Chapter 1 : Implications of Antimicrobial Agents as Therapeutics and Growth Promoters in Food Animal Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Implications of Antimicrobial Agents as Therapeutics and Growth Promoters in Food Animal Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap01-2.gif


This chapter provides an overview of antimicrobial use in animals and of the rise of antimicrobial resistance (AMR) in commensal bacteria and zoonotic agents. It demonstrates the need for alternatives to antimicrobial agents, such as bacteriophages, to preserve the safety of human food and to control the spread of zoonotic agents from animals to humans. The families of antimicrobial agents and many of the actual active substances used in farm animals and human medicine are the same. Among pathogenic from swine and poultry in North America, resistance frequencies between 20 and 100% for important antimicrobial agents used in therapy and prevention, such as apramycin, neomycin, gentamicin, tetracycline, and trimethoprim-sulfonamide, can be observed. Thus, besides strategies to reduce resistance levels for existing antimicrobial agents, truly new molecules, not just modifications of existing molecules with slightly different activity spectra or pharmacokinetics, would be needed to circumvent this resistance problem. In the meanwhile, there are strong trends in the farming industry to use even more-potent classes of antimicrobial agents, with the potential consequence of contributing to eroding the health system's power to treat human infections. The transfer of resistant zoonotic agents from animals to humans nevertheless remains an overwhelming reality, and both the prudent use of antimicrobial agents and the development of alternatives to antimicrobial agents to reduce the frequency of AMR and to treat infections with resistant organisms should be strongly encouraged. Alternatives to antimicrobial agents are needed to sustain growth promotion and control infectious diseases.

Citation: Boerlin P. 2010. Implications of Antimicrobial Agents as Therapeutics and Growth Promoters in Food Animal Production, p 1-9. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Aarestrup, F. M. 2005. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic Clin. Pharmacol. Toxicol. 96: 271281.
2. Aarestrup, F. M.,, H. Hasman,, I. Olsen, and, G. Sørensen. 2004. International spread of bla CMY-2-mediated cephalosporin resistance in a multiresistant Salmonella enterica serovar Heidelberg isolate stemming from the importation of a boar by Den mark from Canada. Antimicrob. Agents Chemother. 48: 19161917.
3. Aarestrup, F. M.,, A. M. Seyfarth,, H. D. Emborg,, K. Pedersen,, R. S. Hendriksen, and, F. Bager. 2001. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Chemother. 45: 20542059.
4. Angulo, F. J.,, V. N. Nargund, and, T. C. Chiller. 2004. Evidence of an association between use of anti-microbial agents in food animals and antimicrobial resistance among bacteria isolated from humans and human health consequences of such resistance. J. Vet. Med. B 51: 374379.
5. Bager, F.,, F. M. Aarestrup,, M. Madsen, and, H. C. Wegener. 1999. Glycopeptide resistance in Enterococcus faecium from broilers and pigs following discontinued use of avoparcin. Microb. Drug Resist. 5: 5356.
6. Bartholomew, M.J.,, D.J. Vose,, L. R. Tollefson, and, C. C. Travis. 2005. A linear model for managing the risk of antimicrobial resistance originating in food animals. Risk Anal. 25: 99108.
7. Barza, M. 2002. Potential mechanisms of increased disease in humans from antimicrobial resistance in food animals. Clin. Infect. Dis. 34( Suppl. 3): S123S125.
8. Barza, M., and, K. Travers. 2002. Excess infections due to antimicrobial resistance: the “attributable fraction.” Clin. Infect. Dis. 34( Suppl. 3): S126S130.
9. Benchaar, C.,, S. Calsamiglia,, A. V. Chaves,, G. R. Fraser,, D. Colombatto,, T. A. McAllister, and, K. A. Beauchemin. 2008. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 145: 209228.
10. Bengtsson, B., and, M. Wierup. 2006. Antimicrobial resistance in Scandinavia after a ban of antimicrobial growth promoters. Anim. Biotechnol. 17: 147156.
11. Bennett, P. M. 2008. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 153( Suppl. 1): S347S357.
12. Boerlin, P., and, R. J. Reid-Smith. 2008. Antimicrobial resistance: its emergence and transmission. Anim. Health Res. Rev. 9: 115126.
13. Boerlin, P.,, R. M. Travis,, C. L. Gyles,, R. Reid-Smith,, N. Janecko,, H. Lim,, V. Nicholson,, S. A. McEwen,, R. Friendship, and, M. Archambault. 2005. Antimicrobial resistance and virulence genes of Escherichia coli from swine in Ontario. Appl. Environ. Microbiol. 71: 67536761.
14. Cabello, F. C. 2006. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ. Microbiol. 8: 11371144.
15. Callaway, T. R.,, R. C. Anderson,, T. S. Edrington,, K. J. Genovese,, R. B. Harvey,, T. L. Poole, and, D. J. Nisbet. 2004. Recent preharvest supplementation strategies to reduce carriage and shedding of zoonotic enteric bacterial pathogens in food animals. Anim. Health Res. Rev. 5: 3547.
16. Canton, R. 2009. Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin. Microbiol. Infect. 15( Suppl. 1): 2025.
17. Chalmers, G.,, H. L. Bruce,, D. B. Hunter,, V. R. Parreira,, R. R. Kulkarni,, Y. F. Jiang,, J. F. Prescott, and, P. Boerlin. 2008a. Multilocus sequence typing analysis of Clostridium perfringens isolates from necrotic enteritis outbreaks in broiler chicken populations. J. Clin. Microbiol. 46: 39573964.
18. Chalmers, G.,, S. W. Martin,, D. B. Hunter,, J. F. Prescott,, L. J. Weber, and, P. Boerlin. 2008b. Genetic diversity of Clostridium perfringens isolated from healthy broiler chickens at a commercial farm. Vet. Microbiol. 127: 116127.
19. Chopra, I.,, A. J. O’Neill, and, K. Miller. 2003. The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist. Updates 6: 137145.
20. Coast, J., and, R. D. Smith. 2003. Antimicrobial resistance: cost and containment. Expert Rev. Anti Infect. Ther. 1: 241251.
21. Cox, L. A. 2005. Some limitations of a proposed linear model for antimicrobial risk management. Risk Anal. 25: 13271332.
22. Cox, L. A., and, D. A. Popken. 2004. Quantifying human health risks from virginiamycin used in chicken. Risk Anal. 24: 271288.
23. Cromwell, G. L. 2002. Why and how antibiotics are used in swine production. Anim. Biotechnol. 13: 727.
24. Davies, J. 1994. Inactivation of antibiotics and the dissemination of resistance genes. Science 264: 375382.
25. D’Costa, V. M.,, E. Griffiths, and, G. D. Wright. 2007. Expanding the soil antibiotic resistome: exploring environmental diversity. Curr. Opin. Microbiol. 10: 481498.
26. Fey, P. D.,, T. J Safranek,, M. E. Rupp,, E. F. Dunne,, E. Ribot,, P. C. Iwen,, P. A. Bradford,, F. J. Angulo, and, S. H. Hinrichs. 2000. Ceftriaxone-resistant Salmonella infection acquired by a child from cattle. N. Engl. J. Med. 342: 12421249.
27. Fidler, D. P. 1998. Legal issues associated with antimicrobial drug resistance. Emerg. Infect. Dis. 4: 169177.
28. Fidler, D. P. 1999. Legal challenges posed by the use of antimicrobials in food animal production. Microbes Infect. 1: 2938.
29. Foster, P. L. 2007. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 42: 373397.
30. Gallois, M., and, I. P. Oswald. 2008. Immunomodulators as efficient alternatives to in-feed antimicrobial in pig production. Archiva Zootehnica 11: 1532.
31. Government of Canada. 2007. Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) 2005. Public Health Agency of Canada, Guelph, Ontario, Canada.
32. Government of Canada. 2009. Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) 2006. Public Health Agency of Canada, Guelph, Ontario, Canada.
33. Graham, J. P.,, J. J. Boland, and, E. Silbergeld. 2007. Growth promoting antibiotics in food animal production: an economic analysis. Public Health Rep. 122: 7987.
34. Grave, K.,, V. F. Jensen,, S. McEwen, and, H. Kruse. 2006. Monitoring of antimicrobial drug usage in animals: methods and applications, p. 375395. In F. M. Aarestrup (ed.), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC.
35. Grugel, C., and, J. Wallmann. 2004. Antimicrobial resistance in bacteria from food-producing animals. Risk management tools and strategies. J. Vet. Med. B 51: 419421.
36. Gupta, A.,, J. M. Nelson,, T. J. Barrett,, R. V. Tauxe,, S. P. Rossiter,, C. R. Friedman,, K. W. Joyce,, K. E. Smith,, T. F. Jones,, M. A. Hawkins,, B. Shiferaw,, J. L. Beebe,, D. J. Vugia,, T. Rabatsky,, J. A. Benson,, T. P. Root, and, F. J. Angulo. 2004. Antimicrobial resistance among Campylobacter strains, United States, 1997—2001. Emerg. Infect. Dis. 10: 11021109.
37. Hummel, R.,, H. Tschäpe, and, W. Witte. 1986. Spread of plasmid-mediated nourseothricin resistance due to antibiotic use in animal husbandry. J. Basic Microbiol. 26: 461466.
38. Klare, I.,, D. Badstübner,, C. Konstabel,, G. Böhme,, H. Claus, and, W. Witte. 1999. Decreased incidence of VanA-type vancomycin-resistant enterococci isolated from poultry meat and from fecal samples of humans in the community after discontinuation of avoparcin usage in animal husbandry. Microb. Drug Resist. 5: 4552.
39. Kozak, G. K.,, D. L. Pearl,, J. Parkman,, R. J. Reid-Smith,, A. Deckert, and, P. Boerlin. 2009. Distribution of sulfonamide resistance genes in Escherichia coli and Salmonella isolates from swine and chickens at abattoirs in Ontario and Québec, Canada. Appl. Environ. Microbiol. 75: 59996001.
40. Lawrence, T. L. J., and, V. R. Fowler. 2002. ‘Growth promoters,’ performance enhancers, feed additives and alternative approaches, p. 320329. In T. L. J. Lawrence and, V. R. Fowler (ed.), Growth of Farm Animals. CABI Publishing, Wallingford, United Kingdom.
41. Martínez, J. L., and, F. Baquero. 2002. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin. Microbiol. Rev. 15: 647679.
42. Maynard, C.,, J. M. Fairbrother,, S. Bekal,, F. Sanschagrin,, R. C. Levesque,, R. Brousseau,, L. Masson,, S. Larivière, and, J. Harel. 2003. Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149:K91 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother. 47: 32143221.
43. McDermott, P. F.,, S. M. Bodeis,, L. L. English,, D. G. White,, R. D. Walker,, S. Zhao,, S. Simjee, and, D. D. Wagner. 2002. Ciprofloxacin resistance in Campylobacter jejuni evolves rapidly in chickens treated with fluoroquinolones. J. Infect. Dis. 185: 837840.
44. Miller, G. Y.,, P. E. McNamara, and, R. S. Singer. 2006. Stakeholder position paper: economist’s perspectives on antibiotic use in animals. Prev. Vet. Med. 73: 163168.
45. Mølbak, K. 2004. Spread of resistant bacteria and resistance genes from animals to humans—the public health consequences. J. Vet. Med. B 51: 364369.
46. Mulvey, M. R.,, E. Susky,, M. McCracken,, D. W. Morck, and, R. R. Read. 2009. Similar cefoxitin-resistance plasmids circulating in Escherichia coli from human and animal sources. Vet. Microbiol. 134: 279287.
47. Norrby, S. R.,, C. E. Nord, and, R. Finch. 2005. Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect. Dis. 5: 115119.
48. Prescott, J. F. 2008. Antimicrobial use in food and companion animals. Anim. Health Res. Rev. 9: 127133.
49. Quintavalla, F., and, A. Agostini. 2007. Zinc oxide: an interesting alternative in swine management. Large Anim. Rev. 13: 2126.
50. Sarmah, A. K.,, M. T. Meyer, and, A. B. A. Boxall. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65: 725759.
51. Silbergeld, E. K.,, J. Graham, and, L. B. Price. 2008. Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Public Health 29: 151169.
52. Travers, K., and, M. Barza. 2002. Morbidity of infections caused by antimicrobial-resistant bacteria. Clin. Infect. Dis. 34( Suppl. 3): S131S134.
53. Travis, R. M.,, C. L. Gyles,, R. Reid-Smith,, C. Poppe,, S. A. McEwen,, R. Friendship,, N. Janecko, and, P. Boerlin. 2006. Chloramphenicol and kanamycin resistance among porcine Escherichia coli in Ontario. J. Antimicrob. Chemother. 58: 173177.
54. van den Bogaard, A. E., and, E. E. Stobberingh. 2000. Epidemiology of resistance to antibiotics. Links between animals and humans. Int. J. Antimicrob. Agents 14: 327335.
55. van den Bogaard, A. E.,, N. Bruinsma, and, E. E. Stobberingh. 2000. The effect of banning avoparcin on VRE carriage in The Netherlands. J. Antimicrob. Chemother. 46: 145153.
56. Wassenaar, T. M. 2005. Use of antimicrobial agents in veterinary medicine and implications for human health. Crit. Rev. Microbiol. 31: 155169.
57. Webster, P. 2009. Poultry, politics, and antibiotic resistance. Lancet 374: 773774.
58. Wegener, H. C.,, F. M. Aarestrup,, L. B. Jensen,, A. M. Hammerum, and, F. Bager. 1999. Use of antimicrobial growth promoters in food animals and Enterococcus faecium resistance to therapeutic antimicrobial drugs in Europe. Emerg. Infect. Dis. 5: 329335.
59. Winokur, P. L.,, A. Brueggemann,, D. L. De-Salvo,, L. Hoffmann,, M. D. Apley,, E. K. Uhlenhopp,, M. A. Pfaller, and, G. V. Doern. 2000. Animal and human multidrug-resistant, cephalosporin-resistant Salmonella isolates expressing a plasmid-mediated CMY-2 AmpC β-lactamase. Antimicrob. Agents Chemother. 44: 27772783.
60. Winokur, P. L.,, D. L. Vonstein,, L. J. Hoffman,, E. K. Uhlenhopp, and, G. V. Doern. 2001. Evidence for transfer of CMY-2 AmpC β-actamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. Antimicrob. Agents Chemother. 45: 27162722.
61. Zhao, S.,, J. J. Maurer,, S. Hubert,, J. F. De Villena,, P. F. McDermott,, J. Meng., S. Ayers,, L. English, and, D. G. White. 2005. Antimicrobial susceptibility and molecular characterization of avian pathogenic Escherichia coli isolates. Vet. Micro-biol. 107: 215224.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error