Chapter 52 : Regulation of Virulence Genes in Pathogenic Listeria spp.

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Regulation of Virulence Genes in Pathogenic Listeria spp., Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap52-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap52-2.gif


Regulation of virulence genes in pathogenic bacteria must occur by mechanisms allowing the coordinate and differential expression of the virulence factors during infection. Although positive regulatory factor A (PrfA) and (to some extent) sigma factor B (SigB), are not specific for the pathogenic species, they have been so far shown by genetic and biochemical studies to be involved in the regulation of virulence genes. This chapter focuses on gene regulation by PrfA. Extensive molecular studies have been carried out with the cyclic AMP (cAMP)-binding factor Crp; since PrfA shares extended sequential and structural similarity with Crp, a short overview of the most essential features of Crp has been provided in this chapter for the understanding of PrfA. The three-dimensional structure of PrfA shows high structural similarity with Crp. The chapter discusses some evidence for the involvement of a low-molecular-weight effector(s) for PrfA that is distinct from cAMP. The results described in the chapter suggest that regulation of virulence genes mediated by PrfA involves environmental parameters, as well as additional bacterial factors. The transcriptional activator of the pathogenic species and shares common properties with other members of the Crp/Fnr family to which it belongs, but it also possesses unique features. The precise knowledge of the mechanisms involved in the regulation of the listerial virulence genes will be crucial for the understanding of the pathogenesis of infections by pathogenic spp.

Citation: Goebel W, Müller-Altrock S, Kreft J. 2006. Regulation of Virulence Genes in Pathogenic Listeria spp., p 634-645. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch52
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

(A) Comparison of the amino acid sequences of the PrfA proteins from , , and . The pound sign (#) indicates conserved glycines at the turns of the β-roll structure; an asterisk (*) indicates the position of the G145S substitution, leading to a constitutively active PrfA ( ). Sequences are from references , and . (B) Structure and transcriptional orga-nization of the PrfA-dependent virulence gene cluster (LIPI-1) and of other PrfA-dependent virulence genes in and . Genes and products: , phosphoribosyl synthase; , positive regulatory factor A; , phosphatidylinositol-specific phospholipase C; , listeriolysin O; , metalloprotease; , actin-polymerization protein; , broad-range phospholipase C (lecithinase); orfXYZ and orfBA, open reading frames of unknown function; , lactate dehydrogenase; and , large cell-wall-bound internalins A and B; , small secreted internalin C; , hexose phosphate transporter; , bile acid hydrolase; P, promoter. An asterisk above indicates the presence of a PrfA box within the promoter. Thin arrows above the gene symbols indicate the different transcripts. Arrows below with a plus or minus sign indicate transcriptional induction or repression, respectively, by PrfA. Filled pentagons show the additional open reading frames present in LIPI-1 of .

Citation: Goebel W, Müller-Altrock S, Kreft J. 2006. Regulation of Virulence Genes in Pathogenic Listeria spp., p 634-645. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch52
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

(A) Schematic comparison of Crp from ( ) and PrfA from . The functionally important features of Crp (e.g., the N-terminal β-roll structures, the C-terminal HTH motif, and the activating regions AR1, AR2, and AR3) are indicated, as well as amino acids known to be involved in cAMP and DNA binding. Capital letters (A to D) denote alpha-helical regions. For PrfA, the predicted N-terminal HTH motif and the putative leucine zipper (Leu-zip) structure are marked. Amino acid replacements in PrfA that cause a decreased (−) or increased (+) level of activity are shown above. (B) Three-dimensional structures of Crp ( ) and PrfA ( ).

Citation: Goebel W, Müller-Altrock S, Kreft J. 2006. Regulation of Virulence Genes in Pathogenic Listeria spp., p 634-645. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch52
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Sequence comparison of PrfA-regulated virulence gene promoters from and . Sequences are from published data or from our own unpublished results.

Citation: Goebel W, Müller-Altrock S, Kreft J. 2006. Regulation of Virulence Genes in Pathogenic Listeria spp., p 634-645. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch52
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Behari, J.,, and P. Youngman. 1998. Regulation of hly expression in Listeria monocytogenes by carbon sources and pH occurs through separate mechanisms mediated by PrfA. Infect. Immun. 66: 3635 3642.
2. Bergmann, B.,, D. Raffelsbauer,, M. Kuhn,, M. Götz,, S. Hom,, and W. Goebel. 2002. InlA- but not InlB-mediated internalization of Listeria monocytogenes by nonphagocytic mammalian cells needs the support of other internalins. Mol. Microbiol. 43: 557 570.
3. Böckmann, R.,, C. Dickneite,, W. Goebel,, and J. Bohne. 2000. PrfA mediates specific binding of RNA polymerase of Listeria monocytogenes to PrfA-dependent virulence gene promoters resulting in a transcriptionally active complex. Mol. Microbiol. 36: 487 497.
4. Böckmann, R.,, C. Dickneite,, B. Middendorf,, W. Goebel,, and Z. Sokolovic. 1996. Specific binding of the Listeria monocytogenes transcriptional regulator PrfA to target sequences requires additional factor(s) and is influenced by iron. Mol. Microbiol. 22: 643 653.
5. Bohne, J.,, H. Kestler,, C. Uebele,, Z. Sokolovic,, and W. Goebel. 1996. Differential regulation of the virulence genes of Listeria monocytogenes by the transcriptional activator PrfA. Mol. Microbiol. 20: 1189 1198.
6. Bohne, J.,, Z. Sokolovic,, and W. Goebel. 1994. Transcriptional regulation of prfA and PrfA-regulated virulence genes in Listeria monocytogenes. Mol. Microbiol. 11: 1141 1150.
7. Brehm, K.,, A. Haas,, W. Goebel,, and J. Kreft. 1992. A gene encoding a superoxide dismutase of the facultative intracellular bacterium Listeria monocytogenes. Gene 118: 121 125.
8. Brehm, K.,, J. Kreft,, M. T. Ripio,, and J. A. Vázquez-Boland. 1996. Regulation of virulence gene expression in pathogenic Listeria. Microbiologia 12: 219 236.
9. Brehm, K.,, M. T. Ripio,, J. Kreft,, and J. A. Vázquez-Boland. 1999. The bvr locus of Listeria monocytogenes mediates virulence gene repression by beta-glucosides. J. Bacteriol. 181: 5024 5032.
10. Bubert, A.,, Z. Sokolovic,, S. K. Chun,, L. Papatheodorou,, A. Simm,, and W. Goebel. 1999. Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol. Gen. Genet. 261: 323 336.
11. Busby, S.,, and R. H. Ebright. 1994. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell 79: 743 746.
12. Busby, S.,, and R. H. Ebright. 1997. Transcription activation at class II CAP-dependent promoters. Mol. Microbiol. 23: 853 859.
13. Busby, S.,, and R. H. Ebright. 1999. Transcription activation by catabolite activator protein (CAP). J. Mol. Biol. 293: 199 213.
14. Cabanes, D.,, O. Dussurget,, P. Dehoux,, and P. Cossart. 2004. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol. Microbiol. 51: 1601 1614.
15. Camilli, A.,, L. G. Tilney,, and D. A. Portnoy. 1993. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol. Microbiol. 8: 143 157.
16. Chakraborty, T.,, M. Leimeister-Wächter,, E. Domann,, M. Hartl,, W. Goebel,, T. Nichterlein,, and S. Notermans. 1992. Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J. Bacteriol. 174: 568 574.
17. Cheng, L. W.,, and D. A. Portnoy. 2003. Drosophila S2 cells: an alternative infection model for Listeria monocytogenes. Cell. Microbiol. 5: 875 885.
18. Chico-Calero, I.,, M. Suárez,, B. González-Zorn,, M. Scortti,, J. Slaghuis,, W. Goebel,, and J. A. Vázquez-Boland. 2002. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl. Acad. Sci. USA 99: 431 436.
19. Christiansen, J. K.,, M. H. Larsen,, H. Ingmer,, L. Sogaard-Andersen,, and B. H. Kallipolitis. 2004. The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J. Bacteriol. 186: 3355 3362.
20. Conte, M. P.,, C. Longhi,, G. Petrone,, M. Polidoro,, P. Valenti,, and L. Seganti. 2000. Modulation of actA gene expression in Listeria monocytogenes by iron. J. Med. Microbiol. 49: 681 683.
21. Conte, M. P.,, C. Longhi,, M. Polidoro,, G. Petrone,, V. Buonfiglio,, S. Di Santo,, E. Papi,, L. Seganti,, P. Visca,, and P. Valenti. 1996. Iron availability affects entry of Listeria monocytogenes into the enterocytelike cell line Caco-2. Infect. Immun. 64: 3925 3929.
22. Cossart, P.,, J. Pizarro-Cerda,, and M. Lecuit. 2003. Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol. 13: 23 31.
23. Datta, A. R.,, and M. H. Kothary. 1993. Effects of glucose, growth temperature, and pH on listeriolysin O production in Listeria monocytogenes. Appl. Environ. Microbiol. 59: 3495 3497.
24. Dickneite, C.,, R. Böckmann,, A. Spory,, W. Goebel,, and Z. Sokolovic. 1998. Differential interaction of the transcription factor PrfA and the PrfA-activating factor (Paf) of Listeria monocytogenes with target sequences. Mol. Microbiol. 27: 915 928.
25. Dramsi, S.,, F. Bourdichon,, D. Cabanes,, M. Lecuit,, H. Fsihi,, and P. Cossart. 2004. FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol. Microbiol. 53: 639 649.
26. Dramsi, S.,, P. Dehoux,, M. Lebrun,, P. L. Goossens,, and P. Cossart. 1997. Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD. Infect. Immun. 65: 1615 1625.
27. Dramsi, S.,, C. Kocks,, C. Forestier,, and P. Cossart. 1993. Internalin-mediated invasion of epithelial cells by Listeria monocytogenes is regulated by the bacterial growth state, temperature and the pleiotropic activator prfA. Mol. Microbiol. 9: 931 941.
28. Dussurget, O.,, D. Cabanes,, P. Dehoux,, M. Lecuit,, C. Buchrieser,, P. Glaser,, and P. Cossart. 2002. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45: 1095 1106.
29. Ebright, R. H. 1993. Transcription activation at class I CAP-dependent promoters. Mol. Microbiol. 8: 797 802.
30. Engelbrecht, F.,, S. K. Chun,, C. Ochs,, J. Hess,, F. Lottspeich,, W. Goebel,, and Z. Sokolovic. 1996. A new PrfA-regulated gene of Listeria monocytogenes encoding a small, secreted protein which belongs to the family of internalins. Mol. Microbiol. 21: 823 837.
31. Engelbrecht, F.,, C. Dickneite,, R. Lampidis,, M. Götz,, U. DasGupta,, and W. Goebel. 1998. Sequence comparison of the chromosomal regions encompassing the internalin C genes ( inlC) of Listeria monocytogenes and L. ivanovii. Mol. Gen. Genet. 257: 186 197.
32. Engelbrecht, F.,, G. Dominguez-Bernal,, J. Hess,, C. Dickneite,, L. Greiffenberg,, R. Lampidis,, D. Raffelsbauer,, J. J. Daniels,, J. Kreft,, S. H. Kaufmann,, J. A. Vazquez-Boland,, and W. Goebel. 1998. A novel PrfA-regulated chromosomal locus, which is specific for Listeria ivanovii, encodes two small, secreted internalins and contributes to virulence in mice. Mol. Microbiol. 30: 405 417.
33. Ermolaeva, S.,, S. Novella,, Y. Vega,, M. T. Ripio,, M. Scortti,, and J. A. Vázquez-Boland. 2004. Negative control of Listeria monocytogenes virulence genes by a diffusible autorepressor. Mol. Microbiol. 52: 601 611.
34. Freitag, N. E.,, and K. E. Jacobs. 1999. Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea victoria. Infect. Immun. 67: 1844 1852.
35. Freitag, N. E.,, and D. A. Portnoy. 1994. Dual promoters of the Listeria monocytogenes prfA transcriptional activator appear essential in vitro but are redundant in vivo. Mol. Microbiol. 12: 845 853.
36. Freitag, N. E.,, L. Rong,, and D. A. Portnoy. 1993. Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect. Immun. 61: 2537 2544.
37. Freitag, N. E.,, P. Youngman,, and D. A. Portnoy. 1992. Transcriptional activation of the Listeria monocytogenes hemolysin gene in Bacillus subtilis. J. Bacteriol. 174: 1293 1298.
38. Gaillard, J. L.,, P. Berche,, C. Frehel,, E. Gouin,, and P. Cossart. 1991. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65: 1127 1141.
39. Garges, S.,, and S. Adhya. 1988. Cyclic AMP-induced conformational change of cyclic AMP receptor protein (CRP): intragenic suppressors of cyclic AMP-independent CRP mutations. J. Bacteriol. 170: 1417 1422.
40. Gellin, B. G.,, and C. V. Broome. 1989. Listeriosis. JAMA 261: 1313 1320.
41. Glaser, P.,, L. Frangeul,, C. Buchrieser,, C. Rusniok,, A. Amend,, F. Baquero,, P. Berche,, H. Bloecker,, P. Brandt,, T. Chakraborty,, A. Charbit,, F. Chetouani,, E. Couvé,, A. de Daruvar,, P. Dehoux,, E. Domann,, G. Domínguez-Bernal,, E. Duchaud,, L. Durant,, O. Dussurget,, K. D. Entian,, H. Fsihi,, F. Garcia-del Portillo,, P. Garrido,, L. Gautier,, W. Goebel,, N. Gómez-López,, T. Hain,, J. Hauf,, D. Jackson,, L. M. Jones,, U. Kaerst,, J. Kreft,, M. Kuhn,, F. Kunst,, G. Kurapkat,, E. Madueno,, A. Maitournam,, J. M. Vicente,, E. Ng,, H. Nedjari,, G. Nordsiek,, S. Novella,, B. de Pablos,, J. C. Pérez-Diaz,, R. Purcell,, B. Remmel,, M. Rose,, T. Schlueter,, N. Simoes,, A. Tierrez,, J. A. Vázquez-Boland,, H. Voss,, J. Wehland,, and P. Cossart. 2001. Comparative genomics of Listeria species. Science 294: 849 852.
42. Götz, M. Unpublished data.
43. González-Zorn, B.,, G. Domínguez-Bernal,, M. Suárez,, M. T. Ripio,, Y. Vega,, S. Novella,, A. Rodríguez,, I. Chico,, A. Tierrez,, and J. A. Vázquez-Boland. 2000. SmcL, a novel membrane-damaging virulence factor in Listeria. Int. J. Med. Microbiol. 290: 369 374.
44. Gouin, E.,, J. Mengaud,, and P. Cossart. 1994. The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. Infect. Immun. 62: 3550 3553.
45. Greene, S. L.,, and N. E. Freitag. 2003. Negative regulation of PrfA, the key activator of Listeria monocytogenes virulence gene expression, is dispensable for bacterial pathogenesis. Microbiology 149: 111 120.
46. Grúndling, A.,, L. S. Burrack,, H. G. Bouwer,, and D. E. Higgins. 2004. Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc. Natl. Acad. Sci. USA 101: 12318 12323.
47. Haas, A.,, K. Brehm,, J. Kreft,, and W. Goebel. 1991. Cloning, characterization, and expression in Escherichia coli of a gene encoding Listeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases. J. Bacteriol. 173: 5159 5167.
48. Herler, M. Unpublished data.
49. Herler, M.,, A. Bubert,, M. Goetz,, Y. Vega,, J. A. Vázquez-Boland,, and W. Goebel. 2001. Positive selection of mutations leading to loss or reduction of transcriptional activity of PrfA, the central regulator of Listeria monocytogenes virulence. J. Bacteriol. 183: 5562 5570.
50. Irvine, A. S.,, and J. R. Guest. 1993. Lactobacillus casei contains a member of the CRP-FNR family. Nucleic Acids Res 21: 753.
51. Jaradat, Z. W.,, J. W. Wampler,, and A. W. Bhunia. 2003. A Listeria adhesion protein-deficient Listeria monocytogenes strain shows reduced adhesion primarily to intestinal cell lines. Med. Microbiol. Immunol. (Berlin) 192: 85 91.
52. Johansson, J.,, P. Mandin,, A. Renzoni,, C. Chiaruttini,, M. Springer,, and P. Cossart. 2002. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110: 551 561.
53. Joseph, B. Unpublished data.
54. Junttila, J. R.,, S. I. Niemela,, and J. Hirn. 1988. Minimum growth temperatures of Listeria monocytogenes and non-haemolytic Listeria. J. Appl. Bacteriol. 65: 321 327.
55. Karunasagar, I.,, R. Lampidis,, W. Goebel,, and J. Kreft. 1997. Complementation of Listeria seeligeri with the plcAprfA genes from L. monocytogenes activates transcription of seeligerolysin and leads to bacterial escape from the phagosome of infected mammalian cells. FEMS Microbiol. Lett. 146: 303 310.
56. Kazmierczak, M. J.,, S. C. Mithoe,, K. J. Boor,, and M. Wiedmann. 2003. Listeria monocytogenes σ B regulates stress response and virulence functions. J. Bacteriol. 185: 5722 5734.
57. Klarsfeld, A. D.,, P. L. Goossens,, and P. Cossart. 1994. Five Listeria monocytogenes genes preferentially expressed in infected mammalian cells: plcA, purH, purD, pyrE and an arginine ABC transporter gene, arpJ. Mol. Microbiol. 13: 585 597.
58. Köhler, S.,, A. Bubert,, M. Vogel,, and W. Goebel. 1991. Expression of the iap gene coding for protein p60 of Listeria monocytogenes is controlled on the posttranscriptional level. J. Bacteriol. 173: 4668 4674.
59. Kolb, A.,, S. Busby,, H. Buc,, S. Garges,, and S. Adhya. 1993. Transcriptional regulation by cAMP and its receptor protein. Annu. Rev. Biochem. 62: 749 795.
60. Körner, H.,, H. J. Sofia,, and W. G. Zumft. 2003. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol. Rev. 27: 559 592.
61. Kreft, J.,, and J. A. Vázquez-Boland. 2001. Regulation of virulence genes in Listeria. Int. J. Med. Microbiol. 291: 145 157.
62. Kreft, J.,, J. A. Vázquez-Boland,, S. Altrock,, G. Domínguez-Bernal,, and W. Goebel. 2002. Pathogenicity islands and other virulence elements in Listeria. Curr. Top. Microbiol. Immunol. 264: 109 125.
63. Kuhn, M.,, and W. Goebel. 1989. Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect. Immun. 57: 55 61.
64. Lalic-Mülthaler, M.,, J. Bohne,, and W. Goebel. 2001. In vitro transcription of PrfA-dependent and-independent genes of Listeria monocytogenes. Mol. Microbiol. 42: 111 120.
65. Lampidis, R.,, R. Gross,, Z. Sokolovic,, W. Goebel,, and J. Kreft. 1994. The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp-Fnr family of transcription regulators. Mol. Microbiol. 13: 141 151.
66. Leimeister-Wächter, M.,, E. Domann,, and T. Chakraborty. 1992. The expression of virulence genes in Listeria monocytogenes is thermoregulated. J. Bacteriol. 174: 947 952.
67. Leimeister-Wächter, M.,, C. Haffner,, E. Domann,, W. Goebel,, and T. Chakraborty. 1990. Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 87: 8336 8340.
68. Lenz, D. H.,, K. C. Mok,, B. N. Lilley,, R. V. Kulkarni,, N. S. Wingreen,, and B. L. Bassler. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69 82.
69. Lingnau, A.,, T. Chakraborty,, K. Niebuhr,, E. Domann,, and J. Wehland. 1996. Identification and purification of novel internalin-related proteins in Listeria monocytogenes and Listeria ivanovii. Infect. Immun. 64: 1002 1006.
70. Lingnau, A.,, E. Domann,, M. Hudel,, M. Bock,, T. Nichterlein,, J. Wehland,, and T. Chakraborty. 1995. Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and -independent mechanisms. Infect. Immun. 63: 3896 3903.
71. Lorber, B. 1997. Listeriosis. Clin. Infect. Dis. 24: 1 11.
72.. Luo, Q.,, M. Herler,, S. Müller-Altrock,, and W. Goebel. 2005. Supportive and inhibitory elements of a putative PrfA-dependent promoter in Listeria monocytogenes. Mol. Microbiol. 55: 986 997.
73. Luo, Q.,, M. Rauch,, A. K. Marr,, S. Müller-Altrock,, and W. Goebel. 2004. In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA-dependent and -independent promoters that are differentially activated by GTP. Mol. Microbiol. 52: 39 52.
74. Mansfield, B. E.,, M. S. Dionne,, D. S. Schneider,, and N. E. Freitag. 2003. Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell. Microbiol. 5: 901 911.
75. Marr, A. K.,, B. Joseph,, and W. Goebel. Evidence for the possible interference of PrfA, the central regulator of L. monocytogenes virulence, with components of the catabolite repression system. Submitted for publication.
76. Mengaud, J.,, S. Dramsi,, E. Gouin,, J. A. Vázquez-Boland,, G. Milon,, and P. Cossart. 1991. Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol. Microbiol. 5: 2273 2283.
77. Merz, A. J.,, and H. N. Higgs. 2003. Listeria motility: biophysics pushes things forward. Curr. Biol. 13: R302 R304.
78. Milenbachs, A. A.,, D. P. Brown,, M. Moors,, and P. Youngman. 1997. Carbon-source regulation of virulence gene expression in Listeria monocytogenes. Mol. Microbiol. 23: 1075 1085.
79. Milenbachs Lukowiak, A.,, K. J. Mueller,, N. E. Freitag,, and P. Youngman. 2004. Deregulation of Listeria monocytogenes virulence gene expression by two distinct and semi-independent pathways. Microbiology 150: 321 333.
80. Milohanic, E.,, P. Glaser,, J. Y. Coppée,, L. Frangeul,, Y. Vega,, J. A. Vázquez-Boland,, F. Kunst,, P. Cossart,, and C. Buchrieser. 2003. Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol. Microbiol. 47: 1613 1625.
81. Milohanic, E.,, R. Jonquieres,, P. Cossart,, P. Berche,, and J. L. Gaillard. 2001. The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol. Microbiol. 39: 1212 1224.
82. Moors, M. A.,, B. Levitt,, P. Youngman,, and D. A. Portnoy. 1999. Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect. Immun. 67: 131 139.
83. Múller-Altrock, S.,, and N. Mauder. Unpublished data.
84. Nadon, C. A.,, B. M. Bowen,, M. Wiedmann,, and K. J. Boor. 2002. Sigma B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect. Immun. 70: 3948 3952.
85. Nair, S.,, E. Milohanic,, and P. Berche. 2000. ClpC ATP-ase is required for cell adhesion and invasion of Listeria monocytogenes. Infect. Immun. 68: 7061 7068.
86. Nelson, K. E.,, D. E. Fouts,, E. F. Mongodin,, J. Ravel,, R. T. DeBoy,, J. F. Kolonay,, D. A. Rasko,, S. V. Angiuoli,, S. R. Gill,, I. T. Paulsen,, J. Peterson,, O. White,, W. C. Nelson,, W. Nierman,, M. J. Beanan,, L. M. Brinkac,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, D. H. Haft,, J. Selengut,, S. Van Aken,, H. Khouri,, N. Fedorova,, H. Forberger,, B. Tran,, S. Kathariou,, L. D. Wonderling,, G. A. Uhlich,, D. O. Bayles,, J. B. Luchansky,, and C. M. Fraser. 2004. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32: 2386 2395.
87. Niu, W.,, Y. Kim,, G. Tau,, T. Heyduk,, and R. H. Ebright. 1996. Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. Cell 87: 1123 1134.
88. Park, S. F. 1994. The repression of listeriolysin O expression in Listeria monocytogenes by the phenolic beta-D-glucoside, arbutin. Lett. Appl. Microbiol. 19: 258 260.
89. Park, S. F.,, and R. G. Kroll. 1993. Expression of listeriolysin and phosphatidylinositol-specific phospholipase C is repressed by the plant-derived molecule cellobiose in Listeria monocytogenes. Mol. Microbiol. 8: 653 661.
90. Pilgrim, S.,, A. Kolb-Mäurer,, I. Gentschev,, W. Goebel,, and M. Kuhn. 2003. Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infect. Immun. 71: 3473 3484.
91. Portnoy, D. A.,, T. Chakraborty,, W. Goebel,, and P. Cossart. 1992. Molecular determinants of Listeria monocytogenes pathogenesis. Infect. Immun. 60: 1263 1267.
92. Raffelsbauer, D.,, A. Bubert,, F. Engelbrecht,, J. Scheinpflug,, A. Simm,, J. Hess,, S. H. Kaufmann,, and W. Goebel. 1998. The gene cluster inlC2DE of Listeria monocytogenes contains additional new internalin genes and is important for virulence in mice. Mol. Gen. Genet. 260: 144 158.
93. Rauch, M.,, Q. Luo,, S. Müller-Altrock,, and W. Goebel. 2005. SigB-dependent in vitro transcription of prfA and some newly identified genes of Listeria monocytogenes whose expression is affected by PrfA in vivo. J. Bacteriol. 187: 800 804.
94. Reid, S. D.,, A. G. Montgomery,, and J. M. Musser. 2004. Identification of srv, a PrfA-like regulator of group A Streptococcus that influences virulence. Infect. Immun. 72: 1799 1803.
95. Renzoni, A.,, P. Cossart,, and S. Dramsi. 1999. PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Mol. Microbiol. 34: 552 561.
96. Renzoni, A.,, A. Klarsfeld,, S. Dramsi,, and P. Cossart. 1997. Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive. Infect. Immun. 65: 1515 1518.
97. Ripio, M. T.,, K. Brehm,, M. Lara,, M. Suárez,, and J. A. Vázquez-Boland. 1997. Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors. J. Bacteriol. 179: 7174 7180.
98. Ripio, M. T.,, G. Domínguez-Bernal,, M. Lara,, M. Suárez,, and J. A. Vázquez-Boland. 1997. A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes. J. Bacteriol. 179: 1533 1540.
99. Ripio, M. T.,, G. Domínguez-Bernal,, M. Suárez,, K. Brehm,, P. Berche,, and J. A. Vázquez-Boland. 1996. Transcriptional activation of virulence genes in wild-type strains of Listeria monocytogenes in response to a change in the extracellular medium composition. Res. Microbiol. 147: 371 384.
100. Ripio, M. T.,, J. A. Vázquez-Boland,, Y. Vega,, S. Nair,, and P. Berche. 1998. Evidence for expressional crosstalk between the central virulence regulator PrfA and the stress response mediator ClpC in Listeria monocytogenes. FEMS Microbiol. Lett. 158: 45 50.
101. Rouquette, C.,, C. de Chastellier,, S. Nair,, and P. Berche. 1998. The ClpC ATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the phagosome of macrophages. Mol. Microbiol. 27: 1235 1245.
102. Rouquette, C.,, M. T. Ripio,, E. Pellegrini,, J. M. Bolla,, R. I. Tascon,, J. A. Vázquez-Boland,, and P. Berche. 1996. Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes. Mol. Microbiol. 21: 977 987.
103. Schmid, M. W.,, E. Y. W. Ng,, R. Lampidis,, M. Emmerth,, M. Walcher,, J. Kreft,, W. Goebel,, M. Wagner,, and K.-H. Schleifer. 2005. Evolutionary history of the genus Listeria and its virulence genes. Syst. Appl. Microbiol. 28: 1 18.
104. Schubert, W. D.,, and D. W. Heinz. 2003. Structural aspects of adhesion to and invasion of host cells by the human pathogen Listeria monocytogenes. ChemBioChem 4: 1285 1291.
105. Sheehan, B.,, A. Klarsfeld,, R. Ebright,, and P. Cossart. 1996. A single substitution in the putative helix-turn-helix motif of the pleiotropic activator PrfA attenuates Listeria monocytogenes virulence. Mol. Microbiol. 20: 785 797.
106. Sheehan, B.,, A. Klarsfeld,, T. Msadek,, and P. Cossart. 1995. Differential activation of virulence gene expression by PrfA, the Listeria monocytogenes virulence regulator. J. Bacteriol. 177: 6469 6476.
107. Sheehan, B.,, C. Kocks,, S. Dramsi,, E. Gouin,, A. D. Klarsfeld,, J. Mengaud,, and P. Cossart. 1994. Molecular and genetic determinants of the Listeria monocytogenes infectious process. Curr. Top. Microbiol. Immunol. 192: 187 216.
108. Shetron-Rama, L. M.,, H. Marquis,, H. G. Bouwer,, and N. E. Freitag. 2002. Intracellular induction of Listeria monocytogenes actA expression. Infect. Immun. 70: 1087 1096.
109. Shetron-Rama, L. M.,, K. Mueller,, J. M. Bravo,, H. G. Bouwer,, S. S. Way,, and N. E. Freitag. 2003. Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol. Microbiol. 48: 1537 1551.
110. Sokolovic, Z.,, J. Riedel,, M. Wuenscher,, and W. Goebel. 1993. Surface-associated, PrfA-regulated proteins of Listeria monocytogenes synthesized under stress conditions. Mol. Microbiol. 8: 219 227.
111. Spiro, S.,, and J. R. Guest. 1990. FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiol. Rev. 6: 399 428.
112. Storz, G.,, J. A. Opdyke,, and A. Zhang. 2004. Controlling mRNA stability and translation with small, noncoding RNAs. Curr. Opin. Microbiol. 7: 140 144.
113. Stritzker, J.,, J. Janda,, C. Schoen,, M. Taupp,, S. Pilgrim,, I. Gentschev,, P. Schreier,, G. Geginat,, and W. Goebel. 2004. Growth, virulence, and immunogenicity of Listeria monocytogenes aro mutants. Infect. Immun. 72: 5622-– 5629.
114. Stritzker, J.,, C. Schoen,, and W. Goebel. 2005. Enhanced synthesis of internalin A in aro mutants of Listeria monocytogenes indicates posttranscriptional control of the inlAB mRNA. J. Bacteriol. 187: 2836 2845.
115. Thirumuruhan, R.,, K. Rajashankar,, A. A. Fedorov,, T. Dodatko,, M. R. Chance,, S. C. Almo, and New York Structural Genomics Research Consortium (NYSGRC). 2003. Crystal structure of PrfA, the transcriptional regulator in Listeria monocytogenes. Protein Data Bank accession code 1OMI. http://www.rcsb.org/pdb. [Online.]
116. Vázquez-Boland, J. A.,, G. Domínguez-Bernal,, B. González-Zorn,, J. Kreft,, and W. Goebel. 2001. Pathogenicity islands and virulence evolution in Listeria. Microbes Infect. 3: 571 584.
117. Vázquez-Boland, J. A.,, M. Kuhn,, P. Berche,, T. Chakraborty,, G. Domínguez-Bernal,, W. Goebel,, B. González-Zorn,, J. Wehland,, and J. Kreft. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14: 584 640.
118. Vega, Y.,, C. Dickneite,, M. T. Ripio,, R. Böckmann,, B. González-Zorn,, S. Novella,, G. Domínguez-Bernal,, W. Goebel,, and J. A. Vázquez-Boland. 1998. Functional similarities between the Listeria monocytogenes virulence regulator PrfA and cyclic AMP receptor protein: the PrfA* (Gly145Ser) mutation increases binding affinity for target DNA. J. Bacteriol. 180: 6655 6660.
119. Vega, Y.,, M. Rauch,, M. J. Banfield,, S. Ermolaeva,, M. Scortti,, W. Goebel,, and J. A. Vázquez-Boland. 2004. New Listeria monocytogenes prfA* mutants, transcriptional properties of PrfA* proteins and structure-function of the virulence regulator PrfA. Mol. Microbiol. 52: 1553 1565.
120. Vogel, J.,, V. Bartels,, T. H. Tang,, G. Churakov,, J. G. Slagter-Jäger,, A. Húttenhofer,, and E. G. Wagner. 2003. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res. 31: 6435 6443.
121. Weber, I. T.,, and T. A. Steitz. 1987. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 A resolution. J. Mol. Biol. 198: 311 326.
122. Welch, D. F.,, C. P. Sword,, S. Brehm,, and D. Dusanic. 1979. Relationship between superoxide dismutase and pathogenic mechanisms of Listeria monocytogenes. Infect. Immun. 23: 863 872.
123. Wemekamp-Kamphuis, H. H.,, J. A. Wouters,, P. P. L. A. de Leeuw,, T. Hain,, T. Chakraborty,, and T. Abee. 2004. Identification of sigma factor σ B-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl. Environ. Microbiol. 70: 3457 3466.
124. White, M. A.,, J. C. Lee,, and R. O. Fox. 2001. Structure of Crp-Camp at 1.9 A. Protein Data Bank accession code 1I5Z. http://www.rcsb.org/pdb. [Online.]
125. Wing, E. J.,, and S. H. Gregory. 2002. Listeria monocytogenes: clinical and experimental update. J. Infect. Dis. 185(Suppl. 1): S18-– S24.
126. Wong, K. K.,, H. G. Bouwer,, and N. E. Freitag. 2004. Evidence implicating the 5′ untranslated region of Listeria monocytogenes actA in the regulation of bacterial actin-based motility. Cell. Microbiol. 6: 155 166.
127. Wong, K. K.,, and N. E. Freitag. 2004. A novel mutation within the central Listeria monocytogenes regulator PrfA that results in constitutive expression of virulence gene products. J. Bacteriol. 186: 6265 6276.
128. Wuenscher, M. D.,, S. Kohler,, A. Bubert,, U. Gerike,, and W. Goebel. 1993. The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J. Bacteriol. 175: 3491 3501.
129. Zhou, Y.,, T. J. Merkel,, and R. H. Ebright. 1994. Characterization of the activating region of Escherichia coli catabolite gene activator protein (CAP). II. Role at class I and class II CAP-dependent promoters. J. Mol. Biol.ti 243: 603 610.


Generic image for table
Table 1

Regulators specific for Listeria monocytogenes EGD-e

Sequences are from ListiList (http://genolist.pasteur.fr/ListiList/) ( ).

Citation: Goebel W, Müller-Altrock S, Kreft J. 2006. Regulation of Virulence Genes in Pathogenic Listeria spp., p 634-645. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch52

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error