Chapter 27 : Pathogenesis of Oral Streptococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Pathogenesis of Oral Streptococci, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap27-2.gif


Species of streptococci are well represented among the bacteria found in the oral cavity, which has been estimated to harbor around 500 different species of bacteria, though there remain many taxa of uncertain status and many microscopically observable microbes that have not yet been isolated in laboratory culture. These oral streptococci seem to be ubiquitous among all the human populations studied. When they have been sought, identical or closely related streptococci have also been found in a wide variety of animal species, so streptococci are clearly part of the normal commensal flora of mammals; this chapter considers the problems that arise when this commensal relationship breaks down and the oral streptococci become opportunistic pathogens. The chapter talks about acquisition of oral streptococci, mechanism of colonization, immunological processes in the mouth, and metabolism of dental plaque. The oral streptococci are normal commensals of the human mouth and as such play a beneficial role in colonization resistance, excluding potentially pathogenic species oral streptococci as pathogens, systemic infections, virulence factors of oral streptococci.

Citation: Russell R. 2006. Pathogenesis of Oral Streptococci, p 332-339. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch27
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Phylogenetic relationships among 34 species by 16S rRNA gene sequence analysis. (Reproduced from Kawamura et al. [ ] with permission.)

Citation: Russell R. 2006. Pathogenesis of Oral Streptococci, p 332-339. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alaluusua, S.,, S. J. Alaluusua,, J. Karjalainen,, M. Saarela,, T. Holttinen,, M. Kallio,, P. Holtta,, H. Torkko,, P. Relander,, and S. Asikainen. 1994. The demonstration by ribotyping of the stability of oral Streptococcus mutans infection over 5 to 7 years in children. Arch. Oral. Biol. 39: 467 471.
2. Alcaide, F.,, J. Carratala,, J. Linares,, F. Gudiol,, and R. Martin. 1996. In vitro activities of eight macrolide antibiotics and RP-59500 (quinupristin-dalfopristin) against viridans group streptococci isolated from blood of neutropenic cancer patients. Antimicrob. Agents Chemother. 40: 2117 2120.
3. Bartzokas, C. A.,, R. Johnson,, M. Jane,, M. V. Martin,, P. K. Pearce,, and Y. Saw. 1994. Relation between mouth and hematogenous infection in total joint replacements. Brit. Med. J. 309: 506 508.
4. Black, C.,, I. Allan,, S. K. Ford,, M. Wilson,, and R. Mc- Nab. 2004. Biofilm-specific surface properties and protein expression in oral Streptococcus sanguis. Arch. Oral Biol. 49: 295 304.
5. Bowden, G. H. W.,, and I. R. Hamilton. 1998. Survival of oral bacteria. Crit. Rev. Oral Biol. Med. 9: 54 85.
6. Bradshaw, D. J.,, K. A. Homer,, P. D. Marsh,, and D. Beighton. 1994. Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 140: 3407 3412.
7. Bradshaw, D. J.,, P. D. Marsh,, G. K. Watson,, and C. Allison. 1997. Oral anaerobes cannot survive oxygen stress without interacting with facultative/aerobic species as a microbial community. Lett. Appl. Microbiol. 25: 385 387.
8. Brailsford, S. R.,, B. Shah,, D. Simons,, S. Gilbert,, D. Clark,, I. Ines,, S. E. Adams,, C. Allison,, and D. Beighton. 2001. The predominant aciduric microflora of root-caries lesions. J. Dent. Res. 80: 1828 1833.
9. Burne, R. A.,, and R. E. Marquis. 2000. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol. Lett. 193: 1 6.
10. Byers, H. L.,, E. Tarelli,, K. A. Homer,, and D. Beighton. 1999. Sequential deglycosylation and utilization of the N-linked, complex-type glycans of human alpha1-acid glycoprotein mediates growth of Streptococcus oralis. Glycobiol. 9: 469 479.
11. Carlsson, P. 1989. Distribution of mutans streptococci in populations with different levels of sugar consumption. Scand. J. Dent. Res. 97: 120 125.
12. Carlsson, P.,, I. A. Gandour,, B. Olsson,, B. Rickardsson,, and K. Abbas. 1987. High prevalence of mutans streptococci in a population with extremely low prevalence of dental caries. Oral Microbiol. Immunol. 2: 121 124.
13. Caufield, P. W.,, G. R. Cutter,, and A. P. Dasanayake. 1993. Initial acquisition of mutans streptococci by infants: evidence for a discrete window of infectivity. J. Dent. Res. 72: 37 45.
14. Colby, S. M.,, and R. R. B. Russell. 1997. Sugar metabolism by mutans streptococci. J. Appl. Microbiol. 83: S80 S88.
15. Colombo, A. P.,, A. D. Haffajee,, F. E. Dewhirst,, B. J. Paster,, C. M. Smith,, M. A. Cugini,, and S. S. Socransky. 1998. Clinical and microbiological features of refractory periodontitis subjects. J. Clin. Periodontol. 25: 169 180.
16. De Gheldre, Y.,, P. Vandamme,, H. Goossens,, and M. J. Struelens. 1999. Identification of clinically relevant viridans streptococci by analysis of transfer DNA intergenic spacer length polymorphism. Int. J. Syst. Bacteriol. 49: 1591 1598.
17. Douglas, C. W. I.,, J. Heath,, K. K. Hampton,, and F. E. Preston. 1993. Identity of viridans streptococci isolated from cases of infective endocarditis. J. Med. Microbiol. 39: 179 182.
18. Elting, L. S.,, G. P. Bodey,, and B. H. Keefe. 1992. Septicemia and shock syndrome due to viridans streptococci —a case-control study of predisposing factors. Clin. Infect. Dis. 14: 1201 1207.
19. Facklam, R. 2002. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin. Microbiol. Rev. 15: 613 630.
20. Fiehn, N. E.,, E. Gutschik,, T. Larsen,, and J. M. Bangsborg. 1995. Identity of streptococcal blood isolates and oral isolates from 2 patients with infective endocarditis. J. Clin. Microbiol. 33: 1399 1401.
21. Fisher, L. E.,, and R. R. B. Russell. 1993. The isolation and characterization of milleri group streptococci from dental periapical abscesses. J. Dent. Res. 72: 1191 1193.
22. Fitzsimmons, S.,, M. Evans,, C. Pearce,, M. J. Sheridan,, R. Wientzen,, G. Bowden,, and M. F. Cole. 1996. Clonal diversity of Streptococcus mitis biovar 1 isolates from the oral cavity of human neonates. Clin. Diagn. Lab. Immunol. 3: 517 522.
23. Garnier, F.,, G. Gerbaud,, P. Courvalin,, and M. Galimand. 1997. Identification of clinically relevant viridans group streptococci to the species level by PCR. J. Clin. Microbiol. 35: 2337 2341.
24. Guggenheim, M.,, S. Shapiro,, R. Gmur,, and B. Guggenheim. 2001. Spatial arrangements and associative behavior of species in an in vitro oral biofilm model. Appl. Environ. Microbiol. 67: 1343 1350.
25. Havarstein, L. S.,, R. Hakenbeck,, and P. Gaustad. 1997. Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J. Bacteriol. 179: 6589 6594.
26. Helderman, W. H. V.,, M. I. N. Matee,, J. S. van der Hoeven,, and F. H. M. Mikx. 1996. Cariogenicity depends more on diet than the prevailing mutans streptococcal species. J. Dent. Res. 75: 535 545.
27. Hohwy, J.,, and M. Kilian. 1995. Clonal diversity of the Streptococcus mitis biovar 1 population in the human oral cavity and pharynx. Oral Microbiol. Immunol. 10: 19 25.
28. Hohwy, J.,, J. Reinholdt,, and M. Kilian. 2001. Population dynamics of Streptococcus mitis in its natural habitat. Infect. Immun. 69: 6055 6063.
29. Homer, K. A.,, L. Denbow,, R. A. Whiley,, and D. Beighton. 1993. Chondroitin sulfate depolymerase and hyaluronidase activities of viridans streptococci determined by a sensitive spectrophotometric assay. J. Clin. Microbiol. 31: 1648 1651.
30. Jenkinson, H. F.,, and R. J. Lamont. 1997. Streptococcal adhesion and colonization. Crit. Rev. Oral Biol. Med. 8: 175 200.
31. Kawamura, Y.,, X. G. Hou,, F. Sultana,, H. Miura,, and T. Ezaki. 1995. Determination of 16S r-RNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int. J. Syst. Bacteriol. 45: 406 408.
32. Kelly, C. G.,, J. S. Younson,, B. Y. Hikmat,, S. M. Todryk,, M. Czisch,, P. I. Haris,, I. R. Flindall,, C. Newby,, A. I. Mallet,, J. K. C. Ma,, and T. Lehner. 1999. A synthetic peptide adhesion epitope as a novel antimicrobial agent. Nature Biotechnol. 17: 42 47.
33. Kennedy, H. F.,, D. Morrison,, D. Tomlinson,, B. E. S. Gibson,, J. Bagg,, and C. G. Gemmell. 2003. Gingivitis and toothbrushes: potential roles in viridans streptococcal bacteraemia. J. Infect. 46: 67 70.
34. Kilian, M.,, J. Reinholdt,, H. Lomholt,, K. Poulsen,, and E. V. G. Frandsen. 1996. Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evidence. APMIS 104: 321 338.
35. Kleinberg, I. 2002. A mixed-bacteriae ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit. Rev. Oral Biol. Med. 13: 108 125.
36. Koga, T.,, T. Oho,, Y. Shimazaki,, and Y. Nakano. 2002. Immunization against dental caries. Vaccine 20: 2027 2044.
37. Lewis, M. A. O.,, T. W. Macfarlane,, and D. A. Mc- Gowan. 1990. A microbiological and clinical review of the acute dentoalveolar abscess. Brit. J. Oral Maxillofac. Surg. 28: 359 366.
38. Li, Y.,, and P. W. Caufield. 1995. The fidelity of initial acquisition of mutans streptococci by infants from their mothers. J. Dent. Res. 74: 681 685.
39. Lingstrom, P.,, F. O. van Ruyven,, J. van Houte,, and R. Kent. 2000. The pH of dental plaque in its relation to early enamel caries and dental plaque flora in humans. J. Dent. Res. 79: 770 777.
40. Loesche, W. J. 1986. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50: 353 380.
41. Ma, J. K. C.,, B. Y. Hikmat,, K. Wycoff,, N. D. Vine,, D. Chargelegue,, L. Yu,, M. B. Hein,, and T. Lehner. 1998. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nature Med. 4: 601 606.
42. Macey, M. G.,, R. A. Whiley,, L. Miller,, and H. Nagamune. 2001. Effect on polymorphonuclear cell function of a human-specific cytotoxin, intermedilysin, expressed by Streptococcus intermedius. Infect. Immun. 69: 6102 6109.
43. Marchant, S.,, S. R. Brailsford,, A. C. Twomey,, G. J. Roberts,, and D. Beighton. 2001. The predominant microflora of nursing caries lesions. Caries Res. 35: 397 406.
44. Marcotte, H.,, and M. C. Lavoie. 1998. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol. Mol. Biol. Rev. 62: 71 109.
45. Marron, A.,, J. Carratala,, F. Alcaide,, A. Fernandez-Sevilla,, and F. Gudiol. 2001. High rates of resistance to cephalosporins among viridans group streptococci causing bacteraemia in neutropenic cancer patients. J. Antimicrob. Chemother. 47: 87 91.
46. Marsh, P. D. 2003. Are dental diseases examples of ecological catastrophes? Microbiology 149: 279 294.
47. Marsh, P. D. 2004. Dental plaque as a microbial biofilm. Caries Res. 38: 204 211.
48. McNeill, K.,, and I. R. Hamilton. 2003. Acid tolerance response of biofilm cells of Streptococcus mutans. FEMS Microbiol. Lett. 221: 25 30.
49. Nagamune, H.,, C. Ohnishi,, A. Katsuura,, K. Fushitani,, R. A. Whiley,, A. Tsuji,, and Y. Matsuda. 1996. Intermedilysin, a novel cytotoxin specific for human cells, secreted by Streptococcus intermedius UNS46 isolated from a human liver abscess. Infect. Immun. 64: 3093 3100.
50. Palmer, R. J.,, S. M. Gordon,, J. O. Cisar,, and P. E. Kolenbrander. 2003. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J. Bacteriol. 185: 3400 3409.
51. Palmer, R. J.,, K. Kazmerzak,, M. C. Hansen,, and P. E. Kolenbrander. 2001. Mutualism versus independence: Strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect. Immun. 69: 5794 5804.
52. Poyart, C.,, G. Quesne,, S. Coulon,, P. Berche,, and P. Trieu-Cuot. 1998. Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J. Clin. Microbiol. 36: 41 47.
53. Reichmann, P.,, A. Konig,, J. Linares,, F. Alcaide,, F. C. Tenover,, L. McDougal,, S. Swidsinski,, and R. Hakenbeck. 1997. A global gene pool for high-level cephalosporin resistance in commensal Streptococcus species and Streptococcus pneumoniae. J. Infect. Dis. 176: 1001 1012.
54. Richard, P.,, G. A. Delvalle,, P. Moreau,, N. Milpied,, M. P. Felice,, T. Daeschler,, J. L. Harousseau,, and H. Richet. 1995. Viridans streptococcal bacteremia in patients with neutropenia. Lancet 345: 1607 1609.
55. Russell, R. R. B. 1994. Control of specific plaque bacteria. Adv. Dent. Res. 8: 285 290.
56. Russell, R. R. B.,, and N. W. Johnson. 1987. The prospects for vaccination against dental-caries. Brit. Dent. J. 162: 29 34.
57. Sansone, C.,, J. Van Houte,, K. Joshipura,, R. Kent,, and H. C. Margolis. 1993. The association of mutans streptococci and non-mutans streptococci capable of acidogenesis at a low pH with dental caries on enamel and root surfaces. J. Dent. Res. 72: 508 516.
58. Seymour, R. A.,, R. Lowry,, J. M. Whitworth,, and M. V. Martin. 2000. Infective endocarditis, dentistry and antibiotic prophylaxis; time for a rethink? Brit. Dent. J. 189: 610 616.
59. Shinzato, T.,, and A. Saito. 1994. A mechanism of pathogenicity of streptococcus-milleri group in pulmonary infection—synergy with an anaerobe. J. Med. Microbiol. 40: 118 123.
60. Skopek, R. J.,, W. F. Liljemark,, C. G. Bloomquist,, and J. D. Rudney. 1993. Dental plaque development on defined streptococcal surfaces. Oral Microbiol. Immunol. 8: 16 23.
61. Soares, R.,, P. Ferreira,, M. M. G. Santarem,, M. Teixeira da Silva,, and M. Arala-Chaves. 1990. Low T-cell and B-cell reactivity is an apparently paradoxical request for murine immunoprotection against Streptococcus mutans—murine protection can be achieved by immunization against a B-cell mitogen produced by these bacteria. Scand. J. Immunol. 31: 361 366.
62. Stinson, M. W.,, R. McLaughlin,, S. H. Choi,, Z. E. Juarez,, and J. Barnard. 1998. Streptococcal histone-like protein: Primary structure of hlpA and protein binding to lipoteichoic acid and epithelial cells. Infect. Immun. 66: 259 265.
63. Svensater, G.,, M. Borgstrom,, G. H. W. Bowden,, and S. Edwardsson. 2003. The acid-tolerant microbiota associated with plaque from initial caries and healthy tooth surfaces. Caries Res. 37: 395 403.
64. Tapp, J.,, M. Thollesson,, and B. Herrmann. 2003. Phylogenetic relationships and genotyping of the genus Streptococcus by sequence determination of the RNase P RNA gene, rnpB. Int. J. Syst. Evol. Microbiol. 53: 1861 1871.?
65. Truper, H. G.,, and L. DeClari. 1997. Taxonomic note: necessary correction of specific epithets formed as substantives (nouns) “in apposition.” Int. J. Syst. Bacteriol. 47: 908 909.
66. Tyler, B. M.,, and M. F. Cole. 1998. Effect of IgA1 protease on the ability of secretory IgA1 antibodies to inhibit the adherence of Streptococcus mutans. Microbiol. Immunol. 42: 503 508.
67. Vernier, A.,, M. Diab,, M. Soell,, G. Haan-Archipoff,, A. Beretz,, D. Wachsmann,, and J. P. Klein. 1996. Cytokine production by human epithelial and endothelial cells following exposure to oral viridans streptococci involves lectin interactions between bacteria and cell surface receptors. Infect. Immun. 64: 3016 3022.
68. Welin, J.,, J. C. Wilkins,, D. Beighton,, and G. Svensater. 2004. Protein expression by Streptococcus mutans during initial stage of biofilm formation. Appl. Environ. Microbiol. 70: 3736 3741.
69. Whatmore, A. M.,, A. Efstratiou,, A. P. Pickerill,, K. Broughton,, G. Woodard,, D. Sturgeon,, R. George,, and C. G. Dowson. 2000. Genetic relationships between clinical isolates of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus mitis: characterization of “atypical” pneumococci and organisms allied to S. mitis harboring S. pneumoniae virulence factor-encoding genes. Infect. Immun. 68: 1374 1382.
70. Whiley, R. A.,, and D. Beighton. 1998. Current classification of the oral streptococci. Oral Microbiol. Immunol. 13: 195 216.
71. Whiley, R. A.,, D. Beighton,, T. G. Winstanley,, H. Y. Fraser,, and J. M. Hardie. 1992. Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus (the Streptococcus milleri group)—association with different body sites and clinical infections. J. Clin. Microbiol. 30: 243 244.
72. Whiley, R. A.,, L. M. C. Hall,, J. M. Hardie,, and D. Beighton. 1997. Genotypic and phenotypic diversity within Streptococcus anginosus. Int. J. Syst. Bacteriol. 47: 645 650.
73. Whittaker, C. J.,, C. M. Klier,, and P. E. Kolenbrander. 1996. Mechanisms of adhesion by oral bacteria. Ann. Rev. Microbiol. 50: 513 552.


Generic image for table

Streptococci commonly found in the human mouth

Citation: Russell R. 2006. Pathogenesis of Oral Streptococci, p 332-339. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch27

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error