Chapter 16 : Contribution of Phages to Group A Genetic Diversity and Pathogenesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Contribution of Phages to Group A Genetic Diversity and Pathogenesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap16-2.gif


The majority of research conducted in the field of streptococcal phages has concentrated on group A (GAS) phages. Therefore, the majority of this chapter reviews GAS phages. However, when pertinent, the chapter also discusses phages from group C (GCS) and group G (GGS). The results of comparative genomics described in this chapter have led to two predictions regarding the acquisition of phage-encoded virulence factors and GAS pathogenesis. First, it is the particular array of phage-encoded virulence factors, rather than simply the presence or absence of a single phage-encoded virulence factor, that significantly affects GAS pathogenesis by promoting the colonization of new hosts or the occupation of new biologic niches. Second, the complex pathogenesis of GAS is related to polylysogeny. Importantly, the genome sequences identified previously unknown phages and phage-encoded virulence factors, thereby raising the possibility that sequencing the genomes of additional GAS strains associated with specific clinical syndromes may identify additional novel phage-encoded virulence factors. Toxins and other virulence factors encoded by GAS phages can be divided into two main groups, including pyrogenic toxin superantigens (PTSAgs) and non-PTSAgs. It is well known that GAS prophages encode extracellular proteins that interact with the host during infection and contribute to pathogenesis. Only recently has the significant link between phage biology, genome diversity, and streptococcal pathogenesis been fully appreciated. Continued investigations of streptococcal phage biology will undoubtedly reveal additional significant contributions that these mobile genetic elements have in bacterial pathogenesis and human disease.

Citation: Banks D, Beres S, Musser J. 2005. Contribution of Phages to Group A Genetic Diversity and Pathogenesis, p 319-334. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch16
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Alouf, J. E.,, and H. Muller-Alouf. 2003. Staphylococcal and streptococcal superantigens: molecular, biological and clinical aspects. Int. J. Med. Microbiol. 292: 429 440.
2. Artiushin, S. C.,, J. F. Timoney,, A. S. Sheoran,, and S. K. Muthupalani. 2002. Characterization and immunogenicity of pyrogenic mitogens SePE-H and SePE-I of Streptococcus equi. Microb. Pathog. 32: 71 85.
3. Baker, J. R.,, S. Dong,, and D. G. Pritchard. 2002. The hyaluron lyase of Streptococcus pyogenes bacteriophage H4489A. Biochem. J. 365: 317 322.
4. Banks, D. J.,, S. B. Beres,, and J. M. Musser. 2002. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol. 11: 515 521.
5. Banks, D. J.,, B. Lei,, and J. M. Musser. 2003. Prophage induction and expression of prophage encoded virulence factors in group A Streptococcus serotype M3 strain MGAS10394. Infect. Immun. 71: 7079 7086.
6. Banks, D. J.,, S. F. Porcella,, K. D. Barbian,, S. B. Beres,, L. E. Philips,, J. M. Voyich,, F. R. DeLeo,, J. M. Martin,, G. A. Somerville,, and J. M. Musser. 2004. Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J. Infect. Dis. 190: 727 738.
7. Banks, D. J.,, S. F. Porcella,, K. D. Barbian,, J. M. Martin,, and J. M. Musser. 2003. Structure and distribution of an unusual chimeric genetic element encoding macrolide resistance in phylogenetically diverse clones of group A Streptococcus. J. Infect. Dis. 188: 1898 1908.
8. Bennett, B. J.,, N. Mohandas,, and R. L. Coppel. 1997. Defining the minimal domain of the Plasmodium falciparum protein MESA involved in the interaction with the red cell membrane skeletal protein 4.1. J. Biol. Chem. 272: 15299 15306.
9. Bensing, B. A.,, C. E. Rubens,, and P. M. Sullam. 2001. Genetic loci of Streptococcus mitis that mediate binding to human platelets. Infect. Immun. 69: 1373 1380.
10. Bensing, B. A.,, I. R. Siboo,, and P. M. Sullam. 2001. Proteins PblA and PblB of Streptococcus mitis, which promote binding to human platelets, are encoded within a lysogenic bacteriophage. Infect. Immun. 69: 6186 6192.
11. Beres, S. B.,, G. L. Sylva,, K. D. Barbian,, B. Lei,, J. S. Hoff,, N. D. Mammarella,, M. Y. Liu,, J. C. Smoot,, S. F. Porcella,, L. D. Parkins,, D. S. Campbell,, T. M. Smith,, J. K. McCormick,, D. Y. M. Leung,, P. M. Schlievert,, and J. M. Musser. 2002. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc. Natl. Acad. Sci. USA 99: 10078 10083.
12. Beres, S. B.,, G. L. Sylva,, D. E. Sturdevant,, C. N. Granville,, M. Liu,, S. M. Ricklefs,, A. R. Whitney,, L. D. Parkins,, N. P. Hoe,, G. J. Adams,, D. E. Low,, F. R. DeLeo,, A. McGeer,, and J. M. Musser. 2004. Genome-wide molecular dissection of serotype M3 group A Streptococcus strains causing two recent epidemics of invasive infections. Proc. Natl. Acad. Sci. USA 101: 11833 11838.
13. Botstein, D. 1980. A theory of modular evolution for bacteriophages. Ann. N. Y. Acad. Sci. 354: 484 490.
14. Broudy, T. B.,, V. Pancholi,, and V. A. Fischetti. 2001. Induction of lysogenic bacteriophage and phage-associated toxin from group A streptococci during coculture with human pharyngeal cells. Infect. Immun. 69: 1440 1443.
15. Broudy, T. B.,, V. Pancholi,, and V. A. Fischetti. 2002. The in vitro interaction of Streptococcus pyogenes with human pharyngeal cells induces a phageencoded extracellular DNase. Infect. Immun. 70: 2805 2811.
16. Broudy, T. B.,, and V. A. Fischetti. 2003. In vivo lysogenic conversion of Tox + Streptococcus pyogenes to Tox + with lysogenic streptococci or free phage. Infect. Immun. 71: 3782 3786.
17. Canchaya, C.,, C. Proux,, G. Fournous,, A. Bruttin,, and H. Brussow. 2003. Prophage genomics. Microbiol. Mol. Biol. Rev. 67: 238 276.
18. Carlsson, F.,, K. Berggard,, M. Stalhammar- Carlemalm,, and G. Lindahl. 2003. Evasion of phagocytosis through cooperation between two ligand-binding regions in Streptococcus pyogenes M protein. J. Exp. Med. 198: 1057 1068.
19. Chuang, I.,, C. Van Beneden,, B. Beall,, and A. Schuchat. 2002. Population-based surveillance for postpartum invasive group A Streptococcus infections, 1995-2000. Clin. Infect. Dis. 15: 665 670.
20. Clark, P. F.,, and A. S. Clark. 1927. A bacteriophage active against a virulent hemolytic streptococcus. Proc. Soc. Exp. Biol. 24: 635 639.
21. Cleary, P. P.,, L. W. Wannamaker,, M. Fisher,, and N. Laible. 1977. Studies of the receptor for phage A25 in group A streptococci: the role of peptidoglycan in reversible adsorption. J. Exp. Med. 145: 578 593.
22. Colon, A. E.,, R. M. Cole,, and C. G. Leonard. 1971. Lysis and lysogenization of groups A,C, and G streptococci by transducing bacteriophage induced from group G Streptococcus. J. Virol. 8: 103 110.
23. Colon, A. E.,, R. M. Cole,, and C. G. Leonard. 1972. Intergroup lysis and transduction by streptococcal bacteriophages. J. Virol. 9: 551 553.
24. Coppel, R. L. 1992. Repeat structures in a Plasmodium falciparum protein (MESA) that binds human erythrocyte protein 4.1. Mol. Biochem. Parasitol. 50: 335 348.
25. Cunningham, M. W. 2000. Pathogenesis of group A Streptococcus infections. Clin. Microbiol. Rev. 13: 470 511.
26. Desiere, F.,, W. M. McShan,, D. van Sinderen,, J. J. Feretti,, and H. Brusow. 2001. Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic streptococci: evolutionary implications for prophage-host interactions. Virology 288: 325 341.
27. Evans, A. C. 1934. Streptococcus bacteriophages: a study of four serological types. U. S. Public Health Rep. 49: 1386 1401.
28. Evans, A. C. 1936. Studies on hemolytic streptococci. I. Methods of classification. J. Bacteriol. 31: 423 437.
29. Evans, A. C. 1942. Technique for the determination of the sensitivity of a strain of Streptococcus to bacteriophage of type A, B, C, or D. J. Bacteriol. 44: 207 209.
30. Feretti, J. J.,, W. M. McShan,, D. Ajdic,, D. J. Savic,, G. Savic,, K. Lyon,, C. Primeaux,, S. Sezate,, A. N. Suvorov,, S. Kenton,, H. S. Lai,, S. P. Lin,, Y. Quian,, H. G. Jia,, F. Z. Najar,, Q. Ren,, H. Zhu,, L. Song,, J. White,, X. Yuan,, S. W. Clifton,, B. A. Roe,, and R. McLaughlin. 2001. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 98: 4658 4663.
31. Fischetti, V. A.,, and J. B. Zabriskie. 1968. Studies on streptococcal bacteriophages. II. Adsorption studies on group A and group C streptococcal bacteriophages. J. Exp. Med. 127: 489 505.
32. Fischetti, V. A.,, V. Pancholi,, and O. Schneewind. 1990. Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol. Microbiol. 4: 1603 1605.
33. Freeman, V. J. 1951. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J. Bacteriol. 61: 675 688.
34. Frobisher, M.,, and J. H. Brown. 1927. Transmissible toxigenicity of streptococci. Bull. Johns Hopkins Hosp. 41: 167 173.
35. Gerlach, D.,, K. H. Schmidt,, and B. Fleischer. 2001. Basic streptococcal superantigens (SPEX/ SMEZ or SPEC) are responsible for the mitogenic activity of the so-called mitogenic factor (MF). FEMS Immunol. Med. Microbiol. 30: 209 216.
36. Ghuysen, J. M.,, D. J. Tipper,, C. H. Birge,, and J. L. Strominger. 1965. Structure of the cell wall of Staphylococcus aureus strain Copenhagen. VI. The soluble glycopeptide and its sequential degradation by peptidases. Biochemistry 4: 2245 2254.
37. Goshorn, S. C.,, G. A. Bohach,, and P. M. Schlievert. 1988. Cloning and characterization of the gene, speC, for pyrogenic exotoxin type C from Streptococcus pyogenes. Mol. Gen. Genet. 212: 66 70.
37a.. Green, N. M.,, S. Zhang,, S. F. Porcella,, K. D. Barbian,, S. B. Beres,, R. B. LeFebvre,, and J. M. Musser. Genome sequence of a serotype M28 strain of group A Streptococcus: potential new insights into puerperal sepsis and bacterial disease specificity. J. Infect. Dis., in press.
38. Halperin, S. A.,, P. Ferrieri,, E. D. Gray,, E. L. Kaplan,, and L. W. Wannamaker. 1987. Antibody response to bacteriophage hyaluronidase in acute glomerulonephritis after group A streptococcal infection. J. Infect. Dis. 155: 253 261.
39. Horstmann, R. D.,, H. J. Sievertsen,, J. Knobloch,, and V. A. Fischetti. 1988. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc. Natl. Acad. Sci. USA 85: 1657 1661.
40. Hyder, S. L.,, and M. M. Streitfeld. 1978. Transfer of erythromycin resistance from clinically isolated lysogenic strains of Streptococcus pyogenes. J. Infect. Dis. 138: 281 286.
41. Hynes, W. L.,, and J. J. Ferretti. 1989. Sequence analysis and expression in Escherichia coli of the hyaluronidase gene of Streptococcus pyogenes bacteriophage H4489A. Infect. Immun. 57: 533 539.
42. Hynes, W. L.,, L. Hancock,, and J. J. Ferretti. 1995. Analysis of a second bacteriophage hyaluronidase gene from Streptococcus pyogenes: evidence for a third hyaluronidase involved in extracellular enzymatic activity. Infect. Immun. 63: 3015 3020.
43. Ikebe, T.,, A. Wada,, Y. Inagaki,, K. Sugama,, R. Suzuki,, D. Tanaka,, A. Tamaru,, Y. Fuginaga,, Y. Abe,, Y. Shimizu,, H. Watanabe, and the Working Group for Group A Streptococcus in Japan. 2002. Dissemination of the phage-associated novel superantigen gene speL in recent invasive and noninvasive Streptococcus pyogenes M3/T3 isolates in Japan. Infect. Immun. 70: 3227 3233.
44. Johnson, L. P.,, P. M. Schlievert,, and D. W. Watson. 1980. Transfer of group A streptococcal pyrogenic exotoxin production to nontoxigenic strains by lysogenic conversion. Infect. Immun. 28: 254 257.
45. Johnson, L. P.,, and P. M. Schlievert. 1984. Group A streptococcal phage T12 carries the structural gene for pyrogenic exotoxin type A. Mol. Gen. Genet. 194: 52 56.
46. Kalia, A.,, and D. E. Bessen. 2003. Presence of streptococcal pyrogenic exotoxin A and C genes in human isolates of group A streptococci. FEMS Microbiol. Lett. 28: 291 295.
47. Kazmi, S. U.,, R. Kansal,, R. K. Aziz,, M. Hooshdaran,, A. Norrby-Teglund,, D. E. Low,, A. B. Halim,, and M. Kotb. 2001. Reciprocal, temporal expression of SpeA and SpeB by invasive M1T1 group A Streptococcus isolates in vivo. Infect. Immun. 69: 4988 4995.
48. Kjems, E. 1955. Studies on streptococcal bacteriophages. I. Technique of isolating phage producing strains. Acta Pathol. Microbiol. Scand. 36: 433 440.
49. Krause, R. M. 1957. Studies on bacteriophages of hemolytic streptococci. I. Factors influencing the interaction of phage and susceptible host cell. J. Exp. Med. 106: 365 383.
50. Lancefield, R. C. 1928. The antigenic complex of Streptococcus hemolyticus. I. Demonstration of a type specific in extracts of Streptococcus hemolyticus. J. Exp. Med. 47: 9 10.
51. Lancefield, R. C. 1962. Current knowledge of type-specific M antigens of group A streptococci. J. Immunol. 89: 307 313.
52. Leung, D. Y. M.,, B. T. Huber,, and P. M. Schlievert. 1997. Superantigens: Molecular Biology, Immunology, and Relevance to Human Disease. Marcel Dekker, New York,N. Y.
53. Llewelyn, M.,, and J. Cohen. 2002. Superantigens: microbial agents that corrupt immunity. Lancet Infect. Dis. 2: 156 162.
54. Malke, H. 1974. Genetics of resistance to macrolide antibiotics and lincomycin in natural isolates of Streptococcus pyogenes. Mol. Gen. Genet. 135: 349 367.
55. Malke, H. 1975. Transfer of a plasmid mediating antibiotic resistance between strains of Streptococcus pyogenes in mixed cultures. Z . Allg. Mikrobiol. 15: 645 649.
56. Malke, H.,, R. Starke,, W. Kohler,, G. Kolesnichenko,, and A. A. Totolian. 1975. Bacteriophage P13234mo-mediated intra- and intergroup transduction of antibiotic resistance among streptococci. Zentbl. Bakteriol. Hyg. Abt. 1 Orig. A 233: 24 34.
57. Martin, J. M.,, M. Green,, K. A. Barbadora,, and E. R. Wald. 2002. Erythromycin-resistant group A streptococci in schoolchildren in Pittsburgh. N. Engl. J. Med. 346: 1200 1206.
58. Maxted, W. R. 1955. The influence of bacteriophage on Streptococcus pyogenes. J. Gen. Microbiol. 12: 484 495.
59. McClean, D. 1941. The capsulation of streptococci and its relation to diffusion factor (hyaluronidase). J. Pathol. Bacteriol. 53: 13 27.
60. McShan, W. M.,, Y. F. Tang,, and J. J. Ferretti. 1997. Bacteriophage T12 of Streptococcus pyogenes integrates into the gene for a serine tRNA. Mol. Microbiol. 23: 719 728.
61. Morris, A.,, J. D. Kellner,, and D. E. Low. 1998. The superbugs: evolution, dissemination and fitness. Curr. Opin. Microbiol. 1: 524 529.
62. Muller-Alouf, H.,, C. Carnoy,, M. Simonet,, and J. E. Alouf. 2001. Superantigen bacterial toxins: state of the art. Toxicon 39: 1691 1701.
63. Nagiec, M. J.,, B. Lei,, S. K. Parker,, M. L. Vasil,, M. Matsumoto,, R. M. Ireland,, S. B. Beres,, N. P. Hoe,, and J. M. Musser. 2004. Analysis of a novel prophage-encoded group A Streptococcus ex- tracellular phospholipase A 2. J. Biol. Chem. 279: 45909 45918.
64. Nakagawa, I.,, K. Kurokawa,, A. Yamashita,, M. Nakata,, Y. Tomiyasu,, N. Okahashi,, S. Kawabata,, K. Yamazaki,, T. Shiba,, T. Yasunaga,, H. Hayashi,, M. Hattori,, and S. Hamada. 2003. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res. 13: 1042 1055.
65. Nelson, D.,, L. Loomis,, and V. A. Fischetti. 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. USA 98: 4107 4112.
66. Nelson, D.,, R. Schuch,, S. Zhu,, D. M. Tscherne,, and V. A. Fischetti. 2003. Genomic sequence of C1, the first streptococcal phage. J. Bacteriol. 185: 3325 3332.
67. Nelson, K.,, P. M. Schlievert,, R. K. Selander,, and J. M. Musser. 1991. Characterization and clonal distribution of four alleles of the speA gene encoding pyrogenic exotoxin A (scarlet fever toxin) in Streptococcus pyogenes. J. Exp. Med. 174: 1271 1274.
68. O’Brien, K. L.,, B. Beall,, N. L. Barrett,, P. R. Cieslak,, A. Reingold,, M. M. Farley,, R. Danila,, E. R. Zell,, R. Facklam,, B. Schwartz,, A. Schuchat, and the Active Bacterial Core Surveillance/ Emerging Infections Program Network. 2002. Epidemiology of invasive group A Streptococcus disease in the United States, 1995-1999. Clin. Infect. Dis. 35: 268 376.
69. Ohnishi, M.,, J. Terajima,, K. Kurokawa,, K. Nakayama,, T. Murata,, K. Tamura,, Y. Ogura,, H. Watanabe,, and T. Hayashi. 2002. Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc. Natl. Acad. Sci. USA 99: 17043 17048.
70. Rothbard, S.,, and R. F. Watson. 1948. Variation occurring in group A streptococci during human infection. Progressive loss of M substance correlated with increasing susceptibility to bacteriostasis. J. Exp. Med. 87: 521 533.
71. Santagati, M.,, F. Iannelli,, M. R. Oggioni,, S. Stefani,, and G. Pozzi. 2000. Characterization of a genetic element carrying the macrolide efflux gene mef(A) in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 44: 2585 2587.
72. Santagati, M.,, F. Iannelli,, C. Casconi,, F. Campanile,, M. R. Oggioni,, S. Stefani,, and G. Pozzi. 2003. The novel conjugative transposon Tn 1207.3 carries the macrolide efflux gene mefA in Streptococcus pyogenes. Microb. Drug Resist. 9: 243 247.
73. Schwartzman, G. 1927. Studies on Streptococcus bacteriophage. I. A powerful lytic principle against hemolytic streptococci of erysipelas origin. J. Exp. Med. 46: 497 509.
74. Sharkawy, A.,, D. E. Low,, R. Saginur,, D. Gregson,, B. Schwartz,, P. Jessamine,, K. Green,, A. McGeer, and the Ontario Group A Streptococcal Study Group. 2002. Severe group A streptococcal soft-tissue infections in Ontario: 1992-1996. Clin. Infect. Dis. 34: 454 460.
75. Smoot, J. C.,, K. D. Barbian,, J. J. van Gompel,, L. M. Smoot,, M. S. Chaussee,, G. L. Sylva,, D. E. Sturdevant,, S. M. Ricklefs,, S. F. Porcella,, L. D. Parkins,, S. B. Beres,, D. S. Cambell,, T. M. Smith,, Q. Zhang,, J. A. Daly,, L. G. Veasy,, and J. M. Musser. 2002. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc. Natl Acad. Sci. USA 99: 4668 4673.
76. Smoot, L. M.,, J. K. McCormick,, J. C. Smoot,, N. P. Hoe,, I. Strickland,, R. L. Cole,, K. D. Barbian,, C. A. Earhart,, D. H. Ohlendorf,, L. G. Veasy,, H. R. Hill,, D. Y. M. Leung,, P. M. Schlievert,, and J. M. Musser. 2002. Characterization of two novel pyrogenic toxin superantigens made by an acute rheumatic fever clone of Streptococcus pyogenes associated with multiple disease outbreaks. Infect. Immun. 70: 7095 7104.
77. Spanier, J. G.,, and P. P. Cleary. 1980. Bacteriophage control of antiphagocytic determinants in group A streptococci. J. Exp. Med. 152: 1393 1406.
78. Sriskandan, S.,, M. Unnikrishnan,, T. Krausz,, and J. Cohen. 1999. Molecular analysis of the role of streptococcal pyrogenic exotoxin A (SPEA) in invasive soft-tissue infection resulting from Streptococcus pyogenes. Mol. Microbiol. 33: 778 790.
79. Stalhammar-Carlemalm, M.,, T. Areschoug,, C. Larsson,, and G. Lindahl. 1999. The R28 protein of Streptococcus pyogenes is related to several group B streptococcal surface proteins, confers protective immunity and promotes binding to human epithelial cells. Mol. Microbiol. 33: 208 219.
80. Stern, M.,, and R. Stern. 1992. A collagenous sequence in a prokaryotic hyaluronidase. Mol. Biol. Evol. 9: 1179 1180.
81. Ubukata, K.,, M. Konno,, and R. Fujii. 1975. Transduction of drug resistance to tetracycline, chloramphenicol, macrolides, lincomycin and clindamycin with phages induced from Streptococcus pyogenes. J. Antibiot. (Tokyo) 28: 681 688.
82. Unnikrishnan, M.,, J. Cohen,, and S. Sriskandan. 2001. Complementation of a speA negative Streptococcus pyogenes with speA: effects on virulence and production of streptococcal pyrogenic exotoxin A. Microb. Pathog. 31: 109 114.
83. Veasy, L. G.,, S. E. Wiedmeier,, G. S. Orsmond,, H. D. Ruttenberg,, M. M. Boucek,, S. J. Roth,, V. F. Tait,, J. A. Thompson,, J. A. Daly,, E. L. Kaplan,, and H. R. Hill. 1987. Resurgence of acute rheumatic fever in the intermountain area of the United States. N. Engl. J. Med. 316: 421 427.
84. Virtaneva, K.,, M. R. Graham,, S. F. Porcella,, N. P. Hoe,, H. Su,, E. A. Graviss,, T. J. Gardner,, J. E. Allison,, W. J. Lemon,, J. R. Bailey,, M. J. Parnell,, and J. M. Musser. 2003. Group A Streptococcus gene expression in humans and cynomolgus macaques with acute pharyngitis. Infect. Immun. 71: 2199 2207.
85. Voyich, J.,, D. E. Sturdevant,, K. R. Braughton,, S. D. Kobayashi,, B. Lei,, K. Virtaneva,, D. W. Forward,, J. M. Musser,, and F. R. DeLeo. 2003. Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 100: 9996 10001.
86. Wagner, P. L.,, J. Livny,, M. N. Neely,, D. W. K. Acheson,, D. I. Friedman,, and M. K. Waldor. 2002. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol. Microbiol. 44: 957 970.
87. Welcher, B. C.,, J. H. Carra,, L. DaSilva,, J. Hanson,, C. S. David,, M. J. Aman,, and S. Bavari. 2002. Lethal shock induced by streptococcal pyrogenic exotoxin A in mice transgenic for human leukocyte antigen-DQ8 and human CD4 receptors: implications for development of vaccines and therapeutics. J. Infect. Dis. 186: 501 510.
88. Whitnack, E.,, and E. H. Beachey. 1982. Antiopsonic activity of fibrinogen bound to M protein on the surface of group A streptococci. J. Clin. Investig. 69: 1042 1045.
89. Withey, J. H.,, and D. I. Friedman. 2002. The biological roles of trans-translation. Curr. Opin. Microbiol. 5: 154 159.
90. Xu, S.,, and C. M. Collins. 1996. Temperature regulation of the streptococcal pyrogenic exotoxin A-encoding gene ( speA). Infect. Immun. 64: 5399 5402.
91. Zabriskie, J. B. 1964. The role of temperate bacteriophage in the production of erythrogenic toxin by group A streptococci. J. Exp. Med. 119: 761 780.


Generic image for table

Induction of prophages in strain MGAS315

Relative degrees of prophage induction are indicated as follows: ±, variable and weak; + +, intermediate; + + +, strong.

Protein-reduced Todd Hewitt broth plus yeast medium.

Minimal essential medium.

Citation: Banks D, Beres S, Musser J. 2005. Contribution of Phages to Group A Genetic Diversity and Pathogenesis, p 319-334. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error