Chapter 44 : Animal Models of Experimental Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Animal Models of Experimental Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap44-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap44-2.gif


This chapter discusses experimental models of infections, including toxic shock, sepsis, endocarditis, colonization of joints and bones, mastitis, eye and skin infections, and septic arthritis. It concentrates on models that provide an insight into the pathogenesis of . As an example of a model for studying staphylococcal disease, the chapter presents the murine model of septic arthritis and sepsis and discusses how models such as this might be used to formulate treatment and prophylaxis regimens. The various disease entities associated with infections and some proposed animal models are listed in a table. Cytokines play a critically important role in the pathogenesis of infection, and the modulation of specific cytokines is attracting substantial interest as a means of treating disease. The emergence of antibiotic-resistant staphylococci and in particular the methicillin-resistant strains has stimulated a resurgence in the development of new antibiotics with antistaphylococcal activities and alternatives to classical antibacterial therapies. During the last decade, the use of experimental models of staphylococcal infections has clarified the involvement of several bacterial virulence factors as well as many hematopoietic cell types and their products in the pathogenesis of infection. Animal models that mimic the etiology, progression, and pathology of the disease in the natural host are a crucial component in the development of therapeutic strategies.

Citation: Collins L, Tarkowski A. 2006. Animal Models of Experimental Infection, p 535-543. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch44
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

() Early and persistent infiltrations of inflammatory cells during dermatitis. The micrograph shows the inflammatory infiltrate in mouse skin that was inoculated intracutaneously with 2 × 10 CFU of LS-1: after 6 h (A), 48 h (B), and 1 week (C). The inflammatory infiltrate, which mainly contains macrophages, peaks at 48 h and starts to disappear 2 weeks after the inoculation (from reference ).

Citation: Collins L, Tarkowski A. 2006. Animal Models of Experimental Infection, p 535-543. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

ClfA influence on septic arthritis. Development of arthritis in NMRI mice that were inoculated i.v. with 1.4 to 1.9 × 10 CFU of wild-type strain Newman, mutant DU5876 (), complemented mutant strain DU5898 ( mutant + ), or mutant with vector plasmid strain DU5899 ( mutant + empty vector). Circles and squares show the median, and whiskers show the arthritic index. Two sets of statistical tests were performed: the wildtype and DU5876-infected mice were compared, and the DU5898- and DU5899-infected mice were compared. * <0.001. The severity of arthritis is markedly reduced in mice challenged i.v. with the mutant, compared with mice infected with the wild-type strain (from reference ).

Citation: Collins L, Tarkowski A. 2006. Animal Models of Experimental Infection, p 535-543. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Effect of sortase mutation on the ability of to cause septic arthritis. Severity of arthritis in NMRI mice inoculated with 6 × 10 CFU of Newman or its isogenic sortase-deficient mutant, strain SKM3 (10 mice/group). Data shown are median and interquartile range for each group of mice. Comparisons were made using the Mann-Whitney Utest. values are for the comparison between the wild-type Newman strain and the sortase mutant strain SKM3. N.S., not significant. The results show that the sortase loss significantly reduces the arthritogenicity of strain Newman (from reference ).

Citation: Collins L, Tarkowski A. 2006. Animal Models of Experimental Infection, p 535-543. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Mucosal administration of SEA protects against SEA-induced death. Mice were given SEA, recombinant nonsuperantigenic SEA (rSEA), or ovalbumin (OVA) intranasally three times 1 week apart, and challenged intraperitoneally with SEA + LPS 1 week later. Data are expressed as survival of OVA-tolerized (■), rSEA-tolerized (Δ), and SEA-tolerized (□) C57BL/6 (A) and BALB/c (B) mice during the first 70 h post-SEA challenge. **, <0.01; ***, <0.001 compared to OVA-tolerized animals. The data show that mice that receive SEA intranasally are protected against a subsequent lethal SEA challenge (from reference ).

Citation: Collins L, Tarkowski A. 2006. Animal Models of Experimental Infection, p 535-543. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abdelnour, A.,, S. Arvidson,, T. Bremell,, C. Ryden,, and A. Tarkowski. 1993. The accessory gene regulator ( agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect. Immun. 61: 3879 3885.
2. Abdelnour, A.,, T. Bremell,, R. Holmdahl,, and A. Tarkowski. 1994. Clonal expansion of T lymphocytes causes arthritis and mortality in mice infected with toxic shock syndrome toxin-1-producing staphylococci. Eur. J. Immunol. 24: 1161 1166.
3. Abdelnour, A.,, Y. X. Zhao,, R. Holmdahl,, and A. Tarkowski. 1997. Major histocompatibility complex class II region confers susceptibility to Staphylococcus aureus arthritis. Scand. J. Immunol. 45: 301 307.
4. Adlam, C.,, P. D. Ward,, A. C. McCartney,, J. P. Arbuthnott,, and C. M. Thorley. 1977. Effect of immunization with highly purified alpha- and beta-toxins on staphylococcal mastitis in rabbits. Infect. Immun. 17: 259 266.
5. Amorena, B.,, R. Baselga,, and I. Albizu. 1994. Use of liposome-immunopotentiated exopolysaccharide as a component of an ovine mastitis staphylococcal vaccine. Vaccine 12: 243 249.
6. Baddour, L. M.,, C. Lowrance,, A. Albus,, J. H. Lowrance,, S. K. Anderson,, and J. C. Lee. 1992. Staphylococcus aureus microcapsule expression attenuates bacterial virulence in a rat model of experimental endocarditis. J. Infect. Dis. 165: 749 753.
7. Badenoch, P. R.,, G. J. Hay,, P. J. McDonald,, and D. J. Coster. 1985. A rat model of bacterial keratitis. Effect of antibiotics and corticosteroid. Arch. Ophthalmol. 103: 718 722.
8. Balaban, N.,, T. Goldkorn,, R. T. Nhan,, L. B. Dang,, S. Scott,, R. M. Ridgley,, A. Rasooly,, S. C. Wright,, J. W. Larrick,, R. Rasooly,, and J. R. Carlson. 1998. Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus. Science 280: 438 440.
9. Behrens-Baumann, W.,, and T. Begall. 1993. Reproducible model of a bacterial conjunctivitis (in German). Ophthalmologica 206: 69 75.
10. Bjornson, A. B.,, H. S. Bjornson,, N. A. Lincoln,, and W. A. Altemeier. 1984. Relative roles of burn injury, wound colonization, and wound infection in induction of alterations of complement function in a guinea pig model of burn injury. J. Trauma 24: 106 115.
11. Bremell, T.,, A. Abdelnour,, and A. Tarkowski. 1992. Histopathological and serological progression of experimental Staphylococcus aureus arthritis. Infect. Immun. 60: 2976 2985.
12. Bremell, T.,, S. Lange,, R. Holmdahl,, C. Ryden,, G. K. Hansson,, and A. Tarkowski. 1994. Immunopathological features of rat Staphylococcus aureus arthritis. Infect. Immun. 62: 2334 2344.
13. Bremell, T.,, S. Lange,, L. Svensson,, E. Jennische,, K. Grondahl,, H. Carlsten,, and A. Tarkowski. 1990. Outbreak of spontaneous staphylococcal arthritis and osteitis in mice. Arthritis Rheum. 33: 1739 1744.
14. Bremell, T.,, S. Lange,, A. Yacoub,, C. Ryden,, and A. Tarkowski. 1991. Experimental Staphylococcus aureus arthritis in mice. Infect. Immun. 59: 2615 2623.
15. Bunce, C.,, L. Wheeler,, G. Reed,, J. Musser,, and N. Barg. 1992. Murine model of cutaneous infection with grampositive cocci. Infect. Immun. 60: 2636 2640.
16. Calhoun, J. H.,, and J. T. Mader. 1997. Treatment of osteomyelitis with a biodegradable antibiotic implant. Clin. Orthop. Relat. Res. 341: 206 214.
17. Chandler, R. L. 1970. Experimental bacterial mastitis in the mouse. J. Med. Microbiol. 3: 273 282.
18. Cheung, A. L.,, K. J. Eberhardt,, E. Chung,, M. R. Yeaman,, P. M. Sullam,, M. Ramos,, and A. S. Bayer. 1994. Diminished virulence of a sar_/agr_ mutant of Staphylococcus aureus in the rabbit model of endocarditis. J. Clin. Invest. 94: 1815 1822.
19. Collins, L. V.,, K. Eriksson,, R. G. Ulrich,, and A. Tarkowski. 2002. Mucosal tolerance to a bacterial superantigen indicates a novel pathway to prevent toxic shock. Infect. Immun. 70: 2282 2287.
20. Collins, L. V.,, S. A. Kristian,, C. Weidenmaier,, M. Faigle,, K. P. M. van Kessel,, J. A. G. van Strijp,, F. Gotz,, B. Neumeister,, and A. Peschel. 2002. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence-attenuated in mice. J. Infect. Dis. 186: 214 219.
21. Dahners, L. E.,, and C. H. Funderburk. 1987. Gentamicin- loaded plaster of Paris as a treatment of experimental osteomyelitis in rabbits. Clin. Orthop. Relat. Res. 219: 278 282.
22. Daum, R. S.,, W. H. Davis,, K. B. Farris,, R. J. Campeau,, D. M. Mulvihill,, and S. M. Shane. 1990. A model of Staphylococcus aureus bacteremia, septic arthritis, and osteomyelitis in chickens. J. Orthoped. Res. 8: 804 813.
23. Davis, S. D.,, L. D. Sarff,, and R. A. Hyndiuk. 1978. Staphylococcal keratitis. Experimental model in guinea pigs. Arch. Ophthalmol. 96: 2114 2116.
24. Deysine, M.,, H. D. Isenberg,, and G. Steiner. 1983. Chronic haematogenous osteomyelitis; studies on an experimental model. Int. Orthoped. 7: 69 78.
25. Deysine, M.,, E. Rosario,, and H. D. Isenberg. 1976. Acute hematogenous osteomyelitis: an experimental model. Surgery 79: 97 99.
26. Emslie, K. R.,, and S. Nade. 1983. Acute hematogenous staphylococcal osteomyelitis. A description of the natural history in an avian model. Am. J. Pathol. 110: 333 345.
27. Emslie, K. R.,, N. R. Ozanne,, and S. M. Nade. 1983. Acute haematogenous osteomyelitis: an experimental model. J. Pathol. 141: 157 167.
28. Foster, T. J. 1991. Potential for vaccination against infections caused by Staphylococcus aureus. Vaccine 9: 221 227.
29. Freedman, L. R. 1960. Experimental pyelonephritis. VI. Observations on susceptibility of the rabbit kidney to infection by a virulent strain of Staphylococcus aureus. Yale J. Biol. Med. 32: 272 279.
30. Gomez, M. I.,, V. E. Garcia,, M. M. Gherardi,, M. C. Cerquetti,, and D. O. Sordelli. 1998. Intramammary immunization with live-attenuated Staphylococcus aureus protects mice from experimental mastitis. FEMS Immunol. Med. Microbiol. 20: 21 27.
31. Gorrill, R. H. 1951. Experimental staphylococcal infections in mice. Br. J. Exp. Pathol. 32: 151 155.
32. Gorrill, R. H. 1958. The establishment of staphylococcal abscesses in the mouse kidney. Br. J. Exp. Pathol. 39: 203 212.
33. Gutschik, E. 1983. Experimental staphylococcal endocarditis: an overview. Scand. J. Infect. Dis. Suppl. 41: 87 94.
34. Hamamoto, H.,, K. Kurokawa,, C. Kaito,, K. Kamura,, I. Manitra Razanajatovo,, H. Kusuhara,, T. Santa,, and K. Sekimizu. 2004. Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrob. Agents Chemother. 48: 774 779.
35. Hienz, S. A.,, H. Sakamoto,, J. I. Flock,, A. C. Morner,, F. P. Reinholt,, A. Heimdahl,, and C. E. Nord. 1995. Development and characterization of a new model of hematogenous osteomyelitis in the rat. J. Infect. Dis. 171: 1230 1236.
36. Hienz, S. A.,, T. Schennings,, A. Heimdahl,, and J. I. Flock. 1996. Collagen binding of Staphylococcus aureus is a virulence factor in experimental endocarditis. J. Infect. Dis. 174: 83 88.
37. Hultgren, O.,, H. P. Eugster,, J. D. Sedgwick,, H. Korner,, and A. Tarkowski. 1998. TNF/lymphotoxin-alpha double- mutant mice resist septic arthritis but display increased mortality in response to Staphylococcus aureus. J. Immunol. 161: 5937 5942.
38. Hultgren, O.,, M. Kopf,, and A. Tarkowski. 1998. Staphylococcus aureus-induced septic arthritis and septic death is decreased in IL-4-deficient mice: role of IL-4 as promoter for bacterial growth. J. Immunol. 160: 5082 5087.
39. Hultgren, O. H.,, M. Verdrengh,, and A. Tarkowski. 2004. T-box transcription-factor-deficient mice display increased joint pathology and failure of infection control during staphylococcal arthritis. Microbes Infect. 6: 529 535.
40. Itokazu, M.,, T. Ohno,, T. Tanemori,, E. Wada,, N. Kato,, and K. Watanabe. 1997. Antibiotic-loaded hydroxyapatite blocks in the treatment of experimental osteomyelitis in rats. J. Med. Microbiol. 46: 779 783.
41. Ji, G.,, R. C. Beavis,, and R. P. Novick. 1995. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. USA 92: 12055 12059.
42. Jonsson, I.-M.,, S. K. Mazmanian,, O. Schneewind,, M. Verdrengh,, T. Bremell,, and A. Tarkowski. 2002. On the role of Staphylococcus aureus sortase and sortase-catalyzed surface protein anchoring in murine septic arthritis. J. Infect. Dis. 185: 1417 1424.
43. Jonsson, I.-M.,, C. von Eiff,, R. A. Proctor,, G. Peters,, C. Ryden,, and A. Tarkowski. 2003. Virulence of a hemB mutant displaying the phenotype of a Staphylococcus aureus small colony variant in a murine model of septic arthritis. Microb. Pathog. 34: 73 79.
44. Jonsson, I.-M.,, S. Arvidson,, S. Foster,, and A. Tarkowski. 2004. Sigma factor B and RsbU are required for virulence in Staphylococcus aureus-induced arthritis and sepsis. Infect. Immun. 72: 6106 6111.
45. Josefsson, E.,, O. Hartford,, L. O’Brien,, J. M. Patti,, and T. Foster. 2001. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J. Infect. Dis. 184: 1572 1580.
46. Kaarsemaker, S.,, G. H. Walenkamp,, and A. E. van de Bogaard. 1997. New model for chronic osteomyelitis with Staphylococcus aureus in sheep. Clin. Orthop. Relat. Res. 339: 246 252.
47. Kaito, C.,, N. Akimitsu,, H. Watanabe,, and K. Sekimizu. 2002 Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microb. Pathog. 32: 183 190.
48. Kohrman, K. A.,, J. J. Kirkland,, and P. J. Danneman. 1989. Response of various animal species to experimental infection with different strains of Staphylococcus aureus. Rev. Infect. Dis. 11( Suppl. 1): S231 S236. (Discussion, 11 [Suppl. 1]:S236-S237.)
49. Kuypers, J. M.,, and R. A. Proctor. 1989. Reduced adherence to traumatized rat heart valves by a low-fibronectinbinding mutant of Staphylococcus aureus. Infect. Immun. 57: 2306 2312.
50. Lee, J. C. 1996. The prospects for developing a vaccine against Staphylococcus aureus. Trends Microbiol. 4: 162 166.
51. Lee, J. C.,, M. J. Betley,, C. A. Hopkins,, N. E. Perez,, and G. B. Pier. 1987. Virulence studies, in mice, of transposon- induced mutants of Staphylococcus aureus differing in capsule size. J. Infect. Dis. 156: 741 750.
52. Lee, J. C.,, J. S. Park,, S. E. Shepherd,, V. Carey,, and A. Fattom. 1997. Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect. Immun. 65: 4146 4151.
53. Lee, J. C.,, N. E. Perez,, and C. A. Hopkins. 1989. Production of toxic shock syndrome toxin 1 in a mouse model of Staphylococcus aureus abscess formation. Rev. Infect. Dis. 11( Suppl. 1): S254 S259.
54. Linhart, W. E.,, S. Spendel,, G. Weber,, and S. Zadravec. 1990. Septic arthritis—an experimental animal model useful in free oxygen radical research. Z. Versuchstierkd. 33: 65 71.
55. Mamo, W.,, M. Boden,, and J. I. Flock. 1994. Vaccination with Staphylococcus aureus fibrinogen binding proteins (FgBPs) reduces colonisation of S. aureus in a mouse mastitis model. FEMS Immunol. Med. Microbiol. 10: 47 53.
56. Mamo, W.,, P. Jonsson,, J. I. Flock,, M. Lindberg,, H. P. Muller,, T. Wadstrom,, and L. Nelson. 1994. Vaccination against Staphylococcus aureus mastitis: immunological response of mice vaccinated with fibronectin-binding protein (FnBP-A) to challenge with S. aureus. Vaccine 12: 988 992.
57. Maurin, M.,, H. Lepidi,, B. La Scola,, M. Feuerstein,, M. Andre,, J. F. Pellissier,, and D. Raoult. 1997. Guinea pig model for Staphylococcus aureus native valve endocarditis. Antimicrob. Agents Chemother. 41: 1815 1817.
58. Melish, M. E.,, S. Murata,, C. Fukunaga,, K. Frogner,, and C. McKissick. 1989. Vaginal tampon model for toxic shock syndrome. Rev. Infect. Dis. 11( Suppl. 1): S238 S246. (Discussion, 11[Suppl. 1]:S246-S247.)
59. Molne, L.,, and A. Tarkowski. 2000. An experimental model of cutaneous infection induced by superantigenproducing Staphylococcus aureus. J. Invest. Dermatol. 114: 1120 1125.
60. Molne, L.,, M. Verdrengh,, and A. Tarkowski. 2000. Role of neutrophil leukocytes in cutaneous infection caused by Staphylococcus aureus. Infect. Immun. 68: 6162 6167.
61. Moreillon, P.,, J. M. Entenza,, P. Francioli,, D. McDevitt,, T. J. Foster,, P. Francois,, and P. Vaudaux. 1995. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect. Immun. 63: 4738 4743.
62. Needham, A. J.,, M. Kibart,, H. Crossley,, P. W. Ingham,, and S. J. Foster. 2004. Drosophila melanogaster as a model host for Staphylococcus aureus infection. Microbiology 150: 2347 2355.
63. Nilsson, I.-M.,, T. Bremell,, C. Ryden,, A. L. Cheung,, and A. Tarkowski. 1996. Role of the staphylococcal accessory gene regulator ( sar) in septic arthritis. Infect. Immun. 64: 4438 4443.
64. Nilsson, I.-M.,, J. C. Lee,, T. Bremell,, C. Ryden,, and A. Tarkowski. 1997. The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect. Immun. 65: 4216 4221.
65. Nilsson, I.-M.,, J. M. Patti,, T. Bremell,, M. Hook,, and A. Tarkowski. 1998. Vaccination with a recombinant fragment of collagen adhesin provides protection against Staphylococcus aureus-mediated septic death. J. Clin. Invest. 101: 2640 2649.
66. Palma, M.,, S. Nozohoor,, T. Schennings,, A. Heimdahl,, and J. I. Flock. 1996. Lack of the extracellular 19-kilodalton fibrinogen-binding protein from Staphylococcus aureus decreases virulence in experimental wound infection. Infect. Immun. 64: 5284 5289.
67. Palmqvist, N.,, T. Foster,, A. Tarkowski,, and E. Josefsson. 2003. Protein A is a virulence factor in Staphylococcus aureus arthritis and septic death. Microb. Pathog. 33: 239 249.
68. Passl, R.,, C. Muller,, C. C. Zielinski,, and M. M. Eibl. 1984. A model of experimental post-traumatic osteomyelitis in guinea pigs. J. Trauma 24: 323 326.
69. Patti, J. M.,, T. Bremell,, D. Krajewska-Pietrasik,, A. Abdelnour,, A. Tarkowski,, C. Ryden,, and M. Hook. 1994. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect. Immun. 62: 152 161.
70. Peschel, A.,, R. W. Jack,, M. Otto,, L. V. Collins,, P. Staubitz,, G. Nicholson,, H. Kalbacher,, W. F. Nieuwenhuizen,, G. Jung,, A. Tarkowski,, K. P. M. van Kessel,, and J. A. G. van Strijp. 2001. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J. Exp. Med. 193: 1067 1076.
71. Power, M. E.,, M. E. Olson,, P. A. Domingue,, and J. W. Costerton. 1990. A rat model of Staphylococcus aureus chronic osteomyelitis that provides a suitable system for studying the human infection. J. Med. Microbiol. 33: 189 198.
72. Quimby, F.,, and H. T. Nguyen. 1985. Animal studies of toxic shock syndrome. Crit. Rev. Microbiol. 12: 1 44.
73. Riegels-Nielson, P.,, N. Frimodt-Moller,, and J. S. Jensen. 1987. Rabbit model of septic arthritis. Acta Orthoped. Scand. 58: 14 19.
74. Sakiniene, E.,, T. Bremell,, and A. Tarkowski. 1996. Addition of corticosteroids to antibiotic treatment ameliorates the course of experimental Staphylococcus aureus arthritis. Arthritis Rheum. 39: 1596 1605.
75. Sakiniene, E.,, and L. V. Collins. 2002. Combined antibiotic and free radical trap treatment is effective at combating Staphylococcus aureus induced septic arthritis. Arthritis Res. Ther. 4: 196 200.
76. Sande, M. A. 1981. Evaluation of antimicrobial agents in the rabbit model of endocarditis. Rev. Infect. Dis. 3(Suppl.): S240 S249.
77. Santoro, J.,, and M. E. Levison. 1978. Rat model of experimental endocarditis. Infect. Immun. 19: 915 918.
78. Schennings, T.,, A. Heimdahl,, K. Coster,, and J. I. Flock. 1993. Immunization with fibronectin binding protein from Staphylococcus aureus protects against experimental endocarditis in rats. Microb. Pathog. 15: 227 236.
79. Sifri, C. D.,, J. Begun,, F. M. Ausubel,, and S. B. Calderwood. 2003. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis . Infect Immun. 71: 2208 2217.
80. Smith, I. M.,, A. P. Wilson,, E. C. Hazard,, W. K. Hummer,, and M. E. Dewey. 1960. Death from staphylococci in mice. J. Infect. Dis. 107: 369 378.
81. Smith, J. M.,, and R. J. Dubos. 1956. The behavior of virulent and avirulent staphylococci in the tissues of normal mice. J. Exp. Med. 103: 87 108.
82. Smith, R. L.,, G. Kajiyama,, and D. J. Schurman. 1997. Staphylococcal septic arthritis: antibiotic and nonsteroidal anti-inflammatory drug treatment in a rabbit model. J. Orthoped. Res. 15: 919 926.
83. Speers, D. J.,, and S. M. Nade. 1985. Ultrastructural studies of adherence of Staphylococcus aureus in experimental acute hematogenous osteomyelitis. Infect. Immun. 49: 443 446.
84. Sutra, L.,, and B. Poutrel. 1994. Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus. J. Med. Microbiol. 40: 79 89.
85. Tarkowski, A.,, M. Bokarewa,, L. V. Collins,, I. Gjertsson,, O. H. Hultgren,, I.-M. Jonsson,, E. Sakiniene,, E. Josefsson,, and M. Verdrengh. 2002. Current status of pathogenetic mechanisms in staphylococcal arthritis. FEMS Microbiol. Lett. 217: 125 132.
86. Varshney, A. C.,, H. Singh,, R. S. Gupta,, and S. P. Singh. 1989. Experimental model of staphylococcal osteomyelitis in dogs. Indian J. Exp. Biol. 27: 816 819.
87. Verba, V.,, E. Sakiniene,, and A. Tarkowski. 1997. Beneficial effect of glucocorticoids on the course of haematogenously acquired Staphylococcus aureus nephritis. Scand. J. Immunol. 45: 282 286.
88. Verba, V.,, and A. Tarkowski. 1996. Participation of V beta 4(+)-, V beta 7(+)-, and V beta 11(+)-T lymphocytes in haematogenously acquired Staphylococcus aureus nephritis. Scand. J. Immunol. 44: 261 266.
89. Verdrengh, M.,, and A. Tarkowski. 1997. Role of neutrophils in experimental septicemia and septic arthritis induced by Staphylococcus aureus. Infect. Immun. 65: 2517 2521.
90. Watson, D. L. 1988. Vaccination against experimental staphylococcal mastitis in ewes. Res. Vet. Sci. 45: 16 21.
91. Watson, D. L. 1992. Vaccination against experimental staphylococcal mastitis in dairy heifers. Res. Vet. Sci. 53: 346 353.
92. Woody, M. A.,, T. Krakauer,, R. G. Ulrich,, and B. G. Stiles. 1998. Differential immune responses to staphylococcal enterotoxin B mutations in a hydrophobic loop dominating the interface with major histocompatibility complex class II receptors. J. Infect. Dis. 177: 1013 1022.
93. Worlock, P.,, R. Slack,, L. Harvey,, and R. Mawhinney. 1988. An experimental model of post-traumatic osteomyelitis in rabbits. Br. J. Exp. Pathol. 69: 235 244.
94. Yao, L.,, J. W. Berman,, S. M. Factor,, and F. D. Lowy. 1997. Correlation of histopathologic and bacteriologic changes with cytokine expression in an experimental murine model of bacteremic Staphylococcus aureus infection. Infect. Immun. 65: 3889 3895.
95. Zhao, Y. X.,, A. Abdelnour,, R. Holmdahl,, and A. Tarkowski. 1995. Mice with the xid B cell defect are less susceptible to developing Staphylococcus aureus-induced arthritis. J. Immunol. 155: 2067 2076.
96. Zhao, Y. X.,, A. Ljungdahl,, T. Olsson,, and A. Tarkowski. 1996. In situ hybridization analysis of synovial and systemic cytokine messenger RNA expression in superantigen-mediated Staphylococcus aureus arthritis. Arthritis Rheum. 39: 959 967.
97. Zhao, Y. X.,, I.-M. Nilsson,, and A. Tarkowski. 1998. The dual role of interferon-gamma in experimental Staphylococcus aureus septicaemia versus arthritis. Immunology 93: 80 85.
98. Zhao, Y. X.,, and A. Tarkowski. 1995. Impact of interferon-gamma receptor deficiency on experimental Staphylococcus aureus septicemia and arthritis. J. Immunol. 155: 5736 5742.


Generic image for table

Experimental animal models used to study diseases associated with infection

Citation: Collins L, Tarkowski A. 2006. Animal Models of Experimental Infection, p 535-543. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch44

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error