Chapter 46 : Biology and Pathogenicity of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Biology and Pathogenicity of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap46-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap46-2.gif


This chapter deals with the current knowledge about . It especially focuses on the pathogenicity of , the underlying biological properties, and how these properties contrast with those of . The brief overview of the disease spectrum is given to place the studies on pathogenesis in perspective. The last part of the chapter deals with one ecological aspect, lantibiotics, which are potentially important for bacterial interference on skin and mucous membranes. Non- staphylococci (NAS), particularly , are among the most frequently isolated microorganisms in the clinical microbiology laboratory. The most important step in the pathogenesis of foreign body-associated infectious diseases is the colonization of the polymer surface by the formation of multi-layered cell clusters, which are embedded in an amorphous extracellular material. The relationship of polysaccharide/adhesin (PS/A) to other polysaccharides of is discussed in the chapter. The establishment of an infection and the survival of the bacteria in the host depend on the ability to invade host tissues and to evade host defense systems, respectively. Although studied in more detail with , knowledge about the regulation of virulence factors has been increased significantly in recent years. Lantibiotics are antibiotic peptides that contain the rare thioether amino acid lanthionine and/or methyllanthionine. Improvement in the armamentarium of molecular methods will enable us to analyze not only the genome but also the proteome of in the future.

Citation: Heilmann C, Peters G. 2006. Biology and Pathogenicity of , p 560-571. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch46
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Scanning electron micrograph of an early stage of biofilm formation by on a polyethylene surface. (Reprinted from reference , with permission.)

Citation: Heilmann C, Peters G. 2006. Biology and Pathogenicity of , p 560-571. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch46
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Model of different phases of biofilm formation on a prosthetic polymer device and bacterial factors involved or potentially involved (?). Fbe/SdrG, fibrinogen-binding protein.

Citation: Heilmann C, Peters G. 2006. Biology and Pathogenicity of , p 560-571. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch46
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Baldassarri, L.,, G. Donnelli,, A. Gelosia,, M. C. Voglino,, A. W. Simpson,, and G. D. Christensen. 1996. Purification and characterization of the staphylococcal slime-associated antigen and its occurrence among Staphylococcus epidermis clinical isolates. Infect. Immun. 64: 3410 3415.
2. Bowden, M. G.,, L. Visai,, C. M. Longshaw,, K. T. Holland,, P. Speziale,, and M. Höök. 2002. Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin? J. Biol. Chem. 277: 43017 43023.
3. Chamberlain, N. R.,, and S. A. Brueggemann. 1997. Characterisation and expression of fatty acid modifying enzyme produced by Staphylococcus epidermidis. J. Med. Microbiol. 46: 693 697.
4. Christensen, G. D.,, L. M. Baddour,, and W. A. Simpson. 1987. Phenotypic variation of Staphylococcus epidermidis slime production in vitro and in vivo. Infect. Immun. 55: 2870 2877.
5. Cockayne, A.,, P. J. Hill,, N. B. Powell,, K. Bishop,, C. Sims,, and P. Williams. 1998. Molecular cloning of a 32-kilodalton lipoprotein component of a novel iron-regulated Staphylococcus epidermidis ABC transporter. Infect. Immun. 66: 3767 3774.
6. Conlon, K. M.,, H. Humphreys,, and J. P. O’Gara. 2002. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J. Bacteriol. 184: 4400 4408.
7. Cramton, S. E.,, C. Gerke,, N. F. Schnell,, W. W. Nichols,, and F. Götz. 1999. The intercellular adhesion ( ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67: 5427 5433.
8. Cramton, S. E.,, M. Ulrich,, F. Götz,, and G. Döring. 2001. Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69: 4079 4085.
9. Cucarella, C.,, C. Solano,, J. Valle,, B. Amorena,, I. Lasa,, and J. R. Penades. 2001. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 183: 2888 2896.
10. Davis, S. L.,, S. Gurusiddappa,, K. W. McCrea,, S. Perkins,, and M. Höök. 2001. SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bβchain. J. Biol. Chem. 276: 27799 27805.
11. Farrell, A. M.,, T. J. Foster,, and K. T. Holland. 1993. Molecular analysis and expression of the lipase of Staphylococcus epidermidis. J. Gen. Microbiol. 139: 267 277.
12. Fey, P. D.,, J. S. Ulphani,, F. Götz,, C. Heilmann,, D. Mack,, and M. E. Rupp. 1999. Characterization of the relationship between polysaccharide intercellular adhesin and hemagglutination in Staphylococcus epidermidis. J. Infect. Dis. 179: 1561 1564.
13. Fluckiger, U.,, C. Wolz,, and A. L. Cheung. 1998. Characterization of a sar homolog of Staphylococcus epidermidis. Infect. Immun. 66: 2871 2878.
14. Geissler, S.,, F. Götz,, and T. Kupke. 1996. Serine protease EpiP from Staphylococcus epidermidis catalyzes the processing of the epidermin precursor peptide. J. Bacteriol. 178: 284 288.
15. Gerke, C.,, A. Kraft,, R. Sussmuth,, O. Schweitzer,, and F. Götz. 1998. Characterization of the N-acetylglucosaminyl-transferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J. Biol. Chem. 273: 18586 18593.
16. Gray, E. D.,, G. Peters,, M. Verstegen,, and W. E. Regelmann. 1984. Effect of extracellular slime substance from Staphylococcus epidermidis on the human cellular immune response. Lancet i: 365 367.
17. Gross, M.,, S. E. Cramton,, F. Götz,, and A. Peschel. 2001. Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect. Immun. 69: 3423 3426.
18. Hartford, O.,, L. O’Brien,, K. Schofield,, J. Wells,, and T. J. Foster. 2001. The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology 147: 2545 2552.
19. Heidrich, C.,, K. Hantke,, G. Bierbaum,, and H. G. Sahl. 1996. Identification and analysis of a gene encoding a Furlike protein of Staphylococcus epidermidis. FEMS Microbiol. Lett. 140: 253 259.
20. Heidrich, C.,, U. Pag,, M. Josten,, J. Metzger,, R. W. Jack,, G. Bierbaum,, G. Jung,, and H. G. Sahl. 1998. Isolation, characterization, and heterologous expression of the novel lantibiotic epicidin 280 and analysis of its biosynthetic gene cluster. Appl. Environ. Microbiol. 64: 3140 3146.
21. Heilmann, C.,, M. Hussain,, G. Peters,, and F. Götz. 1997. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 24: 1013 1024.
22. Heilmann, C.,, O. Schweitzer,, C. Gerke,, N. Vanittanakom,, D. Mack,, and F. Götz. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20: 1083 1091.
23. Heilmann, C.,, G. Thumm,, G. S. Chhatwal,, J. Hartleib,, A. Uekötter,, and G. Peters. 2003. Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiology 149: 2769 2778.
24. Hell, W.,, H. G. Meyer,, and S. G. Gatermann. 1998. Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol. Microbiol. 29: 871 881.
25. Hill, P. J.,, A. Cockayne,, P. Landers,, J. A. Morrissey,, C. M. Sims,, and P. Williams. 1998. SirR, a novel iron-dependent repressor in Staphylococcus epidermidis. Infect. Immun. 66: 4123 4129.
26. Horsburgh, M. J.,, M. O. Clements,, H. Crossley,, E. Ingham,, and S. J. Foster. 2001. PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect. Immun. 69: 3744 3754.
27. Hussain, M.,, C. Heilmann,, G. Peters,, and M. Herrmann. 2001. Teichoic acid enhances adhesion of Staphylococcus epidermidis to immobilized fibronectin. Microb. Pathog. 31: 261 270.
28. Hussain, M.,, M. Herrmann,, C. von Eiff,, F. Perdreau- Remington,, and G. Peters. 1997. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65: 519 524.
29. Hussain, M.,, M. H. Wilcox,, and P. J. White. 1993. The slime of coagulase-negative staphylococci: biochemistry and relation to adherence. FEMS Microbiol. Rev. 10: 191 207.
30. Johnson, G. Personal communication.
31. Johnson, G. M.,, D. A. Lee,, W. E. Regelmann,, E. D. Gray,, G. Peters,, and P. G. Quie. 1986. Interference with granulocyte function by Staphylococcus epidermidis slime. Infect. Immun. 54: 13 20.
32. Kies, S.,, M. Otto,, C. Vuong,, and F. Götz. 2001. Identification of the sigB operon in Staphylococcus epidermidis: construction and characterization of a sigB deletion mutant. Infect. Immun. 69: 7933 7936.
33. Kies, S.,, C. Vuong,, M. Hille,, A. Peschel,, C. Meyer,, F. Götz,, and M. Otto. 2003. Control of antimicrobial peptide synthesis by the agr quorum sensing system in Staphylococcus epidermidis: activity of the lantibiotic epidermin is regulated at the level of precursor peptide processing. Peptides 24: 329 338.
34. Knobloch, J. K.,, K. Bartscht,, A. Sabottke,, H. Rohde,, H. H. Feucht,, and D. Mack. 2001. Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J. Bacteriol. 183: 2624 2633.
35. Kupke, T.,, and F. Götz. 1996. Expression, purification, and characterization of EpiC, an enzyme involved in the biosynthesis of the lantibiotic epidermin, and sequence analysis of Staphylococcus epidermidis epiC mutants. J. Bacteriol. 178: 1335 1340.
36. Kupke, T.,, C. Kempter,, G. Jung,, and F. Götz. 1995. Oxidative decarboxylation of peptides catalyzed by flavoprotein EpiD. Determination of substrate specificity using peptide libraries and neutral loss mass spectrometry. J. Biol. Chem. 270: 11282 11289.
37. Liles, W. C.,, A. R. Thomsen,, D. S. O’Mahony,, and S. J. Klebanoff. 2001. Stimulation of human neutrophils and monocytes by staphylococcal phenol-soluble modulin. J. Leukoc. Biol. 70: 96 102.
38. Lindsay, J. A.,, and T. V. Riley. 1994. Staphylococcal iron requirements, siderophore production, and iron-regulated protein expression. Infect. Immun. 62: 2309 2314.
39. Longshaw, C. M.,, A. M. Farrell,, J. D. Wright,, and K. T. Holland. 2000. Identification of a second lipase gene, gehD, in Staphylococcus epidermidis: comparison of sequence with those of other staphylococcal lipases. Microbiology 146: 1419 1427.
40. Mack, D. Personal communication.
41. Mack, D.,, W. Fischer,, A. Krokotsch,, K. Leopold,, R. Hartmann,, H. Egge,, and R. Laufs. 1996. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. J. Bacteriol. 178: 175 183.
42. Maira-Litran, T.,, A. Kropec,, C. Abeygunawardana,, J. Joyce,, G. Mark,, D. A. Goldmann,, and G. B. Pier. 2002. Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect. Immun 70: 4433 4440.
43. Marin, M. E.,, M. C. de la Rosa,, and I. Cornejo. 1992. Enterotoxigenicity of Staphylococcus strains isolated from Spanish dry-cured hams. Appl. Environ. Microbiol. 58: 1067 1069.
44. Mattsson, E.,, J. Rollof,, J. Verhoef,, H. Van Dijk,, and A. Fleer. 1994. Serum-induced potentiation of tumor necrosis factor alpha production by human monocytes in response to staphylococcal peptidoglycan: involvement of different serum factors. Infect. Immun. 62: 3837 3843.
45. Mazmanian, S. K.,, E. P. Skaar,, A. H. Gaspar,, M. Humayun,, P. Gornicki,, J. Jelenska,, A. Joachmiak,, D. M. Missiakas,, and O. Schneewind. 2003. Passage of hemeiron across the envelope of Staphylococcus aureus. Science 299: 906 909.
46. McCrea, K. W.,, O. Hartford,, S. Davis,, D. N. Eidhin,, G. Lina,, P. Speziale,, T. J. Foster,, and M. Höök. 2000. The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology 146: 1535 1546.
47. McKenney, D.,, J. Hübner,, E. Muller,, Y. Wang,, D. A. Goldmann,, and G. B. Pier. 1998. The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect. Immun. 66: 4711 4720.
48. McKevitt, A. I.,, G. L. Bjornson,, C. A. Mauracher,, and D. W. Scheifele. 1990. Amino acid sequence of a deltalike toxin from Staphylococcus epidermidis. Infect. Immun. 58: 1473 1475.
49. Mehlin, C.,, C. M. Headley,, and S. J. Klebanoff. 1999. An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J. Exp. Med. 189: 907 918.
50. Meyer, C.,, G. Bierbaum,, C. Heidrich,, M. Reis,, J. Suling,, M. I. Iglesias-Wind,, C. Kempter,, E. Molitor,, and H. G. Sahl. 1995. Nucleotide sequence of the lantibiotic Pep5 biosynthetic gene cluster and functional analysis of PepP and PepC. Evidence for a role of PepC in thioether formation. Eur. J. Biochem. 232: 478 489.
51. Modun, B.,, R. W. Evans,, C. L. Joannou,, and P. Williams. 1998. Receptor-mediated recognition and uptake of iron from human transferrin by Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 66: 3591 3596.
52. Modun, B.,, J. Morrissey,, and P. Williams. 2000. The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol. 8: 231 237.
53. Modun, B.,, and P. Williams. 1999. The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. Infect. Immun. 67: 1086 1092.
54. Modun, B. J.,, A. Cockayne,, R. Finch,, and P. Williams. 1998. The Staphylococcus aureus and Staphylococcus epidermidis transferrin-binding proteins are expressed in vivo during infection. Microbiology 144: 1005 1012.
55. Morrissey, J. A.,, A. Cockayne,, K. Brummell,, and P. Williams. 2004. The staphylococcal ferritins are differentially regulated in response to iron and manganese and via PerR and Fur. Infect. Immun. 72: 972 979.
56. Muller, E.,, J. Hubner,, N. Gutierrez,, S. Takeda,, D. A. Goldmann,, and G. B. Pier. 1993. Isolation and characterization of transposon mutants of Staphylococcus epidermidis deficient in capsular polysaccharide/adhesin and slime. Infect. Immun. 61: 551 558.
57. Nilsson, M.,, L. Frykberg,, J. I. Flock,, L. Pei,, M. Lindberg,, and B. Guss. 1998. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect. Immun. 66: 2666 2673.
58. Ohara-Nemoto, Y.,, Y. Ikeda,, M. Kobayashi,, M. Sasaki,, S. Tajika,, and S. Kimura. 2002. Characterization and molecular cloning of a glutamyl endopeptidase from Staphylococcus epidermidis. Microb. Pathog. 33: 33 41.
59. Otto, M. 2001. Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides 22: 1603 1608.
60. Otto, M.,, R. Süssmuth,, G. Jung,, and F. Götz. 1998. Structure of the pheromone peptide of the Staphylococcus epidermidis agr system. FEBS Lett. 424: 89 94.
61. Pag, U.,, C. Heidrich,, G. Bierbaum,, and H. G. Sahl. 1999. Molecular analysis of expression of the lantibiotic Pep5 immunity phenotype. Appl. Environ. Microbiol. 65: 591 598.
62. Pei, L.,, and J. I. Flock. 2001. Lack of fbe reduces Staphylococcus epidermidis adherence to Fg-coated surfaces. Microb. Pathog. 31: 185 193.
63. Pei, L.,, M. Palma,, M. Nilsson,, B. Guss,, and J. I. Flock. 1999. Functional studies of a fibrinogen binding protein from Staphylococcus epidermidis. Infect. Immun. 67: 4525 4530.
64. Peschel, A.,, and F. Götz. 1996. Analysis of the Staphylococcus epidermidis genes epiF, - E, and - G involved in epidermin immunity. J. Bacteriol. 178: 531 536.
65. Peters, G.,, R. Locci,, and G. Pulverer. 1982. Adherence and growth of coagulase-negative staphylococci on surfaces of intravenous catheters. J. Infect. Dis. 146: 479 482.
66. Peters, G.,, R. Locci,, and G. Pulverer. 1981. Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters. Zentralbl. Bakteriol. Mikrobiol. Hyg. B 173: 293 299.
67. Ponnuraj, K.,, M. G. Bowden,, S. Davis,, S. Gurusiddappa,, D. Moore,, D. Choe,, Y. Xu,, and M. Höök. 2003. A “dock, lock, and latch” structural model for a staphylococcal adhesin binding to fibrinogen. Cell 115: 217 228.
68. Rachid, S.,, K. Ohlsen,, W. Witte,, J. Hacker,, and W. Ziebuhr. 2000. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 44: 3357 3363.
69. Rennermalm, A.,, M. Nilsson,, and J.-I. Flock. 2004. The fibrinogen binding protein of Staphylococcus epidermidis is a target for opsonic antibodies. Infect. Immun. 72: 3081 3083.
70. Rohde, H.,, C. Burdelski,, K. Bartscht,, M. Hussain,, F. Buck,, M. A. Horstkotte,, J. K.-M. Knobloch,, C. Heilmann,, M. Herrmann,, and D. Mack. 2005. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation associated protein by staphylococcal and host proteases. Mol. Microbiol. 55: 1883 1895.
71. Rohde, H.,, M. Kalitzky,, N. Kröger,, S. Scherpe,, M. A. Horstkotte,, J. K.-M. Knobloch,, A. R. Zander,, and D. Mack. 2004. Detection of virulence-associated genes not useful for discriminating between invasive and commensal Staphylococcus epidermidis strains on a bone marrow transplant unit. J. Clin. Microbiol. 42: 5614 5619.
72. Rupp, M. E.,, P. D. Fey,, C. Heilmann,, and F. Götz. 2001. Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J. Infect. Dis. 183: 1038 1042.
73. Rupp, M. E.,, J. S. Ulphani,, P. D. Fey,, K. Bartscht,, and D. Mack. 1999. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect. Immun. 67: 2627 2632.
74. Rupp, M. E.,, J. S. Ulphani,, P. D. Fey,, and D. Mack. 1999. Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect. Immun. 67: 2656 2659.
75. Saenz, H. L.,, V. Augsburger,, C. Vuong,, R. W. Jack,, F. Götz,, and M. Otto. 2000. Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone. Arch. Microbiol. 174: 452 455.
76. Schumacher-Perdreau, F.,, C. Heilmann,, G. Peters,, F. Götz,, and G. Pulverer. 1994. Comparative analysis of a biofilm-forming Staphylococcus epidermidis strain and its adhesion-positive, accumulation-negative mutant M7. FEMS Microbiol. Lett. 117: 71 78.
77. Shiau, A. L.,, and C. L. Wu. 1998. The inhibitory effect of Staphylococcus epidermidis slime on the phagocytosis of murine peritoneal macrophages is interferon-independent. Microbiol. Immunol. 42: 33 40.
78. Simons, J. W.,, M. D. van Kampen,, S. Riel,, F. Götz,, M. R. Egmond,, and H. M. Verheij. 1998. Cloning, purification and characterisation of the lipase from Staphylococcus epidermidis—comparison of the substrate selectivity with those of other microbial lipases. Eur. J. Biochem. 253: 675 683.
79. Skaar, E. P.,, A. H. Gaspar,, and O. Schneewind. 2004. IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus. J. Biol. Chem. 279: 436 443.
80. Sloot, N.,, M. Thomas,, R. Marre,, and S. Gatermann. 1992. Purification and characterisation of elastase from Staphylococcus epidermidis. J. Med. Microbiol. 37: 201 205.
81. Tegmark, K.,, E. Morfeldt,, and S. Arvidson. 1998. Regulation of agr-dependent virulence genes in Staphylococcus aureus by RNAIII from coagulase-negative staphylococci. J. Bacteriol. 180: 3181 3186.
82. Teufel, P.,, and F. Götz. 1993. Characterization of an extracellular metalloprotease with elastase activity from Staphylococcus epidermidis. J. Bacteriol. 175: 4218 4224.
83. van de Kamp, M.,, H. W. van den Hooven,, R. N. Konings,, G. Bierbaum,, H. G. Sahl,, O. P. Kuipers,, R. J. Siezen,, W. M. de Vos,, C. W. Hilbers,, and F. J. van de Ven. 1995. Elucidation of the primary structure of the lantibiotic epilancin K7 from Staphylococcus epidermidis K7. Cloning and characterisation of the epilancin-K7-encoding gene and NMR analysis of mature epilancin K7. Eur. J. Biochem. 230: 587 600.
84. Van Wamel, W. J.,, G. van Rossum,, J. Verhoef,, C. M. Vandenbroucke-Grauls,, and A. C. Fluit. 1998. Cloning and characterization of an accessory gene regulator ( agr)-like locus from Staphylococcus epidermidis. FEMS Microbiol. Lett. 163: 1 9.
85. Vandecasteele, S. J.,, W. E. Peetermans,, R. R. Merckx,, B. J. A. Rijnders,, and J. Van Eldere. 2003. Reliability of the ica, aap, and atlE genes in the discrimination between invasive, colonizing, and contaminant Staphylococcus epidermidis isolates in the diagnosis of catheter-related infections. Clin. Microbiol. Infect. 9: 114 119.
86. Veenstra, G. J.,, F. F. Cremers,, H. van Dijk,, and A. Fleer. 1996. Ultrastructural organization and regulation of a biomaterial adhesin of Staphylococcus epidermidis. J. Bacteriol. 178: 537 541.
87. von Eiff, C.,, C. Heilmann,, and G. Peters. 1998. Staphylococcus epidermidis: why is it so successful? Clin. Microbiol. Infect. 4: 297 300.
88. Vuong, C.,, M. Dürr,, A. B. Carmody,, A. Peschel,, S. J. Klebanoff,, and M. Otto. 2004. Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell. Microbiol. 6: 753 759.
89. Vuong, C.,, C. Gerke,, G. A. Somerville,, E. R. Fischer,, and M. Otto. 2003. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J. Infect. Dis. 188: 706 718.
90. Vuong, C.,, F. Götz,, and M. Otto. 2000. Construction and characterization of an agr deletion mutant of Staphylococcus epidermidis. Infect. Immun. 68: 1048 1053.
91. Vuong, C.,, J. M. Voyich,, E. R. Fischer,, K. R. Braughton,, A. R. Whitney,, F. R. DeLeo,, and M. Otto. 2004. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol. 6: 269 275.
92. Williams, R. J.,, B. Henderson,, L. J. Sharp,, and S. P. Nair. 2002. Identification of a fibronectin-binding protein from Staphylococcus epidermidis. Infect. Immun. 70: 6805 6810.
93. Ziebuhr, W.,, C. Heilmann,, F. Götz,, P. Meyer,, K. Wilms,, E. Straube,, and J. Hacker. 1997. Detection of the intercellular adhesion gene cluster ( ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65: 890 896.
94. Ziebuhr, W.,, V. Krimmer,, S. Rachid,, I. Lossner,, F. Götz,, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbiol. 32: 345 356.


Generic image for table

NAS found in human specimens

Citation: Heilmann C, Peters G. 2006. Biology and Pathogenicity of , p 560-571. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch46
Generic image for table

Foreign body (polymer)-associated infections

CAPD, continuous ambulatory peritoneal dialysis; CSF, cerebrospinal fluid.

At least in some instances, the role of is very probable, but more data are needed.

Citation: Heilmann C, Peters G. 2006. Biology and Pathogenicity of , p 560-571. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch46

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error