1887

Chapter 17 : Pneumococcal Phages

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Pneumococcal Phages, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap17-2.gif

Abstract:

This chapter provides an overview of our current knowledge of pneumococcal phages. Pneumococcal phages comprise four families with varied morphologies, including both lytic and temperate phages. Several relevant physicochemical characteristics of the DNAs of pneumococcal phages and of some of their derived proteins are summarized in the chapter. DNA isolated from mature phage particles possessed a covalently bound protein, as reported for the pneumococcal phages Cp-1, HB-3, and their relatives. The attachment site of EJ-1 is located immediately downstream of the gene encoding the phage lytic enzyme. It has been well established that methylases (methyltransferases) provide functions that are beneficial to bacterial cells. Molecular characterizations of the lysis cassettes of the EJ-1, Cp-1, and MM1 phages were performed by cloning and expression of the two genes involved in the release of phage progeny into the medium, and the findings have been summarized. The interchange of phage and bacterial genes coding for lytic enzymes has been well documented for the pneumococcal system, as reported in this chapter, but autolysis has not yet been examined within the context of multicellular bacterial biofilm development.

Citation: García P, García J, López R, García E. 2005. Pneumococcal Phages, p 335-361. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch17
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Electron micrographs of negatively stained preparations of purified bacteriophages. (A) Dp-1; (B) Cp-1; (C) HB-3; (D) EJ-1. Bar, 100 nm. Reprinted from reference with permission of the publisher. (E) An ethanolamine-grown pneumococcus was pulsed with 8 ng of Ch chloride/ml, and Dp-1 was added after 5 min. The phage is exclusively attached to the equatorial zone, where Ch is incorporated. Bar, 0.5 μm. Reprinted from reference with permission.

Citation: García P, García J, López R, García E. 2005. Pneumococcal Phages, p 335-361. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representations of the genomes of three pneumococcal bacteriophages, MM1, Dp-1, and Cp-1. Genes are drawn as arrows that indicate the direction of transcription. White arrows correspond to ORFs that do not have any significant similarity with those included in databases. For MM1, the ends of the genome correspond to those of the prophage. The putative functions of the gene products correspond to the different types of shading, as indicated at the bottom.

Citation: García P, García J, López R, García E. 2005. Pneumococcal Phages, p 335-361. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Repeating structure of the antireceptor protein (gp55) of phage Dp-1. The different motifs are highlighted with different types of shading. Numbers indicate amino acid positions.

Citation: García P, García J, López R, García E. 2005. Pneumococcal Phages, p 335-361. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Model for Ejh holin function. Putative transmembrane regions of Ejh are depicted as solid and open cylinders. (Bottom left) Atomic force microscopy image of Ejh-L1M1 incorporated into 1-palmitoyl-2-oleoyl--glycero-3-phosphoglycerol bilayers and fused onto mica. The drawing is courtesy of M. Gasset.

Citation: García P, García J, López R, García E. 2005. Pneumococcal Phages, p 335-361. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Comparison of lytic enzymes from phages infecting low G+C content gram-positive bacteria. The lysins, grouped by predicted enzymatic activity, are depicted as bars showing different domains and repeats. Similar regions are indicated by identical shading. The designations of the different functional motifs are shown below the dotted line. The accession number of each enzyme is shown in Table 2 .

Citation: García P, García J, López R, García E. 2005. Pneumococcal Phages, p 335-361. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816506.chap17
1. Altschul, S. F.,, T. L. Madden,, A. A. Schaffer,, J. Zhang,, Z. Zhang,, W. Miller,, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nu cleic Acids Res. 25: 3389 3402.
2. Avery, O. T.,, C. M. MacLeod,, and M. McCarty. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 79: 137 158.
3. Bacher, A.,, C. Rieder,, C. Eichinger,, D. Arigoni,, G. Fuchs,, and W. Eisenreich. 1999. Elucidation of novel biosynthetic pathways and metabolite flux patterns by retrobiosynthetic NMR analysis. FEMS Microbiol. Rev. 22: 567 598.
4. Banks, D. J.,, S. B. Beres,, and J. M. Musser. 2002. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol. 10: 515 521.
5. Baquero, F. 1995. Pneumococcal resistance to β- lactam antibiotics: a global geographic overview. Microb. Drug Resist. 1: 115 120.
6. Bergstrom, N.,, P. E. Jansson,, M. Kilian,, and U. B. Skov-Sørensen. 2000. Structures of two cell wall-associated polysaccharides of a Streptococcus mitis biovar 1 strain. A unique teichoic acid-like polysaccharide and the group O antigen which is a C-polysaccharide in common with pneumococci. Eur. J. Biochem. 267: 7147 7157.
7. Bernheimer, H. P. 1977. Lysogeny in pneumococci freshly isolated from man. Science 195: 66 68.
8. Botstein, D. 1980. A theory of modular evolution for bacteriophages. Ann. N. Y. Acad. Sci. 354: 484 490.
9. Boyd, E. F.,, and H. Brüssow. 2002. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol. 10: 521 529.
10. Brüssow, H. 2001. Phages of dairy bacteria. Annu. Rev. Microbiol. 55: 283 303.
11. Brüssow, H.,, and F. Desiere. 2001. Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol. Microbiol. 39: 213 222.
12. Buhk, H. J.,, B. Behrens,, R. Tailor,, K. Wilke,, J. J. Prada,, U. Gunthert,, M. Noyer-Weidner,, S. Jentsch,, and T. A. Trautner. 1984. Restriction and modification in Bacillus subtilis: nucleotide sequence, functional organization and product of the DNA methyltransferase gene of bacteriophage SPR. Gene 29: 51 61.
13. Campbell, A. M. 1992. Chromosomal insertion sites for phages and plasmids. J. Bacteriol. 174: 7495 7499.
14. Canchaya, C.,, F. Desiere,, W. M. McShan,, J. J. Ferretti,, J. Parkhill,, and H. Brüssow. 2002. Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology 302: 245 258.
15. Canchaya, C.,, C. Proux,, G. Fournous,, A. Bruttin,, and H. Brüssow. 2003. Prophage genomics. Microbiol. Mol. Biol. Rev. 67: 238 276.
16. Copley, R. R.,, C. P. Ponting,, J. Schultz,, and P. Bork. 2003. Sequence analysis of multidomain proteins: past perspectives and future directions. Adv. Protein Chem. 61: 75 98.
17. Desiere, F.,, W. M. McShan,, D. van Sinderen,, J. J. Ferretti,, and H. Brüssow. 2001. Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic streptococci: evolutionary implications for prophage-host interactions. Virology 288: 325 341.
18. Díaz, E.,, R. López,, and J. L. García. 1992. EJ-1, a temperate bacteriophage of Streptococcus pneumoniae with a Myoviridae morphotype. J. Bacteriol. 174: 5516 5525.
19. Díaz, E.,, M. Munthali,, H. Lunsdorf,, J.-V. Höltje,, and K. N. Timmis. 1996. The two-step lysis system of pneumococcal bacteriophage EJ-1 is functional in gram-negative bacteria: triggering of the major pneumococcal autolysin in Escherichia coli. Mol. Microbiol. 19: 667 681.
20. Dopazo, J.,, A. Mendoza,, J. Herrero,, F. Caldara,, Y. Humbert,, L. Friedli,, M. Guerrier,, E. Grand-Schenk,, C. Gandin,, M. de Francesco,, A. Polissi,, G. Buell,, G. Feger,, E. García,, M. Peitsch,, and J. F. García-Bustos. 2001. Annotated draft genomic sequence from a Streptococcus pneumoniae type 19F clinical isolate. Microb. Drug Resist. 7: 99 125.
21. Duplessis, M.,, and S. Moineau. 2001. Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol. Microbiol. 41: 325 333.
22. Esberg, B.,, H.-C. E. Leung,, H.-C. T. Tsui,, G. R. Björk,, and M. E. Winkler. 1999. Identification of the miaB gene, involved in methylthiolation of isopentenyl A37 derivatives in the tRNA of Salmonella typhimurium and Escherichia coli. J. Bacteriol. 181: 7256 7265.
23. Escarmís, C.,, P. García,, E. Méndez,, R. López,, M. Salas,, and E. García. 1985. Inverted terminal repeats and terminal proteins of the genome of pneumococcal phages. Gene 36: 341 348.
24. Escarmís, C.,, A. Gómez,, E. García,, C. Ronda,, R. López,, and M. Salas. 1984. Nucleotide sequence at the termini of the DNA of Streptococcus pneumoniae phage Cp-1. Virology 133: 166 171.
25. Fernández-Tornero, C.,, R. López,, E. García,, G. Giménez-Gallego,, and A. Romero. 2001. A novel solenoid fold in the cell wall anchoring domain of the pneumococcal virulence factor LytA. Nat. Struct. Biol. 8: 1020 1024.
26. García, E.,, J. L. García,, P. García,, A. Arrarás,, J. M. Sánchez-Puelles,, and R. López. 1988. Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Proc. Natl. Acad. Sci. USA 85: 914 918.
27. García, E.,, A. Gómez,, C. Ronda,, C. Escarmís,, and R. López. 1983. Pneumococcal bacteriophage Cp-1 contains a protein bound to the 5' termini of its DNA. Virology 128: 92 104.
28. García, E.,, C. Ronda,, and R. López. 1979. Bacteriophages of Streptococcus pneumoniae. Physicochemical properties of bacteriophage Dp-4 and its transfecting DNA. Eur. J. Biochem. 101: 59 64.
29. García, J. L.,, E. Díaz,, A. Romero,, and P. García. 1994. Carboxy-terminal deletion analysis of the major pneumococcal autolysin. J. Bacteriol. 176: 4066 4072.
30. García, J. L.,, E. García,, A. Arrarás,, P. García,, C. Ronda,, and R. López. 1987. Cloning, purification, and biochemical characterization of the pneumococcal bacteriophage Cp-1 lysin. J. Virol. 61: 2573 2580.
31. García, P.,, J. L. García,, E. Garcia,, J. M. Sánchez-Puelles,, and R. López. 1990. Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene 86: 81 88.
32. García, P.,, J. M. Hermoso,, J. A. García,, E. García,, J. L. García,, R. López,, and M. Salas. 1986. Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5'-dAMP. J. Virol. 58: 31 35.
33. García, P.,, A. C. Martín,, and R. López. 1997. Bacteriophages of Streptococcus pneumoniae: a molecular approach. Microb. Drug Resist. 3: 165 176.
34. García, P.,, A. C. Martín,, and R. López,. 2000. Bacteriophages of Streptococcus pneumoniae: a molecular approach, p. 211 222. In A. Tomasz (ed.), Streptococcus pneumoniae: Molecular Biology and Mechanisms of Disease. Mary Ann Liebert, Inc., Larchmont, N. Y.
35. Garcia-Bustos, J. F.,, and A. Tomasz. 1987. Teichoic acid-containing muropeptides from Streptococcus pneumoniae as substrates for the pneumococcal autolysin. J. Bacteriol. 169: 447 453.
36. Gindreau, E.,, R. López,, and P. García. 2000. MM1, a temperate bacteriophage of the 23F Spanish/ USA multiresistant epidemic clone of Streptococcus pneumoniae: structural analysis of the site-specific integration system. J. Virol. 74: 7803 7813.
37. Gründling, A.,, M. D. Manson,, and R. Young. 2001. Holins kill without warning. Proc. Natl. Acad. Sci. USA 98: 9348 9352.
38. Hakenbeck, R.,, T. Grebe,, D. Zänher,, and J. B. Stock. 1999. β-Lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and nonpenicillin- binding proteins. Mol. Microbiol. 33: 673 678.
39. Haro, A.,, M. Vélez,, E. Goormaghtigh,, S. Lago,, J. Vázquez,, D. Andreu,, and M. Gasset. 2003. Reconstitution of holin activity with a synthetic peptide containing the 1-32 sequence region of Ejh, the EJ-1 phage holin. J. Biol. Chem. 278: 3929 3936.
40. Hausdorff, W. P.,, J. Bryant,, P. R. Paradiso,, and G. R. Siber. 2000. Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. Clin. Infect. Dis. 30: 100 121.
41. Hendrix, R. E.,, J. G. Lawrence,, G. F. Hatfull,, and S. Casjens. 2000. The origins and ongoing evolution of viruses. Trends Microbiol. 8: 504 508.
42. Hermoso, J. A.,, B. Monterroso,, A. Albert,, B. Galán,, O. Ahrazem,, P. García,, M. Martínez- Ripoll,, J. L. García,, and M. Menéndez. 2003. Structural basis for selective recognition of pneumococcal cell wall by modular endolysin from phage Cp-1. Structure 11: 1239 1249.
43. Hoskins, J.,, W. E. Alborn,, J. Arnold,, L. C. Blaszczak,, S. Burgett,, B. S. DeHoff,, S. T. Estrem,, L. Fritz,, D.-J. Fu,, W. Fuller,, C. Geringer,, R. Gilmour,, J. S. Glass,, H. Khoje,, A. R. Kraft,, R. E. Lagace,, D. J. LeBlanc,, L. N. Lee,, E. J. Lefkowitz,, J. Lu,, P. Matsushima,, S. M. McAhren,, M. McHenney,, K. McLeaster,, C. W. Mundy,, T. I. Nicas,, F. H. Norris,, M. O’Gara,, R. B. Peery,, G. T. Robertson,, P. Rockey,, P.-M. Sun,, M. E. Winkler,, Y. Yang,, M. Young-Bellido,, G. Zhao,, C. A. Zook,, R. H. Baltz,, R. Jaskunas,, P. R. J. Rosteck,, P. L. Skatrud,, and J. I. Glass. 2001. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183: 5709 5717.
44. Ingrey, K. T.,, J. Ren,, and J. F. Prescott. 2003. A fluoroquinolone induces a novel mitogen-encoding bacteriophage in Streptococcus canis. Infect. Immun. 71: 3028 3033.
45. Jado, I.,, R. López,, E. García,, A. Fenoll,, J. Casal,, and P. García. 2003. Phage lytic enzymes as therapy of antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J. Antimicrob. Chemother. 52: 967 973.
46. Jones, M. E.,, J. A. Karlowsky,, R. Blosser- Middleton,, I. Critchley,, C. Thornsberry,, and D. F. Sham. 2002. Relationship between antibiotic resistance in Streptococcus pneumoniae and that in Haemophilus influenzae: evidence for common selective pressure. Antimicrob. Agents Chemother. 46: 3106 3107.
47. Krogh, S.,, M. O’Reilly,, N. Nolan,, and K. M. Devine. 1996. The phage-like element PBSX and part of the skin element, which are resident at different locations on the Bacillus subtilis chromosome, are highly homologous. Microbiology 142: 2031 2040.
48. Lee, K. F.,, K. M. Kam,, and P. C. Shaw. 1995. A bacterial methyltransferase M. E coHK311 requires two proteins for in vitro methylation. Nucleic Acids Res. 23: 103 108.
49. Levin, B. R.,, and J. J. Bull. 2004. Population and evolutionary dynamics of phage therapy. Nat. Microbiol. Rev. 2: 166 173.
50. Liu, J.,, M. Dehbi,, G. Moeck,, F. Arhin,, P. Bauda,, D. Bergeron,, M. Callejo,, V. Ferreti,, N. Ha,, T. Kwan,, J. McCarty,, R. Srikumar,, D. Williams,, J. J. Wu,, P. Gros,, J. Pelletier,, and M. DuBow. 2004. Antimicrobial drug discovery through bacteriophage genomics. Nat. Biotechnol. 22: 185 191.
51. Loeffler, J. M.,, D. Nelson,, and V. A. Fischetti. 2001. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294: 2170 2172.
52. Loessner, M. J.,, R. B. Inman,, P. Lauer,, and R. Calendar. 2000. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophageA118 of Listeria monocytogenes:implications for phage evolution. Mol. Microbiol. 35: 324 340.
52a.. López, R.,, E. García,, and P. García. 2004. Enzymes for anti-infective therapy: phage lysis. Drug Disc. Today Ther. Strat. 1: 469 474.
53. López, R.,, E. García,, P. García,, and J. L. García. 1997. The pneumococcal cell wall degrading enzymes: a modular design to create new lysins? Microb. Drug Resist. 3: 199 211.
54. López, R.,, E. García,, P. García,, and J. L. García,. 2000. The pneumococcal cell wall degrading enzymes: a modular design o create new lysins?, p. 197 209. In A. Tomasz (ed.), Streptococcus pneumoniae: Molecular Biology and Mechanisms of Disease. Mary Ann Liebert, Inc., Larchmont, N. Y.
55. López, R.,, E. García,, P. García,, and J. L. García,. 2004. Cell wall hydrolases, p. 75 88. In E. Tuomanen,, T. J. Mitchell,, D. A. Morrison,, and B. G. Spratt (ed.), The Pneumococcus. ASM Press, Washington, D. C.
56. Lopez, R.,, E. Garcia,, P. Garcia,, C. Ronda,, and A. Tomasz. 1982. Choline-containing bacteriophage receptors in Streptococcus pneumoniae. J. Bacteriol. 151: 1581 1590.
57. López, R.,, E. García,, and C. Ronda. 1980. Selective replication of diplophage Dp-4 deoxyribonucleic acid in 6-( p-hydroxyphenylazo)-uracil treated Streptococcus pneumoniae. FEBS Lett. 111: 66 68.
58. López, R.,, C. Ronda,, P. García,, C. Escarmís,, and E. García. 1984. Restriction cleavage maps of the DNAs of Streptococcus pneumoniae bacteriophages containing protein covalently bound to their 5' ends. Mol. Gen. Genet. 197: 67 74.
59. Martín, A. C.,, L. Blanco,, P. García,, M. Salas,, and J. Méndez. 1996. In vitro protein-primed initiation of pneumococcal phage Cp-1 DNA replication occurs at the third 3'nucleotide of the linear template: a stepwise sliding-back mechanism. J. Mol. Biol. 260: 369 377.
60. Martín, A. C.,, R. López,, and P. García. 1996. Analysis of the complete nucleotide sequence and functional organization of the genome of Streptococcus pneumoniae bacteriophage Cp-1. J. Virol. 70: 3678 3687.
61. Martín, A. C.,, R. López,, and P. García. 1998. Functional analysis of the two-gene lysis system of the pneumococcal phage Cp-1 in homologous and heterologous host cells. J. Bacteriol. 180: 210 217.
62. Martín, A. C.,, R. López,, and P. García. 1995. Nucleotide sequence and transcription of the left early region of Streptococcus pneumoniae bacteriophage Cp-1 coding for the terminal protein and the DNA polymerase. Virology 211: 21 32.
63. Martín, A. C.,, R. López,, and P. García. 1998. Pneumococcal bacteriophage Cp-1 encodes its own protease essential for phage maturation. J. Virol. 72: 3491 3494.
64. McCormick, A. W.,, C. G. Whitney,, M. M. Farley,, R. Lynfield,, L. H. Harrison,, N. M. Bennett,, W. Schaffner,, A. Reingold,, J. Hadler,, P. Cieslak,, M. H. Samore,, and M. Lipsitch. 2003. Geographic diversity and temporal trends of antimicrobial resistance in Streptococcus pneumoniae in the United States. Nat. Med. 9: 424 430.
65. McDonnell, M.,, C. Ronda-Laín,, and A. Tomasz. 1975. “Diplophage”: a bacteriophage of Diplococcus pneumoniae. Virology 63: 577 582.
66. Meijer, W. J. J.,, J. A. Horcajadas,, and M. Salas. 2001. φ29 family of phages. Microbiol. Mol. Biol. Rev. 65: 261 287.
67. Moak, M.,, and I. J. Molineux. 2004. Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol. Microbiol. 51: 1169 1183.
68. Mulder, N. J.,, R. Apweiler,, T. K. Attwood,, A. Bairoch,, D. Barrell,, A. Bateman,, D. Binns,, M. Biswas,, P. Bradley,, P. Bork,, P. Bucher,, R. R. Copley,, E. Courcelle,, U. Das,, R. Durbin,, L. Falquet,, W. Fleischmann,, S. Griffiths-Jones,, D. Haft,, N. Harte,, N. Hulo,, D. Kahn,, A. Kanapin,, M. Krestyaninova,, R. Lopez,, I. Letunic,, D. Lonsdale,, V. Silventoinen,, S. E. Orchard,, M. Pagni,, D. Peyruc,, C. P. Ponting,, J. D. Selengut,, F. Servant,, C. J. Sigrist,, R. Vaughan,, and E. M. Zdobnov. 2003. The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res. 31: 315 318.
69. Muñoz, R.,, T. J. Coffey,, M. Daniels,, C. G. Dowson,, G. Laible,, J. Casal,, R. Hakenbeck,, M. Jacobs,, J. M. Musser,, B. G. Spratt,, and A. Tomasz. 1991. Intercontinental spread of a multiresistant clone of serotype 23F Streptococcus pneumoniae. J. Infect. Dis. 164: 302 306.
70. Musser, J. M.,, and S. L. Kaplan. 2001. Pneumococcal research transformed. N. Engl. J. Med. 345: 1206 1207.
71. Nakagawa, I.,, K. Kurokawa,, A. Yamashita,, M. Nakata,, Y. Tomiyasu,, N. Okahashi,, S. Kawabata,, K. Yamazaki,, T. Shiba,, T. Yasunaga,, H. Hayashi,, M. Hattori,, and S. Hamada. 2003. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res. 13: 1042 1055.
72. Navarre, W. W.,, H. Ton-That,, K. F. Faull,, and O. Schneewind. 1999. Multiple enzymatic activities of the murein hydrolase from staphylococcal phage φ11. Identification of a D-alanyl-glycine endopeptidase activity. J. Biol. Chem. 274: 15847 15856.
73. Nelson, D.,, L. Loomis,, and V. A. Fischetti. 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. USA 98: 4107 4112.
74. Obregón, V.,, J. L. García,, E. García,, R. López,, and P. García. 2003. Genome organization and molecular analysis of the temperate bacteriophage MM1 of Streptococcus pneumoniae. J. Bacteriol. 185: 2362 2368.
75. Obregón, V.,, J. L. García,, E. García,, R. López,, and P. García. 2004. Peculiarities of the DNA of MM1, a temperate phage of Streptococcus pneumoniae. Int. Microbiol. 7: 133 137.
76. Obregón, V.,, P. García,, R. López,, and J. L. García. 2003. Molecular and biochemical analysis of the system regulating the lytic/lysogenic cycle in the pneumococcal temperate phage MM1. FEMS Microbiol. Lett. 222: 193 197.
77. Obregón, V.,, P. García,, R. López,, and J. L. García. 2003. VO1, a temperate bacteriophage of the type 19A multiresistant epidemic 8249 strain of Streptococcus pneumoniae: analysis of variability of lytic and putative C5 methyltransferase genes. Microb. Drug Resist. 9: 7 15.
78. Oteo, J.,, J. I. Alós,, and J. L. Gómez-Garcés. 2001. Antimicrobial resistance of Streptococcus pneumoniae in 1999-2000 in Madrid (Spain):multicenter surveillance study. J. Antimicrob. Chemother. 47: 215 218.
79. Pearson, W. R. 1990. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 183: 63 98.
80. Pedulla, M. L.,, M. E. Ford,, J. M. Houtz,, T. Karthikeyan,, C. Wadsworth,, J. A. Lewis,, D. Jacobs-Sera,, J. Falbo,, J. Gross,, N. R. Pannunzio,, W. Brucker,, V. Kumar,, J. Kandasamy,, L. Keenan,, S. Bardarov,, J. Kriakov,, J. G. Lawrence,, W. R. Jacobs,, R. W. Hendrix,, and G. F. Hatfull. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113: 171 182.
81. Pelletier, J.,, P. Gros,, and M. Dubow. June 2000. Development of novel anti-microbial agents based on bacteriophage genomics. U. S. patent WO0032825A2.
82. Ponting, C. P.,, L. Aravind,, J. Schultz,, P. Bork,, and E. V. Koonin. 1999. Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J. Mol. Biol. 289: 729 745.
83. Pritchard, D. G.,, S. Dong,, J. R. Baker,, and J. A. Engler. 2004. The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology 150: 2079 2087.
84. Radlinska, M.,, J. M. Bujnicki,, and A. Piekarowicz. 1999. Structural characterization of two tandemly arranged DNA methyltransferase genes from Neisseria gonorrhoeae MS11:N4-cytosine specific M. N goMXV and nonfunctional 5-cytosinetype M. N goMorf2P. Proteins 37: 717 728.
85. Ramanculov, E.,, and R. Young. 2001. An ancient player unmasked:T4 rI encodes a t-specific antiholin. Mol. Microbiol. 41: 575 583.
86. Ramirez, M.,, E. Severina,, and A. Tomasz. 1999. A high incidence of prophage carriage among natural isolates of Streptococcus pneumoniae . J. Bacteriol. 181: 3618 3625.
87. Rasmussen, M.,, M. Jacobsson,, and L. Björk. 2003. Genome-based identification and analysis of collagen-related structural motifs in bacteria and viral proteins. J. Biol. Chem. 278: 32313 32316.
88. Rawlings, N. D.,, E. O’Brien,, and A. J. Barrett. 2002. MEROPS:the protease database. Nucleic Acids Res. 30: 343 346.
89. Romero, A.,, R. Lopez,, and P. Garcia. 1993. Lytic action of cloned pneumococcal phage lysis genes in Streptococcus pneumoniae. FEMS Microbiol. Lett. 108: 87 92.
90. Romero, A.,, R. López,, and P. García. 1990. Characterization of the pneumococcal bacteriophage HB-3 amidase: cloning and expression in Escherichia coli. J. Virol. 64: 137 142.
91. Romero, A.,, R. López,, and P. García. 1990. Sequence of the Streptococcus pneumoniae bacteriophage HB-3 amidase reveals high homology with the major host autolysin. J. Bacteriol. 172: 5064 5070.
92. Romero, A.,, R. López,, R. Lurz,, and P. García. 1990. Temperate bacteriophages of Streptococcus pneumoniae that contain protein covalently linked to the 5' ends of their DNA. J. Virol. 64: 5149 5155.
93. Romero, P.,, R. López,, and E. García. 2004. Genomic organization and molecular analysis of the inducible prophage EJ-1, a mosaic myovirus from an atypical pneumococcus. Virology 322: 239 252.
94. Romero, P.,, R. López,, and E. García. 2004. Characterization of LytA-like N-acetylmuramoyl-L-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin. J. Bacteriol. 186: 8229 8239.
95. Ronda, C.,, J. L. García,, and R. López. 1989. Infection of Streptococcus oralis NCTC 11427 by pneumococcal phages. FEMS Microbiol. Lett. 65: 187 192.
96. Ronda, C.,, R. López,, and E. García. 1981. Isolation and characterization of a new bacteriophage, Cp-1, infecting Streptococcus pneumoniae. J. Virol. 40: 551 559.
97. Salas, M. 1991. Protein-priming of DNA replication. Annu. Rev. Biochem. 60: 39 71.
98. Sampath, J.,, and M. N. Vijayakumar. 1998. Identification of a DNA cytosine methyltransferase gene in conjugative transposon Tn 5252. Plasmid 39: 63 76.
99. Schuch, R.,, D. Nelson,, and V. A. Fischetti. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418: 884 889.
100. Schuchat, A.,, K. Robinson,, J. D. Wenger,, L. H. Harrison,, M. Farley,, A. L. Reingold,, L. Lefkowitz,, B. A. Perkins,, and F. T. A. S. Team. 1997. Bacterial meningitis in the United States in 1995. N. Engl. J. Med. 337: 970 976.
101. Severin, A.,, D. Horne,, and A. Tomasz. 1997. Autolysis and cell wall degradation in a cholineindependent strain of Streptococcus pneumoniae. Microb. Drug Resist. 3: 391 400.
102. Shann, F. 1990. Pneumococcus and influenza. Lancet 335: 898 901.
103. Sheehan, M. M.,, J. L. García,, R. López,, and P. García. 1997. The lytic enzyme of the pneumococcal phage Dp-1: a chimeric lysin of intergeneric origin. Mol. Microbiol. 25: 717 725.
104. Sofia, H. J.,, G. Chen,, B. G. Hetzler,, J. F. Reyes-Spindola,, and N. E. Miller. 2001. Radical SAM, a novel superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29: 10987 11106.
105. Stanley, E.,, L. Walsh,, A. van der Zwet,, G. F. Fitzgerald,, and D. vanSinderen. 2000. Identification of four loci isolated from two Streptococcus thermophilus phage genomes responsible for mediating bacteriophage resistance. FEMS Microbiol. Lett. 182: 271 277.
106. Steen, A.,, G. Buist,, K. J. Leenhouts,, M. El Khattabi,, F. Grijpstra,, A. L. Zomer,, G. Venema,, O. P. Kuipers,, and J. Kok. 2003. Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J. Biol. Chem. 278: 23874 23881.
107. Sulakvelidze, A.,, Z. Alavidze,, and J. G. Morris. 2001. Bacteriophage therapy. Antimicrob. Agents Chemother. 45: 649 659.
108. Summers, W. C. 2001. Bacteriophage therapy. Annu. Rev. Microbiol. 55: 437 451.
109. Tettelin, H.,, K. E. Nelson,, I. T. Paulsen,, J. A. Eisen,, T. D. Read,, S. Peterson,, J. Heidelber,, R. T. DeBoy,, D. H. Haft,, R. J. Dodson,, A. S. Durkin,, M. Gwinn,, J. F. Kolonay,, W. C. Nelson,, J. D. Peterson,, L. A. Umayam,, O. White,, S. L. Salzberg,, M. R. Lewis,, D. Radune,, E. Holtzapple,, H. Khouri,, A. M. Wolf,, T. R. Utterback,, C. L. Hansen,, L. A. McDonald,, T. V. Feldblyum,, S. Angiuoli,, T. Dickinson,, E. K. Hickey,, I. E. Holt,, B. J. Loftus,, F. Yang,, H. O. Smith,, J. C. Venter,, B. A. Dougherty,, D. A. Morrison,, S. K. Hollingshead,, and C. M. Fraser. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 498 506.
110. Tiraby, J. G.,, E. Tiraby,, and M. S. Fox. 1975. Pneumococcal bacteriophages. Virology 68: 566 569.
111. Varea, J.,, B. Monterroso,, J. L. Sáiz,, C. López- Zumel,, J. L. García,, J. Laynez,, P. García,, and M. Menéndez. 2004. Structural and thermodynamic characterization of Pal, a phage natural chimeric lysin active against pneumococci. J. Biol. Chem. 279: 43697 43707.
112. Voelker, L. L.,, and K. Dybvig. 1999. Sequence analysis of the Mycoplasma arthritidis bacteriophage MAV1 genome identifies the putative virulence factor. Gene 233: 101 107.
113. Wagner, P. L.,, and M. K. Waldor. 2002. Bacteriophage control of bacterial virulence. Infect. Immun. 70: 3985 3993.
114. Wang, I.-N.,, D. L. Smith,, and R. Young. 2000. Holins: the protein clocks of bacteriophage infection. Annu. Rev. Microbiol. 54: 799 825.
115. Webb, J. S.,, L. S. Thompson,, S. James,, T. Charlton,, T. Tolker-Nielsen,, B. Koch,, M. Givskov,, and S. Kjelleberg. 2003. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185: 4585 4592.
116. Whitney, C. G.,, M. M. Farley,, J. Hadler,, L. H. Harrison,, C. Lexau,, A. Reingold,, L. Lefkowitz,, P. R. Cieslak,, M. Cetron,, E. R. Zell,, J. H. Jorgensen, and, A. Schuchat. 2000. Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. N. Engl. J. Med. 33: 1917 1924.

Tables

Generic image for table
TABLE 1

Characteristics of pneumococcal bacteriophages

DS, linear double-stranded DNA.

ND, not determined.

Modified from reference 34 with permission of the publisher.

Citation: García P, García J, López R, García E. 2005. Pneumococcal Phages, p 335-361. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch17
Generic image for table
TABLE 2

Proposed functions for some Dp-1 gene products

On the basis of sequence comparisons by BLASTP (http://www. Ncbi. Nlm. Nih. Gov).

Citation: García P, García J, López R, García E. 2005. Pneumococcal Phages, p 335-361. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch17
Generic image for table
TABLE 3a

Characteristics of lysins from phages infecting gram-positive bacteria

Bac, Bacillus; Bam, Bacillus amyloliquefaciens; Ban, Bacillus anthracis; Bce, Bacillus cereus; Bsu, Bacillus subtilis; Lac, Lactobacillus; Lca, Lactobacillus casei; Lde, Lactobacillus delbrueckii; Lga, Lactobacillus gasseri; Ljo, Lactobacillus johnsonii; Lla, Lactococcus lactis; Lmo, Listeria monocytogenes; Ooe, Oenococcus oeni; Sag, Streptococcus agalactiae; Sau, Staphylococcus aureus; Seq, Streptococcus equi; Smi, Streptococcus mitis; Spn, Streptococcus pneumoniae; Spy, Streptococcus pyogenes; Sth, Streptococcus thermophilus.

M, Myoviridae; P, Podoviridae; S, Siphoviridae.

Experimentally determined.

HP, hypothetical protein.

Partial sequence.

Unpublished results.

Citation: García P, García J, López R, García E. 2005. Pneumococcal Phages, p 335-361. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch17
Generic image for table
TABLE 3b

Characteristics of lysins from phages infecting gram-positive bacteria

Bac, Bacillus; Bam, Bacillus amyloliquefaciens; Ban, Bacillus anthracis; Bce, Bacillus cereus; Bsu, Bacillus subtilis; Lac, Lactobacillus; Lca, Lactobacillus casei; Lde, Lactobacillus delbrueckii; Lga, Lactobacillus gasseri; Ljo, Lactobacillus johnsonii; Lla, Lactococcus lactis; Lmo, Listeria monocytogenes; Ooe, Oenococcus oeni; Sag, Streptococcus agalactiae; Sau, Staphylococcus aureus; Seq, Streptococcus equi; Smi, Streptococcus mitis; Spn, Streptococcus pneumoniae; Spy, Streptococcus pyogenes; Sth, Streptococcus thermophilus.

M, Myoviridae; P, Podoviridae; S, Siphoviridae.

Experimentally determined.

HP, hypothetical protein.

Partial sequence.

Unpublished results.

Citation: García P, García J, López R, García E. 2005. Pneumococcal Phages, p 335-361. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch17
Generic image for table
TABLE 3c

Characteristics of lysins from phages infecting gram-positive bacteria

Bac, Bacillus; Bam, Bacillus amyloliquefaciens; Ban, Bacillus anthracis; Bce, Bacillus cereus; Bsu, Bacillus subtilis; Lac, Lactobacillus; Lca, Lactobacillus casei; Lde, Lactobacillus delbrueckii; Lga, Lactobacillus gasseri; Ljo, Lactobacillus johnsonii; Lla, Lactococcus lactis; Lmo, Listeria monocytogenes; Ooe, Oenococcus oeni; Sag, Streptococcus agalactiae; Sau, Staphylococcus aureus; Seq, Streptococcus equi; Smi, Streptococcus mitis; Spn, Streptococcus pneumoniae; Spy, Streptococcus pyogenes; Sth, Streptococcus thermophilus.

M, Myoviridae; P, Podoviridae; S, Siphoviridae.

Experimentally determined.

HP, hypothetical protein.

Partial sequence.

Unpublished results.

Citation: García P, García J, López R, García E. 2005. Pneumococcal Phages, p 335-361. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error