1887

Chapter 16 : Vibrio

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Vibrio, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816544/9781555812928_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555816544/9781555812928_Chap16-2.gif

Abstract:

Gram-negative marine bacteria that belong to the genus are commonly found as etiological agents of disease in humans and animals. Although in some of the species a siderophore or heme-mediated mechanism of iron uptake could play an important role in virulence, additional virulence factors such as toxins, pili and flagella, hemolysins and cytolysins, lipopolysaccharide, and capsules are also required for the development of the disease. This chapter discusses siderophore and heme-mediated iron uptake systems in the vibrios and describes their roles as components of the virulence of these bacteria. It explains the anguibactin system of , the vibriobactin system of , the vulnibactin system of , and the vibrioferrin system of . Using different genes involved in heme utilization as probes against chromosomal DNA from several pathogenic vibrios, it was found that the heme iron utilization systems of , , and are similar at the DNA level to that of . Underscoring the findings at the DNA levels, it was also shown that some of the heme utilization proteins of , , and are functionally interchangeable.

Citation: Di Lorenzo M, Stork M, Alice A, López C, Crosa J. 2004. Vibrio, p 241-255. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch16
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Structures of siderophores produced by species.

Citation: Di Lorenzo M, Stork M, Alice A, López C, Crosa J. 2004. Vibrio, p 241-255. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Genetic organization of anguibactin biosynthetic genes and proposed biosynthetic pathway.

Citation: Di Lorenzo M, Stork M, Alice A, López C, Crosa J. 2004. Vibrio, p 241-255. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Genetic organization of vibriobactin biosynthetic genes and biosynthetic pathway.

Citation: Di Lorenzo M, Stork M, Alice A, López C, Crosa J. 2004. Vibrio, p 241-255. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Genetic organization of vulnibactin biosynthetic genes and proposed biosynthetic pathway.

Citation: Di Lorenzo M, Stork M, Alice A, López C, Crosa J. 2004. Vibrio, p 241-255. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Genetic organization of the different TonB system genes in , and . For , the , and genes are on chromosome 1 while the , and genes are on chromosome 2. The , and genes encode periplasmic and inner membrane proteins involved in heme transport. For , and encode periplasmic and inner membrane proteins involved in heme transport; , and encode proteins involved in heme transport; and encodes the outer membrane heme receptor. For , the (VV20362), (VV20361), (VV20360) and (VV21614), (VV21613), (VV21612), (VV21611), (VV21610), and (VV21609) genes are placed in chromosome 2. Another (VV10847) gene [together with the (VV10485) and (VV10846) genes] is placed in chromosome 1. These genes are in a putative operon with a gene that would encode an outer membrane receptor (VV10842). The numbers of the genes are from genomic sequence of the CMCP6 strain (GenBank accession numbers, AE016796 and AE016795).

Citation: Di Lorenzo M, Stork M, Alice A, López C, Crosa J. 2004. Vibrio, p 241-255. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816544.chap16
1. Actis, L. A.,, W. Fish,, J. H. Crosa,, K. Kellerman,, S. R. Ellenberger,, F. M. Hauser,, and J. Sanders- Loehr. 1986. Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775(pJM1). J. Bacteriol. 167: 57 65.
2. Aso, H.,, S. Miyoshi,, H. Nakao,, K. Okamoto,, and S. Yamamoto. 2002. Induction of an outer membrane protein of 78 kDa in Vibrio vulnificus cultured in the presence of desferrioxamine B under iron-limiting conditions. FEMS Microbiol. Lett. 212: 65 70.
3. Bang, Y. B.,, S. E. Lee,, J. H. Rhee,, and S. H. Choi. 1999. Evidence that expression of the Vibrio vulnificus hemolysin gene is dependent on cyclic AMP and cyclic AMP receptor protein. J. Bacteriol. 181: 7639 7642.
4. Braun, V. 1995. Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol. Rev. 16: 295 307.
5. Crosa, J. H. 1989. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol. Rev. 53: 517 530.
6. Crosa, J. H. 1980. A plasmid associated with virulence in the marine fish pathogen Vibrio anguillarum specifies an iron-sequestering system. Nature 284: 566 568.
7. Crosa, J. H.,, and C. T. Walsh. 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66: 223 249.
8. Fouz, B.,, R. Mazoy,, M. L. Lemos,, M. J. del Olmo,, and C. Amaro. 1996. Utilization of hemin and hemoglobin by Vibrio vulnificus biotype 2. Appl. Environ. Microbiol. 62: 2806 2810.
9. Funahashi, T.,, K. Moriya,, S. Uemura,, S. Miyoshi,, S. Shinoda,, S. Narimatsu,, and S. Yamamoto. 2002. Identification and characterization of pvuA, a gene encoding the ferric vibrioferrin receptor protein in Vibrio parahaemolyticus. J. Bacteriol. 184: 936 46.
10. Genco, C. A.,, and D. W. Dixon. 2001. Emerging strategies in microbial haem capture. Mol. Microbiol. 39: 1 11.
11. Goldberg, M. B.,, S. A. Boyko,, and S. B. Calderwood. 1990. Transcriptional regulation by iron of a Vibrio cholerae virulence gene and homology of the gene to the Escherichia coli fur system. J. Bacteriol. 172: 6863 6870.
12. Griffiths, G. L.,, S. P. Sigel,, S. M. Payne,, and J. B. Neilands. 1984. Vibriobactin, a siderophore from Vibrio cholerae. J. Biol. Chem. 259: 383 385.
13. Keating, T. A.,, C. G. Marshall,, and C. T. Walsh. 2000. Reconstitution and characterization of the Vibrio cholerae vibriobactin synthetase from VibB, VibE, VibF and VibH. Biochemistry 39: 15522 15530.
14. Köster, W. L.,, L. A. Actis,, L. S. Waldbeser,, M. E. Tolmasky,, and J. H. Crosa. 1991. Molecular characterization of the iron transport system mediated by the pJM1 plasmid in Vibrio anguillarum 775. J. Biol. Chem. 266: 23829 23833.
15. Linkous, D. A.,, and J. D. Oliver. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol. Lett. 174: 207 214.
16. Mazoy, R.,, C. R. Osorio,, A. E. Toranzo,, and M. L. Lemos. 2003. Isolation of mutants of Vibrio anguillarum defective in haeme utilisation and cloning of huvA, a gene coding for an outer membrane protein involved in the use of haeme as iron source. Arch. Microbiol. 179: 329 338.
17. Mey, A. R.,, and S. M. Payne. 2001. Haem utilization in Vibrio cholerae involves multiple TonB-dependent haem receptors. Mol. Microbiol. 42: 835 849.
18. Mey, A. R.,, E. E. Wyckoff,, A. G. Oglesby,, E. Rab,, R. K. Taylor,, and S. M. Payne. 2002. Identification of the Vibrio cholerae enterobactin receptors VctA and IrgA: IrgA is not required for virulence. Infect. Immun. 70: 3419 3426.
19. Occhino, D. A.,, E. E. Wyckoff,, D. P. Henderson,, T. J. Wrona,, and S. M. Payne. 1998. Vibrio cholerae iron transport: haem transport genes are linked to one of two sets of tonB, exbB, exbD genes. Mol. Microbiol. 29: 1493 1507.
20. Okujo, N.,, M. Saito,, S. Yamamoto,, T. Yoshida,, S. Miyoshi,, and S. Shinoda. 1994. Structure of vulnibactin, a new polyamine-containing siderophore from Vibrio vulnificus. Biometals 7: 109 116.
21. O’Malley, S. M.,, S. L. Mouton,, D. A. Occhino,, M. T. Deanda,, J. R. Rashidi,, K. L. Fuson,, C. E. Rashidi,, M. Y. Mora,, S. M. Payne,, and D. P. Henderson. 1999. Comparison of the heme iron utilization systems of pathogenic vibrios. J. Bacteriol. 181: 3594 3598.
22. Seliger, S. S.,, A. R. Mey,, A. M. Valle,, and S. M. Payne. 2001. The two TonB systems of Vibrio cholerae: redundant and specific functions. Mol. Microbiol. 39: 801 812.
23. Stork, M.,, M. Di Lorenzo,, T. J. Welch,, L. M. Crosa, and J. H. Crosa. 2002. Plasmid-mediated iron uptake and virulence in Vibrio anguillarum. Plasmid 48: 222 228.
24. Taniguchi, H.,, S. Kubomura,, H. Hirano,, K. Mizue,, M. Ogawa,, and Y. Mizuguchi. 1990. Cloning and characterization of a gene encoding a new thermostable hemolysin from Vibrio parahaemolyticus. FEMS Microbiol. Lett. 55: 339 345.
25. Wright, A. C.,, L. M. Simpson,, and J. D. Oliver. 1981. Role of iron in the pathogenesis of Vibrio vulnificus infections. Infect. Immun. 34: 503 507.
26. Wyckoff, E. E.,, A. M. Valle,, S. L. Smith,, and S. M. Payne. 1999. A multifunctional ATP-binding cassette transporter system from Vibrio cholerae transports vibriobactin and enterobactin. J. Bacteriol. 181: 7588 7596.

Tables

Generic image for table
TABLE 1

Pathogenic species

Citation: Di Lorenzo M, Stork M, Alice A, López C, Crosa J. 2004. Vibrio, p 241-255. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error