Chapter 28 : The Virulence Properties of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Virulence Properties of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap28-2.gif


This chapter focuses on virulence properties of . Using primarily biochemical approaches, it was established almost thirty years ago that three principal properties distinguished strains from the other oral streptococci isolated from the human oral cavity: (i) their ability to synthesize insoluble adhesive glucans from sucrose; (ii) their relative acid tolerance (aciduricity); and (iii) their rapid production of lactic acid from dietary sugars. Furthermore, the importance of these properties relative to cariogenicity was subsequently confirmed utilizing genetic approaches with defined mutants and rat model systems. The development of recombinant DNA techniques as well as gene inactivation strategies was crucial in this regard. These approaches identified a number of genes of the mutans streptococci that influenced the virulence of these organisms, including the genes coding for glucosyltransferases (Gtfs), the and genes encoding glucan-binding proteins, expressing a cell surface adhesion, and the gene involved in intracellular polysaccharide storage. In addition, a number of other genes that have been shown to affect potential virulence properties in vitro were also characterized, including some involved in the stress responses of (, , , and an apurinic-apyrimidinic endonuclease gene).

Citation: Kuramitsu H. 2006. The Virulence Properties of , p 340-346. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch28
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Ajdic, D.,, W. M. McShan,, R. E. McLaughlin,, G. Savic,, J. Chang,, M. B. Carson,, C. Primeaux,, R. Tian,, S. Kenton,, H. Jia,, S. Lin,, Y. Qian,, S. Li,, H. Zhu,, F. Najar,, H. Lai,, J. White,, B. A. Roe,, and J. J. Ferretti. 2002. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci. USA 99: 14434 14439.
2. Alloing, G.,, B. Martin,, C. Granadel,, and J. P. Claverys. 1998. Development of competence in Streptococcus pneumoniae: pheromone autoinduction and control of quorum sensing by the oligopeptide permease. Mol. Microbiol. 29: 75 83.
3. Baev, D.,, R. England,, and H. K. Kuramitsu. 1999. Stress induced membrane association of Streptococcus mutans GTP-binding protein, an essential G-protein, and investigation of its physiological role by utilizing an antisense RNA strategy. Infect. Immun. 67: 4510 4516.
4. Banas, J. A. 2004. Virulence properties of Streptococcus mutans. Front. Biosci. 9: 1267 1277.
5. Banas, J. A.,, and M. M. Vickerman. 2003. Glucan-binding proteins of oral streptococci. Crit. Rev. Oral Biol. Med. 14: 89 99.
6. Bassler, B. 2002. Small talk. Cell-to-cell communication in bacteria. Cell 109: 421 424.
7. Beeston, A. L.,, and M. G. Surette. 2002. pfs-Dependent regulation of autoinducer-2 production in Salmonella enteritica serovar Typhimurium. J. Bacteriol. 184: 3450 3456.
8. Bhagwat, S. P.,, J. Nary,, and R. A. Burne. 2001. Effects of mutating putative two-component systems on biofilm formation by Streptococcus mutans UA159. FEMS Microbiol. Lett. 205: 225 230.
9. Bowen, W. H.,, K. M. Schilling,, E. Giertsen,, S. Person,, S. F. Lee,, A. S. Bleiweis,, and D. Beeman. 1991. Role of a cell surface-associated protein in adherence and dental caries. Infect. Immun. 59: 4606 4609.
10. Burne, R. A. 1998. Oral streptococci... products of their environment. J. Dent. Res. 77: 445 452.
11. Caufield, P. W.,, G. R. Shah,, and S. K. Hollingshead. 1990. Use of transposon Tn 916 to inactivate and isolate a mutacin-associated gene from Streptococcus mutans. Infect. Immun. 58: 4126 4135.
12. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, K. R. Kerber,, and H. M. Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49: 711 745.
13. Crowley, P. J.,, L. J. Brady,, S. M. Michalek,, and A. S. Bleiweis. 1999. Virulence of a spaP mutant of Streptococcus mutans in a gnotobiotic rat model. Infect. Immun. 67: 1201 1206.
14. Cvitkovitch, D. G. 2001. Genetic competence and transformation in oral streptococci. Crit. Rev. Oral Biol. Med. 12: 217 243.
15. Cvitkovitch, D. G.,, and I. R. Hamilton. 1994. Biochemical change exhibited by oral streptococci resulting from laboratory subculturing. Oral Microbiol. Immunol. 9: 209 217.
16. Cvitkovitch, D. G.,, Y. H. Li,, and R. P. Ellen. 2003. Quorum sensing and biofilm formation in streptococcal infections. J. Clin. Investig. 112: 1626 1632.
17. Cvitkovitch, D. G.,, J. A. Gutierrez,, J. Behari,, P. J. Youngman,, J. E. Wetz,, P. J. Crowley,, J. D. Hillman,, L. J. Brady,, and A. S. Bleiweis. 2000. Tn 917- lac mutagenesis of Streptococcus mutans to identify environmentally regulated genes. FEMS Microbiol. Lett. 182: 149 154.
18. Freedman, M. L.,, J. M. Tanzer,, and A. L. Coykendall,. 1981. The use of genetic variants in the study of dental caries, p. 247 261. In J. M. Tanzer, (ed.), Animal Models in Cariology. Information Retrieval Inc., Washington, D.C.
19. Frias, J.,, E. Olle,, and M. Alsina. 2001. Periodontal pathogens produce quorum sensing signals. Infect. Immun. 69: 3431 3434.
20. Gutierrez, J. A.,, P. A. Crowley,, D. P. Brown,, J. D. Hillman,, P. Youngman,, and A. S. Bleiweis. 1996. Insertional mutagenesis and recovery of interrupted genes of Streptococcus mutans by using transposon Tn 917: preliminary characterization of mutants displaying acid sensitivity and nutritional requirements. J. Bacteriol. 178: 4166 4175.
21. Hahn, K.,, R. C. Faustoferri,, and R. G. Quivey, Jr. 1999. Induction of an AP endonuclease activity in Streptococcus mutans during growth at low pH. Mol. Microbiol. 31: 1489 1498.
22. Hamada, S.,, and H. D. Slade. 1980. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 44: 331 384.
23. Harris, G. S.,, S. M. Michalek,, and R. Curtiss III. 1992. Cloning of a locus involved in Streptococcus mutans intracellular polysaccharide accumulation and virulence testing of an intracellular polysaccharide-deficient mutant. Infect. Immun. 60: 3175 3185.
24. Hazlett, K. R. O.,, S. M. Michalek,, and J. A. Banas. 1998. Inactivation of the gbpA gene of Streptococcus mutans increases virulence and promotes in vivo accumulation of recombinations between glucosyltransferases B and C genes. Infect. Immun. 66: 2180 2185.
25. Hillman, J. D. 2002. Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie Leeuwenhoek 82: 361 366.
26. Ji, Y.,, B. Zhang,, S. F. Van Horn,, P. Warren,, G. Woodnutt,, M. K. R. Burnham,, and M. Rosenberg. 2001. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293: 2266 2269.
27. Kleinberg, I. 2002. A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific plaque hypothesis. Crit. Rev. Oral Biol. Med. 13: 108 125.
28. Koga, T.,, T. Oho,, Y. Shimazaki,, and Y. Nakano. 2002. Immunization against dental caries. Vaccine 20: 2027 2044.
29. Kolenbrander, P. E. 1988. Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu. Rev. Microbiol. 42: 627 656.
30. Kremer, B. H.,, M. van der Kraan,, P. J. Crowley,, I. R. Hamilton,, L. J. Brady,, and A. S. Bleiweis. 2001. Characterization of the sat operon in Streptococcus mutans: evidence for a role of Ffh in acid tolerance. J. Bacteriol. 183: 2543 2552.
31. Kroes, I.,, P. W. Lepp,, and D. A. Relman. 1999. Bacterial diversity within the human subgingival crevice. Proc. Natl. Acad. Sci. USA 96: 14547 14552.
32. Kuramitsu, H. K. 1993. Virulence factors of mutans streptococci: role of molecular genetics. Crit. Rev. Oral Biol. Med. 4: 159 176.
33. Kuramitsu, H. K., 2000. Streptococcus mutans: molecular genetic analysis, p. 280 286. In V. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.), Gram-Positive Pathogens. ASM Press, Washington, D.C.
34. Kuramitsu, H. K.,, and V. Trappa. 1984. Genetic exchange between oral streptococci during mixed growth. J. Gen. Microbiol. 130: 2497 2500.
35. Lau, P. C.,, C. K. Sung,, J. H. Lee,, D. A. Morrison,, and D. G. Cvitkovitch. 2002. PCR ligation mutagenesis in transformable streptococci: application and efficiency. J. Microbiol. Methods. 49: 193 205.
36. Lemos, J. A.,, T. A. Brown, Jr.,, and R. A. Burne. 2004. Effects of RelA in key virulence properties of planktonic and biofilm populations of Streptococcus mutans. Infect. Immun. 72: 1431 1440.
37. Lemos, J. A.,, Y. Y. Chen,, and R. A. Burne. 2001. Genetic and physiological analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans. J. Bacteriol. 183: 6074 6084.
38. Len, A. C.,, D. W. Harty,, and N. A. Jacques. 2004a. Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiology 150: 1339 1351.
39. Len, A. C.,, D. W. Harty,, and N. A. Jacques. 2004b. Proteomic analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150: 1353 1366.
40. Li, Y. H.,, P. C. Lau,, N. Tang,, G. Svensater,, R. P. Ellen,, and D. G. Cvitokovtich. 2002. Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J. Bacteriol. 184: 6333 6342.
41. Loesche, W. J. 1986. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50: 353 380.
42. Loo, C. Y.,, D. A. Corliss,, and N. Ganeshkumar. 2000. Streptococcus gordonii biofilm formation: identification of genes which code for biofilm phenotypes. J. Bacteriol. 182: 1374 1382.
43. Mattos-Graner, R. O.,, S. Jin,, W. F. King,, T. Chen,, D. J. Smith,, and M. J. Duncan. 2001. Cloning of the Streptococcus mutans gene encoding glucan binding protein B and analysis of genetic stability and protein production in clinical isolates. Infect. Immun. 69: 6931 6941.
44. Matsumura, M.,, T. Izumi,, M. Matsumoto,, M. Tsuji,, T. Fujiwara,, and T. Ooshima. 2003. The role of glucan-binding proteins in the cariogenicity of Streptococcus mutans. Microbiol. Immunol. 47: 213 215.
45. Merritt, J. E.,, F. Qi,, S. D. Goodman,, M. H. Anderson,, and W. Shi. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71: 1972 1979.
46. Ooshima, T.,, M. Matsumura,, T. Hoshino,, S. Kawabata,, S. Sobue,, and T. Fujiwara. 2001. Contributions of three glucosyltransferases to sucrose-dependent adherence of Streptococcus mutans. J. Dent. Res. 80: 1672 1677.
47. Palmer, R., Jr.,, S. M. Gordon,, J. O. Cisar,, and P. E. Kolenbrander. 2003. Coaggregation-mediated interactions of streptococcal actinomyces detected in human dental plaque. J. Bacteriol. 185: 3400 3409.
48. Russell, M. W.,, N. K. Childers,, S. M. Michalek,, D. J. Smith,, and M. A. Taubman. 2004. A caries vaccine? The state of the science of immunization against dental caries. Caries Res. 38: 230 235.
49. Sato, Y.,, K. Okamoto,, and H. Kizaki. 2002. gbpC and pac gene mutations detected in Streptococcus mutans GS-5. Oral Microbiol. Immunol. 17: 263 266.
50. Sato, Y.,, Y. Yamamoto,, and H. Kizaki. 2000. Xylitol-induced elevated expression of the gbpC gene in a population of Streptococcus mutans cells. Eur. J. Oral Sci. 108: 538 545.
51. Sato, Y.,, K. Okamoto,, A. Kagami,, Y. Yamamoto,, K. Ohta,, T. Igarashi,, and H. Kizaki. 2004. Application of in vitro mutagenesis to identify the gene responsible for cold agglutination phenotype of Streptococcus mutans. Microbiol. Immunol. 48: 444 456.
52. Shah, D. S.,, and R. R. Russell. 2004. A novel glucanbinding protein with lipase activity from the oral pathogen Streptococcus mutans. Microbiology 150: 1947 1956.
53. Svensater, G.,, J. Welin,, J. C. Wilkins,, D. Beighton,, and I. R. Hamilton. 2001. Protein expression by planktonic and biofilm cells of Streptococcus mutans. FEMS Microbiol. Lett. 205: 139 146.
54. Tanzer, J. M., 1992. Microbiology of dental caries, p. 377 424. In J. Slots, and M. A. Taubman (ed.), Contemporary Oral Microbiology and Immunology. Mosby Year Book, St. Louis, Mo.
55. Tsumori, H.,, and H. K. Kuramitsu. 1997. The role of Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: essential role of the GtfC enzyme. Oral Microbiol. Immunol. 12: 274 280.
56. Vasil, M. L. 2003. DNA microarrays in analysis of quorum sensing: strengths and limitations. J. Bacteriol. 185: 2061 2065.
57. Venter, J. C.,, K. Remington,, J. F. Heidelberg,, A. L. Halpern,, D. Rusch,, J. A. Eisen,, D. Wu,, I. Paulsen,, K. E. Nelson,, W. Nelson,, D. E. Fouts,, S. Levy,, A. H. Knap,, M. W. Lomas,, K. Nealson,, O. White,, J. Peterson,, J. Hoffman,, R. Parsons,, H. Baden-Tillson,, C. Pfannkoch,, Y. H. Rogers,, and H. O. Smith. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66 74.
57a.. Wang, B. Y.,, and H. K. Kuramitsu. 2005. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl. Environ. Microbiol. 71: 354 362.
58. Weerkamp, A.,, L. Larik-Bongaerts,, and D. G. Vogel. 1977. Bacteriocins as factors in the in vitro interaction between oral streptococci in plaque. Infect. Immun. 16: 773 780.
59. Weilin, J.,, J. C. Wilkins,, D. Beighton,, and G. Svensater. 2004. Protein expression by Streptococcus mutans during initial stage of biofilm formation. Appl. Environ. Microbiol. 70: 3736 3741.
60. Wen, Z. T.,, and R. A. Burne. 2003. Functional genomics approach to identify genes required for biofilm development by Streptococcus mutans. Appl. Environ. Microbiol. 68: 1196 1203.
61. Wen, Z. T.,, and R. A. Burne. 2004. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J. Bacteriol. 186: 2682 2691.
62. Yamashita, Y.,, T. Takehara,, and H. K. Kuramitsu. 1993. Molecular characerization of a Streptococcus mutans mutant altered in environmental stress responses. J. Bacteriol. 175: 6220 6228.
62a.. Yonezawa, H.,, and H. K. Kuramitsu. 2005. Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob. Agents Chemother. 49: 541 548.
63. Yoshida, A.,, and H. K. Kuramitsu. 2002a. Multiple Streptococcus mutans genes are involved in biofilm formation. Appl. Environ. Microbiol. 68: 6283 6291.
64. Yoshida, A.,, and H. K. Kuramitsu. 2002b. Streptococcus mutans biofilm formation: utilization of a gtfB promotergreen fluorescent protein (P gtfB:: gfp) construct to monitor development. Microbiology 148: 3388 3394.


Generic image for table

Virulence factors of identified in vivo

See text for references.

Citation: Kuramitsu H. 2006. The Virulence Properties of , p 340-346. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch28

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error