Chapter 30 : Genetics of Lactococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Genetics of Lactococci, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap30-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap30-2.gif


This chapter presents current information in different areas of lactococcal genetics, keeping in mind (where possible) pertinence of findings to related pathogens. It highlights major recent work in lactococci, including surprising metabolic capacities, physiology, stress response, and studies leading to novel successful uses of lactococci for protein delivery. Lactococcal metabolism has been intensively studied for its industrial importance in fermentation processes, with a focus on metabolic pathways and their engineering. However, basic metabolic functions may have far-reaching effects, metabolic shifts can result in dramatic changes in growth characteristics and survival. Researchers confirmed and developed a 1970 study showing that lactococci not only ferment sugars, but are also capable of forming an active electron transport chain to generate respiration metabolism. Laboratory results demonstrate that respiration metabolism in lactococci is an efficient means of eliminating oxygen, compared to fermentation, leading to good survival in stationary phase. Some of the most spectacular applications of lactococci concern their use in "bioprotein" delivery. Some tools developed in are adaptable to other gram-positive bacteria. The development of surface display systems in lactic acid bacteria (LAB) will be potentially useful in the development of oral vaccines based on the nontoxic LAB. As an organism present on plants, in milk, in dairy products, and in the gut, may be the organism of choice for studies on the influence of environmental stress on evolution.

Citation: Gaudu P, Yamamoto Y, Jensen P, Hammer K, Gruss A. 2006. Genetics of Lactococci, p 356-368. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch30
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Phylogenetic tree reveals similarities between lactococci and streptococcal pathogens. Asterisks indicate species commonly found in dairy foods. The tree is based on alignments using the conserved gene (http://prodes.toulouse.inra.fr/multalin).

Citation: Gaudu P, Yamamoto Y, Jensen P, Hammer K, Gruss A. 2006. Genetics of Lactococci, p 356-368. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Carbon metabolism in Fermentation of sugar results in ATP production, which in turn is used for anabolism. During anaerobic conditions and rapid sugar flux, all sugar is converted to lactate (homolactic fermentation). When the sugar flux is slower, or the oxygen concentration high, mixed acid fermentation is observed. The latter two conditions are characterized by lower NADH/NAD ratios than those found during homolactic fermentations. Note that the major part of the carbon for anabolism is derived from amino acids (or casein) supplied in the medium.

Citation: Gaudu P, Yamamoto Y, Jensen P, Hammer K, Gruss A. 2006. Genetics of Lactococci, p 356-368. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Increases in GAPDH activity do not increase glycolytic flux in steadily growing MG1363. Levels of GAPDH activity were modulated by driving expression using different strength promoters. At the wild-type enzyme level (set to 1), GAPDH has zero control on the flux. gdw, grams dry weight. (Reproduced with permission from reference .)

Citation: Gaudu P, Yamamoto Y, Jensen P, Hammer K, Gruss A. 2006. Genetics of Lactococci, p 356-368. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Activation of respiration metabolism in . Lactococci were found capable of respiration metabolism. An active respiration chain requires three components: an electron donor (NADH dehydrogenase, potentially encoded by and genes; it expulses H and transfers e); quinone electron transfer molecules (synthesized by enzymes encoded by the genes; it further transfers e); and an oxidoreductase (-encoded cytochrome bd quinol oxidase; it transfers e to its final acceptor, oxygen, which then reacts with H to produce water). An ATP synthase presumably recovers expulsed H to produce ATP during its entry.

Citation: Gaudu P, Yamamoto Y, Jensen P, Hammer K, Gruss A. 2006. Genetics of Lactococci, p 356-368. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Respiration metabolism increases survival capacity of lactococci. When supplemented with hemin, aerobically grown lactococci can undergo respiration metabolism. As a result, cells stored at 4°C show a markedly better survival, as compared to cells grown aerobically in the absence of hemin or in static conditions. Improved survival was also observed when cells are maintained at 30°C. Experiment shown was performed by Karin Vido (URLGA, INRA, France).

Citation: Gaudu P, Yamamoto Y, Jensen P, Hammer K, Gruss A. 2006. Genetics of Lactococci, p 356-368. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Bacterial root formation in semiliquid medium. Bacterial chains (here, an mutant of ; “parental strain”) sediment slowly in a semiliquid (0.035% agar) medium. A bacterial “dechained” mutant sediments more quickly to form a “root.” In such experiments, all the roots corresponded to independent mutants in the same gene, , encoding PBP1A. (Photograph kindly provided by S. Kulakauskas, URLGA, INRA, France.)

Citation: Gaudu P, Yamamoto Y, Jensen P, Hammer K, Gruss A. 2006. Genetics of Lactococci, p 356-368. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Andersen, H. W.,, M. B. Pedersen,, K. Hammer,, and P. R. Jensen. 2001. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Eur. J. Biochem. 268: 6379 6389.
2. Andersen, H. W.,, C. Solem,, K. Hammer,, and P. R. Jensen. 2001. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux. J. Bacteriol. 183: 3458 3467.
3. Antolin, J.,, R. Ciguenza,, I. Saluena,, E. Vazquez,, J. Hernandez,, and D. Espinos. 2004. Liver abscess caused by Lactococcus lactis cremoris: a new pathogen. Scand. J. Infect. Dis. 36: 490 491.
4. Arnau, J.,, K. I. Sorensen,, K. F. Appel,, F. K. Vogensen,, and K. Hammer. 1996. Analysis of heat shock gene expression in Lactococcus lactis MG1363. Microbiology 142: 1685 1691.
5. Belhocine, K.,, I. Plante,, and B. Cousineau. 2004. Conjugation mediates transfer of the Ll.LtrB group II intron between different bacterial species. Mol. Microbiol. 51: 1459 1469.
6. Bermudez-Humaran, L. G.,, N. G. Cortes-Perez,, Y. Le Loir,, J. M. Alcocer-Gonzalez,, R. S. Tamez-Guerra,, R. M. de Oca-Luna,, and P. Langella. 2004. An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J. Med. Microbiol. 53: 427 433.
7. Bermudez-Humaran, L. G.,, P. Langella,, N. G. Cortes-Perez,, A. Gruss,, R. S. Tamez-Guerra,, S. C. Oliveira,, O. Saucedo-Cardenas,, R. Montes de Oca-Luna,, and Y. Le Loir. 2003. Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect. Immun. 71: 1887 1896.
8. Beyer, N. H.,, P. Roepstorff,, K. Hammer,, and M. Kilstrup. 2003. Proteome analysis of the purine stimulon from Lactococcus lactis. Proteomics 3: 786 797.
9. Bidnenko, E.,, C. Mercier,, J. Tremblay,, P. Tailliez,, and S. Kulakauskas. 1998. Estimation of the state of the bacterial cell wall by fluorescent in situ hybridization. Appl. Environ. Microbiol. 64: 3059 3062.
10. Blank, L. M.,, B. J. Koebmann,, O. Michelsen,, L. K. Nielsen,, and P. R. Jensen. 2001. Hemin reconstitutes proton extrusion in an H(+)-ATPase-negative mutant of Lactococcus lactis. J. Bacteriol. 183: 6707 6709.
11. Bolotin, A.,, S. Mauger,, K. Malarme,, S. D. Ehrlich,, and A. Sorokin. 1999. Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie Leeuwenhoek 76: 27 76.
12. Bolotin, A.,, P. Wincker,, S. Mauger,, O. Jaillon,, K. Malarme,, J. Weissenbach,, S. D. Ehrlich,, and A. Sorokin. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731 753.
13. Bongers, R. S.,, M. H. Hoefnagel,, M. J. Starrenburg,, M. A. Siemerink,, J. G. Arends,, J. Hugenholtz,, and M. Kleerebezem. 2003. IS981-mediated adaptive evolution recovers lactate production by ldhB transcription activation in a lactate dehydrogenase-deficient strain of Lactococcus lactis. J. Bacteriol. 185: 4499 4507.
14. Bourgoin, F.,, A. Pluvinet,, B. Gintz,, B. Decaris,, and G. Guedon. 1999. Are horizontal transfers involved in the evolution of the Streptococcus thermophilus exopolysaccharide synthesis loci? Gene 233: 151 161.
15. Brondsted, L.,, and K. Hammer. 1999. Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis. Appl. Environ. Microbiol. 65: 752 758.
16. Buist, G.,, H. Karsens,, A. Nauta,, D. van Sinderen,, G. Venema,, and J. Kok. 1997. Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, AcmA. Appl. Environ. Microbiol. 63: 2722 2728.
17. Campo, N.,, M. J. Dias,, M. L. Daveran-Mingot,, P. Ritzenthaler,, and P. Le Bourgeois. 2004. Chromosomal constraints in Gram-positive bacteria revealed by artificial inversions. Mol. Microbiol. 51: 511 522.
18. Chatel, J. M.,, S. Nouaille,, K. Adel-Patient,, Y. Le Loir,, H. Boe,, A. Gruss,, J. M. Wal,, and P. Langella. 2003. Characterization of a Lactococcus lactis strain that secretes a major epitope of bovine beta-lactoglobulin and evaluation of its immunogenicity in mice. Appl. Environ. Microbiol. 69: 6620 6627.
19. Claverys, J. P.,, M. Prudhomme,, I. Mortier-Barriere,, and B. Martin. 2000. Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination-mediated genetic plasticity? Mol. Microbiol. 35: 251 259.
20. Cocaign-Bousquet, M.,, C. Garrigues,, P. Loubiere,, and N. D. Lindley. 1996. Physiology of pyruvate metabolism in Lactococcus lactis. Antonie Leeuwenhoek 70: 253 267.
21. de Ruyter, P. G.,, O. P. Kuipers,, W. C. Meijer,, and W. M. de Vos. 1997. Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nat. Biotechnol. 15: 976 979.
22. de Vos, W. M.,, and J. Hugenholtz. 2004. Engineering metabolic highways in lactococci and other lactic acid bacteria. Trends Biotechnol. 22: 72 79.
23. Dickely, F.,, D. Nilsson,, E. B. Hansen,, and E. Johansen. 1995. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 15: 839 847.
24. Diep, D. B.,, and I. F. Nes. 2002. Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr. Drug Targets 3: 107 122.
24a.. Dieye, Y. 2002. Ph.D. thesis. Université Paris XI, Paris, France.
25. D’Mello, R.,, S. Hill,, and R. K. Poole. 1996. The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142(Pt 4): 755 763.
26. Duwat, P.,, S. D. Ehrlich,, and A. Gruss. 1999. Effects of metabolic flux on stress response pathways in Lactococcus lactis. Mol. Microbiol. 31: 845 858.
27. Duwat, P.,, S. D. Ehrlich,, and A. Gruss. 1995. The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol. Microbiol. 17: 1121 1131.
28. Duwat, P.,, S. Sourice,, B. Cesselin,, G. Lamberet,, K. Vido,, P. Gaudu,, Y. Le Loir,, F. Violet,, P. Loubiere,, and A. Gruss. 2001. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J. Bacteriol. 183: 4509 4516.
29. Eichenbaum, Z.,, M. J. Federle,, D. Marra,, W. M. de Vos,, O. P. Kuipers,, M. Kleerebezem,, and J. R. Scott. 1998. Use of the lactococcal nisA promoter to regulate gene expression in gram-positive bacteria: comparison of induction level and promoter strength. Appl. Environ. Microbiol. 64: 2763 2769.
30. Endley, S.,, D. McMurray,, and T. A. Ficht. 2001. Interruption of the cydB locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection. J. Bacteriol. 183: 2454 2462.
31. Fischetti, V. A.,, V. Pancholi,, and O. Schneewind. 1990. Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol. Microbiol. 4: 1603 1605.
32. Frazier, C. L.,, J. San Filippo,, A. M. Lambowitz,, and D. A. Mills. 2003. Genetic manipulation of Lactococcus lactis by using targeted group II introns: generation of stable insertions without selection. Appl. Environ. Microbiol. 69: 1121 1128.
33. Frees, D.,, and H. Ingmer. 1999. ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol. Microbiol. 31: 79 87.
34. Garrigues, C.,, P. Loubiere,, N. D. Lindley,, and M. Cocaign- Bousquet. 1997. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J. Bacteriol. 179: 5282 5287.
35. Gaudu, P.,, G. Lamberet,, S. Poncet,, and A. Gruss. 2003. CcpA regulation of aerobic and respiration growth in Lactococcus lactis. Mol. Microbiol. 50: 183 192.
36. Gaudu, P.,, K. Vido,, B. Cesselin,, S. Kulakauskas,, J. Tremblay,, L. Rezaiki,, G. Lamberret,, S. Sourice,, P. Duwat,, and A. Gruss. 2002. Respiration capacity and consequences in Lactococcus lactis. Antonie Leeuwenhoek 82: 263 269.
37. Gilbert, C.,, K. Robinson,, R. W. Le Page,, and J. M. Wells. 2000. Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis. Infect. Immun. 68: 3251 3260.
38. Godon, J. J.,, C. J. Pillidge,, K. Jury,, C. A. Shearman,, and M. J. Gasson. 1995. Molecular analysis of the Lactococcus lactis sex factor. Dev. Biol. Stand. 85: 423 430.
39. Grangette, C.,, H. Muller-Alouf,, P. Hols,, D. Goudercourt,, J. Delcour,, M. Turneer,, and A. Mercenier. 2004. Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria. Infect. Immun. 72: 2731 2737.
40. Hartke, A.,, S. Bouche,, J. C. Giard,, A. Benachour,, P. Boutibonnes,, and Y. Auffray. 1996. The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr. Microbiol. 33: 194 199.
41. Helmark, S.,, M. E. Hansen,, B. Jelle,, K. I. Sorensen,, and P. R. Jensen. 2004. Transformation of Leuconostoc carnosum 4010 and evidence for natural competence of the organism. Appl. Environ. Microbiol. 70: 3695 3699.
42. Horn, N.,, S. Swindell,, H. Dodd,, and M. Gasson. 1991. Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol. Gen. Genet. 228: 129 135.
43. Huycke, M. M.,, D. Moore,, W. Joyce,, P. Wise,, L. Shepard,, Y. Kotake,, and M. S. Gilmore. 2001. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol. Microbiol. 42: 729 740.
44. Iwaki, M.,, N. Okahashi,, I. Takahashi,, T. Kanamoto,, Y. Sugita-Konishi,, K. Aibara,, and T. Koga. 1990. Oral immunization with recombinant Streptococcus lactis carrying the Streptococcus mutans surface protein antigen gene. Infect. Immun. 58: 2929 2934.
45. Jensen, P. R.,, and K. Hammer. 1998. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64: 82 87.
46. Jones, A. L.,, R. H. Needham,, A. Clancy,, K. M. Knoll,, and C. E. Rubens. 2003. Penicillin-binding proteins in Streptococcus agalactiae: a novel mechanism for evasion of immune clearance. Mol. Microbiol. 47: 247 256.
47. Khan, S. A. 1997. Rolling-circle replication of bacterial plasmids. Microbiol. Mol. Biol. Rev. 61: 442 455.
48. Kilstrup, M.,, S. G. Jessing,, S. B. Wichmand-Jorgensen,, M. Madsen,, and D. Nilsson. 1998. Activation control of pur gene expression in Lactococcus lactis: proposal for a consensus activator binding sequence based on deletion analysis and site-directed mutagenesis of purC and purD promoter regions. J. Bacteriol. 180: 3900 3906.
49. Kilstrup, M.,, and J. Martinussen. 1998. A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis. J. Bacteriol. 180: 3907 3916.
50. Koebmann, B. J.,, H. W. Andersen,, C. Solem,, and P. R. Jensen. 2002. Experimental determination of control of glycolysis in Lactococcus lactis. Antonie Leeuwenhoek 82: 237 248.
51. Koebmann, B. J.,, C. Solem,, M. B. Pedersen,, D. Nilsson,, and P. R. Jensen. 2002. Expression of genes encoding F(1)-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis. Appl. Environ. Microbiol. 68: 4274 4282.
52. Koebmann, B. J.,, H. V. Westerhoff,, J. L. Snoep,, D. Nilsson,, and P. R. Jensen. 2002. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 184: 3909 3916.
53. Kunji, E. R.,, I. Mierau,, A. Hagting,, B. Poolman,, and W. N. Konings. 1996. The proteolytic systems of lactic acid bacteria. Antonie Leeuwenhoek 70: 187 221.
54. Kunji, E. R.,, D. J. Slotboom,, and B. Poolman. 2003. Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim. Biophys. Acta 1610: 97 108.
55. Le Bourgeois, P.,, M. L. Daveran-Mingot,, and P. Ritzenthaler. 2000. Genome plasticity among related ++Lactococcus strains: identification of genetic events associated with macrorestriction polymorphisms. J. Bacteriol. 182: 2481 2491.
56. Le Bourgeois, P.,, M. Lautier,, L. van den Berghe,, M. J. Gasson,, and P. Ritzenthaler. 1995. Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis IL 1403 reveals a large genome inversion. J. Bacteriol. 177: 2840 2850.
57. Le Loir, Y.,, S. Nouaille,, J. Commissaire,, L. Bretigny,, A. Gruss,, and P. Langella. 2001. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl. Environ. Microbiol. 67: 4119 4127.
58. Leenhouts, K.,, G. Buist,, A. Bolhuis,, A. ten Berge,, J. Kiel,, I. Mierau,, M. Dabrowska,, G. Venema,, and J. Kok. 1996. A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol. Gen. Genet. 253: 217 224.
59. Li, Y.,, J. Hugenholtz,, T. Abee,, and D. Molenaar. 2003. Glutathione protects Lactococcus lactis against oxidative stress. Appl. Environ. Microbiol. 69: 5739 5745.
60. Lindholm, A.,, A. Smeds,, and A. Palva. 2004. Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis. Appl. Environ. Microbiol. 70: 2061 2071.
61. Llull, D.,, and I. Poquet. 2004. New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl. Environ. Microbiol. 70: 5398 5406.
61a.. Llull, D.,, P. Veiga,, J. Tremblay,, and S. Kulakauskas. 2005. Immobilization-based isolation of capsule-negative mutants of Streptococcus pneumoniae. Microbiology 151: 1911 1917.
62. Lopez de Felipe, F.,, and J. Hugenholtz. 1999. Pyruvate flux distribution in NADH-oxidase-overproducing Lactococcus lactis strain as a function of culture conditions. FEMS Microbiol. Lett. 179: 461 466.
63. Lu, Y.,, and R. L. Switzer. 1996. Evidence that the Bacillus subtilis pyrimidine regulatory protein PyrR acts by binding to pyr mRNA at three sites in vivo. J. Bacteriol. 178: 5806 5809.
64. Luesink, E. J.,, R. E. van Herpen,, B. P. Grossiord,, O. P. Kuipers,, and W. M. de Vos. 1998. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol. Microbiol. 30: 789 798.
65. Madsen, S. M.,, J. Arnau,, A. Vrang,, M. Givskov,, and H. Israelsen. 1999. Molecular characterization of the pHinducible and growth phase-dependent promoter P170 of Lactococcus lactis. Mol. Microbiol. 32: 75 87.
66. Maguin, E.,, H. Prevost,, S. D. Ehrlich,, and A. Gruss. 1996. Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J. Bacteriol. 178: 931 935.
67. Mannam, P.,, K. F. Jones,, and B. L. Geller. 2004. Mucosal vaccine made from live, recombinant Lactococcus lactis protects mice against pharyngeal infection with Streptococcus pyogenes. Infect. Immun. 72: 3444 3450.
68. Martinussen, J.,, and K. Hammer. 1995. Powerful methods to establish chromosomal markers in Lactococcus lactis: an analysis of pyrimidine salvage pathway mutants obtained by positive selections. Microbiology 141: 1883 1890.
69. Martinussen, J.,, J. Schallert,, B. Andersen,, and K. Hammer. 2001. The pyrimidine operon pyrRPB-carA from Lactococcus lactis. J. Bacteriol. 183: 2785 2794.
70. Martinussen, J.,, S. L. Wadskov-Hansen,, and K. Hammer. 2003. Two nucleoside uptake systems in Lactococcus lactis: competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools. J. Bacteriol. 185: 1503 1508.
71. McKay, L. L.,, K. A. Baldwin,, and J. D. Efstathiou. 1976. Transductional evidence for plasmid linkage of lactose metabolism in streptococcus lactis C2. Appl. Environ. Microbiol. 32: 45 52.
72. Mercenier, A.,, H. Muller-Alouf,, and C. Grangette. 2000. Lactic acid bacteria as live vaccines. Curr. Issues Mol. Biol. 2: 17 25.
73. Mercier, C.,, C. Durrieu,, R. Briandet,, E. Domakova,, J. Tremblay,, G. Buist,, and S. Kulakauskas. 2002. Positive role of peptidoglycan breaks in lactococcal biofilm formation. Mol. Microbiol. 46: 235 243.
74. Miyoshi, A.,, E. Jamet,, J. Commissaire,, P. Renault,, P. Langella,, and V. Azevedo. 2004. A xylose-inducible expression system for Lactococcus lactis. FEMS Microbiol. Lett. 239: 205 212.
75. Navarre, W. W.,, and O. Schneewind. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63: 174 229.
76. Nelson, D.,, L. Loomis,, and V. A. Fischetti. 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. USA 98: 4107 4112.
77. Nilsson, D.,, A. A. Lauridsen,, T. Tomoyasu,, and T. Ogura. 1994. A Lactococcus lactis gene encodes a membrane protein with putative ATPase activity that is homologous to the essential Escherichia coli ftsH gene product. Microbiology 140(Pt 10): 2601 2610.
78. Norton, P. M.,, H. W. Brown,, J. M. Wells,, A. M. Macpherson,, P. W. Wilson,, and R. W. Le Page. 1996. Factors affecting the immunogenicity of tetanus toxin fragment C expressed in Lactococcus lactis. FEMS Immunol. Med. Microbiol. 14: 167 177.
79. Nudler, E.,, and A. S. Mironov. 2004. The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29: 11 17.
80. Ocana, V. S.,, A. A. Pesce de Ruiz Holgado,, and M. E. Nader-Macias. 1999. Selection of vaginal H 2O2-generating Lactobacillus species for probiotic use. Curr. Microbiol. 38: 279 284.
81. O’Connell-Motherway, M.,, D. van Sinderen,, F. Morel- Deville,, G. F. Fitzgerald,, S. D. Ehrlich,, and P. Morel. 2000. Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363. Microbiology 146: 935 947.
82. Oliver, S. 2002. Metabolism: demand management in cells. Nature 418: 33 34.
83. Pancholi, V.,, and V. A. Fischetti. 1992. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J. Exp. Med. 176: 415 426.
84. Pedersen, M. B.,, P. R. Jensen,, T. Janzen,, and D. Nilsson. 2002. Bacteriophage resistance of a deltathyA mutant of Lactococcus lactis blocked in DNA replication. Appl. Environ. Microbiol. 68: 3010 3023.
85. Pedersen, M. B.,, B. J. Koebmann,, P. R. Jensen,, and D. Nilsson. 2002. Increasing acidification of nonreplicating Lactococcus lactis deltathyA mutants by incorporating ATPase activity. Appl. Environ. Microbiol. 68: 5249 5257.
86. Piard, J. C.,, R. Jimenez-Diaz,, V. A. Fischetti,, S. D. Ehrlich,, and A. Gruss. 1997. The M6 protein of Streptococcus pyogenes and its potential as a tool to anchor biologically active molecules at the surface of lactic acid bacteria. Adv. Exp. Med. Biol. 418: 545 550.
87. Pillar, C. M.,, and M. S. Gilmore. 2004. Enterococcal virulence—pathogenicity island of E. faecalis. Front. Biosci. 9: 2335 2346.
88. Poelarends, G. J.,, P. Mazurkiewicz,, and W. N. Konings. 2002. Multidrug transporters and antibiotic resistance in Lactococcus lactis. Biochim. Biophys. Acta 1555: 1 7.
89. Poole, R. K.,, and G. M. Cook. 2000. Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv. Microb. Physiol. 43: 165 224.
90. Poquet, I.,, S. D. Ehrlich,, and A. Gruss. 1998. An export- specific reporter designed for gram-positive bacteria: application to Lactococcus lactis. J. Bacteriol. 180: 1904 1912.
91. Poquet, I.,, V. Saint,, E. Seznec,, N. Simoes,, A. Bolotin,, and A. Gruss. 2000. HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol. Microbiol. 35: 1042 1051.
92. Purushothaman, S. S.,, B. Wang,, and P. P. Cleary. 2003. M1 protein triggers a phosphoinositide cascade for group A Streptococcus invasion of epithelial cells. Infect. Immun. 71: 5823 5830.
93. Que, Y. A.,, P. Francois,, J. A. Haefliger,, J. M. Entenza,, P. Vaudaux,, and P. Moreillon. 2001. Reassessing the role of Staphylococcus aureus clumping factor and fibronectinbinding protein by expression in Lactococcus lactis. Infect. Immun. 69: 6296 6302.
94. Rallu, F.,, A. Gruss,, S. D. Ehrlich,, and E. Maguin. 2000. Acid- and multistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals. Mol. Microbiol. 35: 517 528.
95. Rallu, F.,, A. Gruss,, and E. Maguin. 1996. Lactococcus lactis and stress. Antonie Leeuwenhoek 70: 243 251.
96. Repa, A.,, C. Grangette,, C. Daniel,, R. Hochreiter,, K. Hoffmann-Sommergruber,, J. Thalhamer,, D. Kraft,, H. Breiteneder,, A. Mercenier,, and U. Wiedermann. 2003. Mucosal co-application of lactic acid bacteria and allergen induces counter-regulatory immune responses in a murine model of birch pollen allergy. Vaccine 22: 87 95.
97. Rezaiki, L.,, B. Cesselin,, Y. Yamamoto,, K. Vido,, E. van West,, P. Gaudu,, and A. Gruss. 2004. Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis. Mol. Microbiol. 53: 1331 1342.
98. Richardson, D.J. 2000. Bacterial respiration :a flexible process for a changing environment. Microbiology 146(Pt 3): 551 571.
99. Robinson, K.,, L. M. Chamberlain,, K. M. Schofield,, J. M. Wells,, and R. W. Le Page. 1997. Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat. Biotechnol. 15: 653 657.
99a.. Rochat, T.,, J. J. Gratadoux,, G. Corthier,, B. Coqueran,, M. E. Nader-Macias,, A. Gruss,, and P. Langella. 2005. Lactococcus lactis Spox spontaneous mutants: a family of oxidative stress-resistant dairy strains. Appl. Environ. Microbiol. 71: 2782 2788.
99b.. Rochat, T.,, A. Miyoshi,, J. J. Gratadoux,, P. Duwat,, S. Sourice,, V. Azevedo,, and P. Langella. 2005. High-level resistance to oxidative stress in Lactococcus lactis conferred by Bacillus subtilis catalase KatE. Microbiology 151: 3011 3018.
100. Ryu, C. M.,, M. A. Farag,, C. H. Hu,, M. S. Reddy,, H. X. Wei,, P. W. Pare,, and J. W. Kloepper. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 4927 4932.
101. Sanders, J. W.,, K. Leenhouts,, J. Burghoorn,, J. R. Brands,, G. Venema,, and J. Kok. 1998. A chlorideinducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27: 299 310.
102. Sanders, J. W.,, K. J. Leenhouts,, A. J. Haandrikman,, G. Venema,, and J. Kok. 1995. Stress response in Lactococcus lactis: cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J. Bacteriol. 177: 5254 5260.
103. Sanders, J. W.,, G. Venema,, and J. Kok. 1997. A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis. Appl. Environ. Microbiol. 63: 4877 4882.
104. Sanders, J. W.,, G. Venema,, J. Kok,, and K. Leenhouts. 1998. Identification of a sodium chloride-regulated promoter in Lactococcus lactis by single-copy chromosomal fusion with a reporter gene. Mol. Gen. Genet. 257: 681 685.
105. Schneewind, O.,, D. Mihaylova-Petkov,, and P. Model. 1993. Cell wall sorting signals in surface proteins of grampositive bacteria. EMBO J. 12: 4803 4811.
106. Seki, M.,, K. Iida,, M. Saito,, H. Nakayama,, and S. Yoshida. 2004. Hydrogen peroxide production in Streptococcus pyogenes: involvement of lactate oxidase and coupling with aerobic utilization of lactate. J. Bacteriol. 186: 2046 2051.
107. Shanahan, F. 2004. Making microbes work for mankind—clever trick or a glimpse of the future for IBD treatment? Gastroenterology 127: 667 668.
108. Siegers, K.,, and K. D. Entian. 1995. Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl. Environ. Microbiol. 61: 1082 1089.
109. Siegers, K.,, S. Heinzmann,, and K. D. Entian. 1996. Biosynthesis of lantibiotic nisin. Posttranslational modification of its prepeptide occurs at a multimeric membraneassociated lanthionine synthetase complex. J. Biol. Chem. 271: 12294 12301.
110. Sijpesteijn, A. K. 1970. Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. Antonie Leeuwenhoek 36: 335 348.
111. Solem, C.,, and P. R. Jensen. 2002. Modulation of gene expression made easy. Appl. Environ. Microbiol. 68: 2397 2403.
111a.. Solem, C.,, B. J. Koebmann,, and P. R. Jensen. 2003. Glyceraldehyde-3-phosphate dehydrogenase has no control on the glycolytic flux in Lactococcus lactis MG1363. J. Bacteriol. 185: 1564 1571.
112. Steen, A.,, G. Buist,, K. J. Leenhouts,, M. El Khattabi,, F. Grijpstra,, A. L. Zomer,, G. Venema,, O. P. Kuipers,, and J. Kok. 2003. Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J. Biol. Chem. 278: 23874 23881.
113. Steidler, L.,, W. Hans,, L. Schotte,, S. Neirynck,, F. Obermeier,, W. Falk,, W. Fiers,, and E. Remaut. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin- 10. Science 289: 1352 1355.
114. Steidler, L.,, S. Neirynck,, N. Huyghebaert,, V. Snoeck,, A. Vermeire,, B. Goddeeris,, E. Cox,, J. P. Remon,, and E. Remaut. 2003. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21: 785 789.
115. Stentz, R.,, K. Jury,, T. Eaton,, M. Parker,, A. Narbad,, M. Gasson,, and C. Shearman. 2004. Controlled expression of CluA in Lactococcus lactis and its role in conjugation. Microbiology 150: 2503 2512.
116. Teuber, M., 1995. The genus Lactococcus, p. 173 234. In B. J. B. Wood, and W. H. Holzapfel (ed.), The Genera of Lactic Acid Bacteria. Blackie Academic and Professional, Glasgow, United Kingdom.
116a.. van Asseldonk, M.,, W. M. de Vos,, and G. Simons. 1993. Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous alpha-amylase. Mol. Gen. Genet. 240: 428 434.
117. Vaughan, E. E.,, and W. M. de Vos. 1995. Identification and characterization of the insertion element IS1070 from Leuconostoc lactis NZ6009. Gene 155: 95 100.
118. Way, S. S.,, S. Sallustio,, R. S. Magliozzo,, and M. B. Goldberg. 1999. Impact of either elevated or decreased levels of cytochrome bd expression on Shigella flexneri virulence. J. Bacteriol. 181: 1229 1237.
119. Winstedt, L.,, L. Frankenberg,, L. Hederstedt,, and C. von Wachenfeldt. 2000. Enterococcus faecalis V583 contains a cytochrome bd-type respiratory oxidase. J. Bacteriol. 182: 3863 3866.
120. Yamamoto, Y.,, C. Poyart,, P. Trieu-Cuot,, G. Lamberet,, A. Gruss,, and P. Gaudu. 2005. Respiration metabolism of Group B Streptococcus is activated by environmental haem and quinine and contributes to virulence. Mol. Microbiol. 56: 525 534.


Generic image for table

Characteristics of

Requires plasmid-encoded factors.

Citation: Gaudu P, Yamamoto Y, Jensen P, Hammer K, Gruss A. 2006. Genetics of Lactococci, p 356-368. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch30

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error