Chapter 34 : Carbohydrate Catabolism: Pathways and Regulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Carbohydrate Catabolism: Pathways and Regulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap34-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap34-2.gif


The central pathways of carbon metabolism are conserved in virtually all organisms, but details of specific biosynthetic and degradative pathways vary considerably between bacteria, plants, and animals. In and other staphylococcal species, relatively few molecular details are known about carbohydrate utilization, biosynthetic pathways, and nutritional requirements. The limited knowledge on sugar utilization systems is especially surprising, because was the first gram-positive bacterium in which the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system (PTS) was described. The phosphoryl-transfer chain begins with enzyme I (EI) and PEP and proceeds via the phosphocarrier protein HPr to the EIIA and EIIB domains of the PTS permeases. The uptake of glucose, mannose, mannitol, glucosamine, -acetylglucosamine, sucrose, lactose, galactose, and β-glucosides is reported to be PTS-dependent. Glucose-6-phosphate, produced by a glucose kinase, enters the EMP pathway, the main glycolytic pathway in staphylococci. Utilization of lactose and galactose in relies on the PTS-dependent uptake and phosphorylation of the sugars, resulting in lactose-6-phosphate and galactose-6-phosphate, respectively. The system consists of an EIICB enzyme, encoded by , and EIIA, encoded by , which together form the mannitol-specific PTS permease. The sucrose PTS permease, analyzed in and encoded by , is composed of fused EIIBC domains. Maltose utilization in is dependent on an α-glucosidase or maltase, whose gene, , is the second gene of the operon. The availability of carbohydrates, especially of glucose, leads to regulatory processes often referred to as glucose effect or carbon catabolite repression.

Citation: Brückner R, Rosenstein R. 2006. Carbohydrate Catabolism: Pathways and Regulation, p 427-433. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch34
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Alternative lactose catabolic pathways in staphylococci. Transport of lactose and galactose and their catabolism are shown. In , lactose and galactose are transported by the PEP:carbohydrate PTS. Internalized lactose-6-phosphate is hydrolyzed by a phospho-β-galactosidase to galactose-6-phosphate and glucose. Galactose-6-phosphate is catabolized through the tagatose-6-phosphate pathway. This pathway most likely exists in staphylococci exhibiting lactose PTS activity. In , and probably other staphylococcal species that do not possess a lactose PTS, a permease is responsible for the transport of lactose. Galactose uptake has not been studied in these species. Nonphosphorylated lactose is hydrolyzed by a β-galactosidase to yield glucose and galactose. Galactose is likely catabolized through the Leloir pathway. Glucose-6-phosphate, produced by a glucose kinase, enters the EMP pathway, the main glycolytic pathway in staphylococci. Only the galactoside-specific genes and their encoded products are mentioned in the pathways. Abbreviations: CM, cytoplasmic membrane; EI, enzyme I; EIIA, lactose-specific enzyme IIA; EIICB, lactose-specific enzyme IICB; HPr, histidine-containing protein; β-Gal, β-galactosidase; P-β-Gal, phospho-β-galactosidase; G6P-Isomerase, galactose-6-phosphate isomerase; G1P-Uridyltransferase, galactose-1-phosphate uridyltransferase; T6P-Kinase, tagatose-6-phosphate kinase; T1,6DP-Aldolase, tagatose-1,6-diphosphate aldolase; UDP-Gal, UDP-galactose; UDPGlc, UDP-glucose; UDP-G4-Epimerase, UDP-galactose-4 epimerase; PEP, phosphoenolpyruvate; P, phosphate; DP, diphosphate.

Citation: Brückner R, Rosenstein R. 2006. Carbohydrate Catabolism: Pathways and Regulation, p 427-433. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Glucose-mediated carbon catabolite repression by the catabolite control protein CcpA in staphylococci. The components involved in regulation are: CcpA, carbon catabolite control protein; GlkA, glucose kinase; GlcU, PTS-independent glucose uptake protein; HPr, general PTS phosphocarrier protein; HPrK, HPr kinase/P-HPr phosphorylase; GlcA/GlcB, glucose-specific PTS permeases; FDP, fructose-1,6-diphosphate. The general PTS protein EI, essential for the transport of all PTS sugars, is omitted for clarity. The thick arrow represents a gene that is subject to carbon catabolite repression by CcpA via (catabolite-responsive element) interaction. The position of the CcpA binding site in the promoter region is indicated. The double line marked with CM represents the cytoplasmic membrane. The fact that some proteins may only function as dimers or multimers is not depicted. ATCC 1228 has apparently only one glucose-specific PTS permease. Glucose may be internalized by PTS-dependent or -independent transport. The glycolytic intermediate FDP activates kinase activity of HPrK, which produces P-ser-HPr by ATP-dependent phosphorylation. P-ser-HPr acts as a corepressor for CcpA, enabling the regulator to bind specifically to sites. When P prevails over ATP and FDP, HPrK dephosphorylates P-ser-HPr.

Citation: Brückner R, Rosenstein R. 2006. Carbohydrate Catabolism: Pathways and Regulation, p 427-433. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Baba, T.,, F. Takeuchi,, M. Kuroda,, H. Yuzawa,, K. Aoki,, A. Oguchi,, Y. Nagai,, N. Iwama,, K. Asano,, T. Naimi,, H. Kuroda,, L. Cui,, K. Yamamoto,, and K. Hiramatsu. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359: 1819 1827.
2. Bassias, J.,, and R. Brückner. 1998. Regulation of lactose utilization genes in Staphylococcus xylosus. J. Bacteriol. 180: 2273 2279.
3. Beyreuther, K.,, H. Raufuss,, O. Schrecker,, and W. Hengstenberg. 1977. The phosphoenolpyruvatedependent phosphotransferase system of Staphylococcus aureus. 1. Amino-acid sequence of the phosphocarrier protein HPr. Eur. J. Biochem. 75: 275 286.
4. Blumenthal, H. J., 1972. Glucose catabolism in staphylococci, p. 111 135. In J. O. Cohen (ed.), The Staphylococci. Wiley Interscience, New York, N.Y.
5. Breidt, F., Jr.,, W. Hengstenberg,, U. Finkeldei,, and G. C. Stewart. 1987. Identification of the genes for the lactose-specific components of the phosphotransferase system in the lac operon of Staphylococcus aureus. J. Biol. Chem. 262: 16444 16449.
6. Breidt, F., Jr.,, and G. C. Stewart. 1986. Cloning and expression of the phospho-beta-galactosidase gene of Staphylococcus aureus in Escherichia coli. J. Bacteriol. 166: 1061 1066.
7. Brückner, R. 1997. Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. FEMS Microbiol. Lett. 151: 1 8.
8. Brückner, R.,, and F. Titgemeyer. 2002. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209: 141 148.
9. Brückner, R.,, E. Wagner,, and F. Götz. 1993. Characterization of a sucrase gene from Staphylococcus xylosus. J. Bacteriol. 175: 851 857.
10. Christiansen, I.,, and W. Hengstenberg. 1996. Cloning and sequencing of two genes from Staphylococcus carnosus coding for glucose-specific PTS and their expression in Escherichia coli K-12. Mol. Gen. Genet. 250: 375 379.
11. Christiansen, I.,, and W. Hengstenberg. 1999. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system—two highly similar glucose permeases in Staphylococcus carnosus with different glucoside specificity: protein engineering in vivo? Microbiology 145: 2881 2889.
12. de Vos, W. M.,, and E. E. Vaughan. 1994. Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol. Rev. 15: 217 237.
13. Dossonnet, V.,, V. Monedero,, M. Zagorec,, A. Galinier,, G. Pérez-Martínez,, and J. Deutscher. 2000. Phosphorylation of HPr by the bifunctional HPr Kinase/P-Ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J. Bacteriol. 182: 2582 2590.
14. Egeter, O.,, and R. Brückner. 1996. Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus. Mol. Microbiol. 21: 739 749.
15. Egeter, O.,, and R. Brückner. 1995. Characterization of a genetic locus essential for maltose-maltotriose utilization in Staphylococcus xylosus. J. Bacteriol. 177: 2408 2415.
16. Eisermann, R.,, R. Fischer,, U. Kessler,, A. Neubauer,, and W. Hengstenberg. 1991. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system. Purification and protein sequencing of the Staphylococcus carnosus histidine-containing protein, and cloning and DNA sequencing of the ptsH gene. Eur. J. Biochem. 197: 9 14.
17. Fiegler, H.,, J. Bassias,, I. Jankovic,, and R. Brückner. 1999. Identification of a gene in Staphylococcus xylosus encoding a novel glucose uptake protein. J. Bacteriol. 181: 4929 4936.
18. Fischer, R.,, R. Eisermann,, B. Reiche,, and W. Hengstenberg. 1989. Cloning, sequencing and overexpression of the mannitol-specific enzyme-III-encoding gene of Staphylococcus carnosus. Gene 82: 249 257.
19. Fischer, R.,, and W. Hengstenberg. 1992. Mannitolspecific enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus. Eur. J. Biochem. 204: 963 969.
20. Galinier, A.,, M. Kravanja,, R. Engelmann,, W. Hengstenberg,, M. C. Kilhoffer,, J. Deutscher,, and J. Haiech. 1998. New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc. Natl. Acad. Sci. USA 95: 1823 1828.
21. Gallegos, M.-T.,, R. Schleif,, A. Bairoch,, K. Hofmann,, and J. L. Ramos. 1997. AraC/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev. 61: 393 410.
22. Gering, M.,, and R. Brückner. 1996. Transcriptional regulation of the sucrase gene of Staphylococcus xylosus by the repressor ScrR. J. Bacteriol. 178: 462 469.
23. Hengstenberg, W.,, D. Kohlbrecher,, E. Witt,, R. Kruse,, I. Christiansen,, D. Peters,, R. Pogge von Strandmann,, P. Stadtler,, B. Koch,, and H. R. Kalbitzer. 1993. Structure and function of proteins of the phosphotransferase system and of 6-phospho-beta-glycosidases in gram-positive bacteria. FEMS Microbiol. Rev. 12: 149 163.
24. Henkin, T. M. 1996. The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. FEMS Microbiol. Lett. 135: 9 15.
25. Holden, M. T.,, E. J. Feil,, J. A. Lindsay,, S. J. Peacock,, N. P. Day,, M. C. Enright,, T. J. Foster,, C. E. Moore,, L. Hurst,, R. Atkin,, A. Barron,, N. Bason,, S. D. Bentley,, C. Chillingworth,, T. Chillingworth,, C. Churcher,, L. Clark,, C. Corton,, A. Cronin,, J. Doggett,, L. Dowd,, T. Feltwell,, Z. Hance,, B. Harris,, H. Hauser,, S. Holroyd,, K. Jagels,, K. D. James,, N. Lennard,, A. Line,, R. Mayes,, S. Moule,, K. Mungall,, D. Ormond,, M. A. Quail,, E. Rabbinowitsch,, K. Rutherford,, M. Sanders,, S. Sharp,, M. Simmonds,, K. Stevens,, S. Whitehead,, B. G. Barrell,, B. G. Spratt,, and J. Parkhill. 2004. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. USA 101: 9786 9791.
26. Hueck, C. J.,, W. Hillen,, and M. H. Saier, Jr. 1994. Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res. Microbiol. 145: 503 518.
27. Huynh, P. L.,, I. Jankovic,, N. F. Schnell,, and R. Brückner. 2000. Characterization of an HPr kinase mutant of Staphylococcus xylosus. J. Bacteriol. 182: 1895 1902.
28. Jankovic, I.,, and R. Brückner. 2002. Carbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus. J. Mol. Microbiol. Biotechnol. 4: 309 314.
29. Jankovic, I.,, O. Egeter,, and R. Brückner. 2001. Analysis of catabolite control protein A-dependent repression in Staphylococcus xylosus by a genomic reporter gene system. J. Bacteriol. 183: 580 586.
30. Jankovic, I.,, J. Meyer,, and R. Brückner,. 2003. Catabolite control protein CcpA-dependent glucose repression in Staphylococcus xylosus: efficient activation of CcpA by glucose transported independently from the phosphotransferase system, p. 141 146. In P. Dürre, and B. Friedrich (ed.), Regulatory Networks in Prokaryotes. Horizon Scientific Press, Norfolk, Va.
31. Kloos, W. E.,, K.-H. Schleifer,, and F. Götz,. 1991. The genus Staphylococcus, p. 1369 1420. In A. Balows,, H. G. Trüper,, M. Dwarkin,, W. Harder,, and K. H. Schleifer (ed.), The Procaryotes. Springer Verlag, Heidelberg, Germany.
32. Knezevic, I.,, S. Bachem,, A. Sickmann,, H. E. Meyer,, J. Stülke,, and W. Hengstenberg. 2000. Regulation of the glucose-specific phosphotransferase system (PTS) of Staphylococcus carnosus by the antiterminator protein glcT. Microbiology 146: 2333 2342.
33. Knobloch, J. K.,, M. Nedelmann,, K. Kiel,, K. Bartscht,, M. A. Horstkotte,, S. Dobinsky,, H. Rohde,, and D. Mack. 2003. Establishment of an arbitrary PCR for rapid identification of Tn 917 insertion sites in Staphylococcus epidermidis: characterization of biofilm-negative and nonmucoid mutants. Appl. Environ. Microbiol. 69: 5812 5818.
34. Kohlbrecher, D.,, R. Eisermann,, and W. Hengstenberg. 1992. Staphylococcal phophoenolpyruvate-dependent phosphotransferase system: molecular cloning and nucleotide sequence of the Staphylococcus carnosus ptsI gene and expression and complementation studies of the gene product. J. Bacteriol. 174: 2208 2214.
35. Kravanja, M.,, R. Engelmann,, V. Dossonnet,, M. Bluggel,, H. E. Meyer,, R. Frank,, A. Galinier,, J. Deutscher,, N. Schnell,, and W. Hengstenberg. 1999. The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol. Microbiol. 31: 59 66.
36. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi,, and K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357: 1225 1140.
37. Maxwell, E. S.,, K. Kurahashi,, and H. M. Kalckar. 1962. Enzymes of the Leloir pathway. Methods Enzymol. 5: 174 189.
38. Mijakovic, I.,, S. Poncet,, A. Galinier,, V. Monedero,, S. Fieulaine,, J. Janin,, S. Nessler,, J. A. Marquez,, K. Scheffzek,, S. Hasenbein,, W. Hengstenberg,, and J. Deutscher. 2002. Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: a relic of early life? Proc. Natl. Acad. Sci. USA 99: 13442 13447.
39. Novick, R. P.,, S. J. Projan,, J. Kornblum,, H. F. Ross,, G. Ji,, B. Kreiswirth,, F. Vandenesch,, and S. Moghazeh. 1995. The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol. Gen. Genet. 248: 446 458.
40. Oskouian, B.,, and G. C. Stewart. 1990. Repression and catabolite repression of the lactose operon of Staphylococcus aureus. J. Bacteriol. 172: 3804 3812.
41. Poolman, B.,, J. Knol,, C. van der Does,, P. J. F. Henderson,, W.-J. Liang,, G. Leblanc,, T. Pourcher,, and I. Mus-Veteau. 1996. Cation and sugar selectivity determinants in a novel family of transport proteins. Mol. Microbiol. 19: 911 922.
42. Postma, P. W.,, J. W. Lengeler,, and G. R. Jacobson. 1993. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57: 543 594.
43. Reizer, J.,, C. Hoischen,, F. Titgemeyer,, C. Rivolta,, R. Rabus,, J. Stülke,, D. Karamata,, M. H. Saier, Jr.,, and W. Hillen. 1998. A novel protein kinase that controls carbon catabolite repression in bacteria. Mol. Microbiol. 27: 1157 1169.
44. Reizer, J.,, S. L. Sutrina,, M. H. Saier, Jr.,, G. C. Stewart,, A. Peterkofsky,, and P. Reddy. 1989. Mechanistic and physiological consequences of HPr(ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J. 8: 2111 2120.
45. Rosenstein, R.,, and F. Götz. Unpublished results.
46. Rosey, E. L.,, B. Oskouian,, and G. C. Stewart. 1991. Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. J. Bacteriol. 173: 5992 5998.
47. Saier, M. H., Jr.,, S. Chauvaux,, G. M. Cook,, J. Deutscher,, I. T. Paulsen,, J. Reizer,, and J.-J. Ye. 1996. Catabolite repression and inducer control in Gram-positive bacteria. Microbiology 142: 217 230.
48. Saier, M. H., Jr.,, S. Chauvaux,, J. Deutscher,, J. Reizer,, and J.-J. Ye. 1995. Protein phosphorylation and regulation of carbon metabolism in gram-negative versus gram-positive bacteria. Trends Biochem. Sci. 20: 267 271.
49. Schleifer, K. H.,, and U. Fischer. 1982. Description of a new species of the genus Staphylococcus: Staphylococcus carnosus. Int. J. Syst. Bacteriol. 32: 153 156.
50. Sizemore, C.,, E. Buchner,, T. Rygus,, C. Witke,, F. Götz,, and W. Hillen. 1991. Organization, promoter analysis and transcriptional regulation of the Staphylococcus xylosus xylose utilization operon. Mol. Gen. Genet. 227: 377 384.
51. Sizemore, C.,, B. Wieland,, F. Götz,, and W. Hillen. 1992. Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level. J. Bacteriol. 174: 3042 3048.
52. Stülke, J.,, M. Arnaud,, G. Rapoport,, and I. Martin-Verstraete. 1998. PRD—a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol. Microbiol. 28: 865 874.
53. Stülke, J.,, I. Martin-Verstraete,, M. Zagorec,, M. Rose,, A. Klier,, and G. Rapoport. 1997. Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol. Microbiol. 25: 65 78.
54. Valentin-Hansen, P.,, P. Hojrup,, and S. Short. 1985. The primary structure of the DeoR repressor from Escherichia coli K-12. Nucleic Acids Res. 13: 5927 5936.
55. Wagner, E.,, F. Götz,, and R. Brückner. 1993. Cloning and characterization of the scrA gene encoding the sucrose-specific enzyme II of the phosphotransferase system from Staphylococcus xylosus. Mol. Gen. Genet. 241: 33 41.
56. Wagner, E.,, S. Marcandier,, O. Egeter,, J. Deutscher,, F. Götz,, and R. Brückner. 1995. Glucose kinase-dependent catabolite repression in Staphylococcus xylosus. J. Bacteriol. 177: 6144 6152.
57. Weickert, M. J.,, and S. Adhya. 1992. A family of bacterial regulators homologous to Gal and Lac repressors. J. Biol. Chem. 267: 15869 15874.
58. Zhang, Y. Q.,, S. X. Ren,, H. L. Li,, Y. X. Wang,, G. Fu,, J. Yang,, Z. Q. Qin,, Y. G. Miao,, W. Y. Wang,, R. S. Chen,, Y. Shen,, Z. Chen,, Z. H. Yuan,, G. P. Zhao,, D. Qu,, A. Danchin,, and Y. M. Wen. 2003. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol. Microbiol. 49: 1577 1593.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error