae strains causing epidemic diphtheria in Russia and the Ukraine. J. Clin. Microbiol. 34: 1711 1716.
94. Nieves, B. M.,, F. Gil,, and F. J. Castillo. 1981. Growth inhibition activity and bacteriophage and bacteriocin-like particles associated with different species of Clostridium. Can. J. Microbiol. 27: 216 225.
95. Novick, R. P. 2003. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49: 93 105.
96. Ogata, S.,, and M. Hongo. 1979. Bacteriophages of the genus Clostridium. Adv. Appl. Microbiol. 25: 241 273.
97. Oguma, K. 1976. The stability of toxigenicity in Clostridium botulinum type C. Jpn. J. Microbiol. 14: 87 89.
98. Oguma, K.,, Y. Fujinaga,, and E. Inoue. 1995. Structure and function of Clostridium botulinum toxins. Microbiol. Immunol. 39: 161 168.
99. Oguma, K.,, H. Iida,, and K. Inoue. 1975. Bacteriophages and toxigenicity in Clostridium botulinum types C and D. Jpn. J. Med. Sci. Biol. 28: 63 66.
100. Oguma, K.,, H. Iida,, and K. Inoue. 1975. Observations on nonconverting phage, c-n71, obtained from a nontoxigenic strain of Clostridium botulinum type C. Jpn. J. Microbiol. 19: 167 172.
101. Oguma, K.,, H. Iida,, and M. Shiozaki. 1976. Phage conversion to hemagglutinin production in Clostridium botulinum types C and D. Infect. Immun. 14: 597 602.
102. Oguma, K.,, H. Iida,, M. Shiozaki,, and I. Inoue. 1976. Antigenicity of converting phages obtained from Clostridium botulinum types C and D. Infect. Immun. 13: 855 860.
103. Pappenheimer, A. M., Jr. 1980. Diphtheria: studies on the biology of an infectious disease. Harvey Lect. 76: 45 73.
104. Pappenheimer, A. M., Jr. 1993. The story of a toxic protein, 1888-1992. Protein Sci. 2: 292 298.
105. Pappenheimer, A. M., Jr.,, and S. Johnson. 1936. Studies on diphtheria toxin production. I. The effect of iron and copper. Br. J. Exp. Pathol. 17: 335 341.
106. Popoff, M. R.,, D. Hauser,, P. Boquet,, M. W. Eklund,, and D. M. Gill. 1991. Characterization of the C3 gene of Clostridium botulinum types C and D and its expression in Escherichia coli. Infect. Immun. 59: 3673 3679.
107. Popovic, T.,, I. K. Mazurova,, A. Efstratiou,, J. Vuopio-Varkila,, M. W. Reeves,, A. De Zoysa,, T. Glushkevich,, and P. Grimont. 2000. Molecular epidemiology of diphtheria. J. Infect. Dis. 181( Suppl. 1): S168 S177.
108. Prescott, L. M.,, and R. A. Altenberg. 1967. Inducible lysis in Clostridium tetani. J. Bacteriol. 93: 1220 1226.
109. Prescott, L. M.,, and R. A. Altenberg. 1976. Detection of bacteriophages from two strains of Clostridium tetani. J. Virol. 1: 1085 1086.
110. Rappuoli, R.,, and G. Ratti. 1984. Physical map of the chromosomal region of Corynebacterium diphtheriae containing corynephage attachment sites attB1 and attB2. J. Bacteriol. 158: 325 330.
111. Ratti, G.,, A. Covacci,, and R. Rappuoli. 1997. A Trna2 Arg gene of Corynebacterium diphtheriae is the chromosomal integration site for toxinogenic bacteriophages. Mol. Microbiol. 25: 1179 1181.
112. Riegel, P.,, R. Ruimy,, D. de Briel,, G. Prevost,, F. Jehl,, R. Christen,, and H. Monteil. 1995. Taxonomy of Corynebacterium diphtheriae and related taxa, with recognition of Cornynebacterium ulcerans sp. nov. nom. rev. FEMS Microbiol. Lett. 126: 271 276.
113. Sakaguchi, G. 1983. Clostridium botulinum toxins. Pharmacol. Ther. 19: 165 194.
114. Schallehn, G.,, and M. W. Eklund. 1980. Conversion of Clostridium novyi type D ( C. haemolyticum) to alpha toxin production by phages of C. novyi type A. FEMS Microbiol. Lett. 7: 83 86.
115. Schantz, E. J.,, and E. A. Johnson. 1992. Properties and use of botulinum toxin and other microbial toxins in medicine. Microbiol. Rev. 56: 80 99.
116. Simpson, L. L. 2004. Identification of the major steps in botulinum toxin action. Annu. Rev. Pharmacol. Toxicol. 44: 167 193.
117. Sing, A.,, M. Hogardt,, S. Bierschenk,, and J. Heeseman. 2003. Detection of differences in the nucleotide and amino acid sequences of diphtheria toxin from Corynebacterium diphtheriae and Corynebacterium ulcerans causing extrapharyngeal infections. J. Clin. Microbiol. 41: 4848 4851.
118. Singh, J.,, A.K. Harit,, D. C. Jain,, R. C. Panda,, K. N. Tewari,, R. Bhatia,, and J. Sokhey. 1999. Diphtheria is declining but continues to kill many children: analysis of data from a sentinel centre in Delhi, 1997. Epidemiol. Infect. 123: 209 215.
119. Songer, J. G. 1996. Clostridial diseases of domestic animals. Clin. Microbiol. Rev. 9: 216 234.
120. Sugiyama, H. 1980. Clostridium botulinum neurotoxin. Microbiol. Rev. 44: 419 448.
121. Sugiyama, H.,, and G. J. King. 1972. Isolation and taxonomic significance of bacteriophages for non-proteolytic Clostridium botulinum. J. Gen. Microbiol. 70: 517 525.
122. Sunagawa, H.,, and K. Inoue. 1991. Isolation and characterization of converting and non-converting phages, harbored in the strains of Clostridium botulinum types C and D isolated in Japan. J. Vet. Med. Sci. 53: 951 954.
123. Sunagawa, H.,, and K. Inoue. 1992. Biological and biophysical characteristics of phages isolated from Clostridium botulinum type C and D strains, and physicochemical properties of the phage DNAs. J. Vet. Med. Sci. 54: 675 684.
124. Sunagawa, H.,, T. Ohyama,, T. Watanabe,, and K. Inoue. 1992. The complete amino acid sequence of the Clostridium botulinum type D neurotoxin, deduced by nucleotide sequence analysis of the encoding phage d-16ϕ genome. J. Vet. Med. Sci. 54: 905 913.
125. Takumi, K.,, T. Kinouchi,, and T. Kawata. 1980. Isolation of two inducible bacteriophages from Clostridium botulinum type A 190L. FEMS Microbiol. Lett. 9: 23 27.
126. Tao, X.,, N. Schiering,, H. Y. Zeng,, D. Ringe,, and J. R. Murphy. 1994. Iron, DtxR, and the regulation of diphtheria toxin expression. Mol. Microbiol. 14: 191 197.
127. Taylor, D. E.,, and A. Guha. 1974. Asymmetric transcription during development of F1, a bacteriophage specific for Clostridium sporogenes. Virology 59: 190 200.
128. Taylor, D. E.,, and A. Guha. 1975. Development of bacteriophage F1 in Clostridium sporogenes: characterization of RNA transcripts. J. Virol. 16: 107 115.
129. Taylor, R. K. 1999. Virus on virus infects bacterium. Nature 399: 312 313.
130. Tharmaphornpilas, P.,, P. Yoocharoan,, P. Prempree,, S. Youngpairoj,, P. Sriprasert,, and C. R. Vitek. 2001. Diphtheria in Thailand in the 1990’s. J. Infect. Dis. 184: 1035 1040.
131. Turner, S. L.,, M. J. Bailey,, A. K. Lilley,, and C. M. Thomas. 2002. Ecological and molecular maintenance strategies of mobile genetic elements. FEMS Microbiol. Ecol. 42: 177 185.
132. Uchida, T. 1983. Diphtheria toxin. Pharmacol. Ther. 19: 107 122.
133. Uchida, T.,, D. M. Gill,, and A. M. Pappenheimer, Jr. 1971. Mutation in the structural gene of diphtheria toxin carried by temperate phage. Nat. New Biol. 233: 8 11.
134. Uchida, T.,, A. M. Pappenheimer, Jr.,, and A. A. Harper. 1973. Diphtheria toxin and related proteins. III. Reconstitution of hybrid “diphtheria toxin” from nontoxic mutant proteins. J. Biol. Chem. 248: 3851 3854.
135. Uchida, T.,, A. M. Pappenheimer, Jr.,, and R. Greany. 1973. Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J. Biol. Chem. 248: 3838 3844.
136. van Helvoort, T. 1994. The construction of bacteriophage as bacterial virus: linking endogenous and exogenous thought styles. J. Hist. Biol. 27: 91 139.
137. vanHeyningen, W. E. 1950. Bacterial Toxins. Blackwell Publications, Oxford, United Kingdom.
138. Vitek, C. R.,, and E. Y. Bogatyreva. 2000. Diphtheria surveillance and control in the former Soviet Union and the newly independent states. J. Infect. Dis. 181( Suppl. 1): S23 S26.
139. White, A.,, X. Ding,, J. C. Vanderspek,, J. R. Murphy,, and D. Ringe. 1998. Structure of the metal-ion-activated diphtheria toxin repressor/ tox operator complex. Nature 394: 502 506.
140. Wood, W. B., Jr.,, and B. R. Davis,. 1980. Hostparasite relations in bacterial infections, p. 552 571. In B. R. Davis,, R. Dulbecco,, H. N. Eisen,, and H. S. Ginsberg (ed.), Microbiology, 3rd ed. Harper and Row, Philadelphia, Pa.
141. Yamaizumi, M.,, E. Mekada,, T. Uchida,, and Y. Okada. 1978. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15: 245 250.
142. Zhou, Y.,, H. Sugiyama,, and E. A. Johnson. 1993. Transfer of neurotoxigenicity from Clostridium butyricum to a nontoxigenic Clostridium botulinum type E-like strain. Appl. Environ. Microbiol. 59: 3825 3831.
143. Zhou, Y.,, H. Sugiyama,, H. Nakano,, and E. A. Johnson. 1995. The genes for the Clostridium botulinum type G toxin complex are on a plasmid. Infect. Immun. 63: 2087 2091.
144. Zimmer, M.,, S. Scherer,, and M. Loessner. 2002. Genomic analysis of Clostridium perfringens bacteriophage ϕ3626, which integrates into guaA and possibly affects sporulation. J. Bacteriol. 184: 4359 4368.


Generic image for table

Properties of neurotoxigenic clostridia

Adapted from references and with permission of the publishers.

Citation: Johnson E. 2005. Bacteriophages Encoding Botulinum and Diphtheria Toxins, p 280-296. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error