Chapter 3 : Phage-Based Methods for the Detection of Bacterial Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Phage-Based Methods for the Detection of Bacterial Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap03-2.gif


Bacteriophages can be used in a variety of ways to detect bacteria. The technique of combining conductance measurement and phage lysis has been shown to be an effective way of screening for the presence of in skimmed milk powder, egg powder, cocoa powder, and various chocolate products showed that a number of bacterial pathogens could be detected in dairy products by monitoring changes in the impedance of selective media in the presence and absence of host-specific bacteriophage. Combining the plaque polymerase chain reaction (PCR) technique with the phage-based detection assay allowed the rapid and specific detection of viable subsp. (MAP) in milk samples in just 48 h. Molecular mimicry occurs between the polysialic acid polysaccharide of bacterial pathogens causing sepsis and meningitis, and the carbohydrate units of the neural cell adhesion molecule. The most researched application of bacteriophages for the detection of bacterial pathogens has involved their use as transducing agents to deliver genes whose products can generate a measurable signal. Most transducing phage detection assays have employed bacterial luciferase (lux) or firefly luciferase (luc) genes as the reporter systems. The majority of reporter phage testing to determine antibiotic susceptibility has centered on the mycobacteria. Phage-based diagnostic technologies are still in their infancy; although they were first seriously proposed over 30 years ago. The research described in this chapter suggests that rapid, reliable, and sensitive methods for the phage-based detection of bacterial pathogens are possible, but these technologies have not been widely accepted.

Citation: Griffiths M. 2010. Phage-Based Methods for the Detection of Bacterial Pathogens, p 31-59. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Aalto, J.,, S. Pelkonen,, H. Kalimo, and, J. Finne. 2001. Mutant bacteriophage with non-catalytic endosialidase binds to both bacterial and eukaryotic polysialic acid and can be used as probe for its detection. Glycoconj. J. 18: 751758.
2. Albay, A.,, O. Kisa,, O. Baylan, and, L. Doganci. 2003. The evaluation of FAST PlaqueTB™ test for the rapid diagnosis of tuberculosis. Diagn. Microbiol. Infect. Dis. 46: 211215.
3. Albert, H.,, A. P. Trollip,, K. Linley,, C. Abrahams,, T. Seaman, and, R. J. Mole. 2007. Development of an antimicrobial formulation for control of specimen-related contamination in phage-based diagnostic testing for tuberculosis. J. Appl. Microbiol. 103: 892899.
4. Albert, H.,, A. P. Trollip,, R. J. Mole,, S. J. B. Hatch, and, L. Blumberg. 2002. Rapid indication of multidrug-resistant tuberculosis from liquid cultures using FASTPlaqueTB-RIF TM, a manual phage-based test. Int. J. Tuberc. Lung Dis. 6: 523528.
5. Alimova, A.,, A. Katz,, R. Podder,, G. Minko,, H. Wei,, R. R. Alfano, and, P. Gottlieb. 2004. Virus particles monitored by fluorescence spectroscopy: a potential detection assay for macromolecular assembly. Photochem. Photobiol. 80: 4146.
6. Almeida, P. E.,, R. C. C. Almeida,, T. C. F. Barbalho,, C. G. Melo,, A. O. Almeida,, E. R. Magalhaes,, I. C. Oliveira, and, E. Hofer. 2003. Development of protocols for the bacteriophage amplification assay for rapid, quantitative and sensitive detection of viable Listeria cells, abstr.P-052. Abstr. 103rd Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
7. Altic, L. C.,, M. T. Rowe, and, I. R. Grant. 2007. UV light inactivation of Mycobacterium avium subsp. paratuberculosis in milk as assessed by FASTPlaqueTB phage assay and culture. Appl. Environ. Microbiol. 73: 37283733.
8. Alvarez, S. D.,, M. P. Schwartz,, B. Migliori,, C. U. Rang,, L. Chao, and, M. J. Sailor. 2007. Using a porous silicon photonic crystal for bacterial cell-based biosensing. Physica Status Solidi A Appl. Mater. Sci. 204: 14391443.
9. Auman, B. D.,, N. G. Bright,, L. J. Mauer, and, B. M. Applegate, Sr. 2003. Development of a bioluminescent assay for the high throughput screening of virucidal activity, abstr.P-103. Abstr. 103rd Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
10. Awais, R.,, H. Fukudomi,, K. Miyanaga,, H. Unno, and, Y. Tanji. 2006. A recombinant bacteriophage-based assay for the discriminative detection of culturable and viable but nonculturable Escherichia coli O157:H7. Biotechnol. Prog. 22: 853859.
11. Ayer, S.,, W. X. Zhao, and, C. E. Davis. 2008. Differentiation of proteins and viruses using pyrolysis gas chromatography differential mobility spectrometry (PY/GC/DMS) and pattern recognition. IEEE Sens. J. 8: 15861592.
12. Bange, A.,, J. Tu, X. S. Zhu,, C. Ahn,, H. B. Halsall, and, W. R. Heineman. 2007. Electrochemical detection of MS2 phage using a bead-based immunoassay and a NanolDA. Electroanalysis 19: 22022207.
13. Bennett, A. R.,, F. G. C. Davids,, S. Vlahodimou,, J. G. Banks, and, R. P. Betts. 1997. The use of bacteriophage-based systems for the separation and concentration of Salmonella. J. Appl. Microbiol. 83: 259265.
14. Bi, Q.,, X. D. Cen,, W. J. Wang,, X. S. Zhao,, X. Wang,, T. Shen, and, S. G. Zhu. 2007. A protein microarray prepared with phage-displayed antibody clones. Biosens. Bioelectron. 22: 32783282.
15. Binetti, A. G.,, B. del Rio,, M. Cruz-Martin, and, M. A. Alvarez. 2005. Detection and characterization of Streptococcus thermophilus bacteriophages by use of the antireceptor gene sequence. Appl. Environ.Microbiol. 71: 60966103.
16. Birmele, M.,, S. Ripp,, P. Jegier,, M. S. Roberts,, G. Sayler, and, J. Garland. 2008. Characterization and validation of a bioluminescent bioreporter for the direct detection of Escherichia coli. J. Microbiol. Methods 75: 354356.
17. Blasco, R.,, M. J. Murphy,, M. F. Sanders, and, D. J. Squirrell. 1998. Specific assays for bacteria using phage mediated release of adenylate kinase. J. Appl. Microbiol. 84: 661666.
18. Block, T.,, R. Miller,, R. Korngold, and, D. Jungkind. 1989. A phage-linked immunoabsorbent system for the detection of pathologically relevant antigens. BioTechniques 7: 756761.
19. Brigati, J. R.,, S. A. Ripp,, C. M. Johnson,, P. A. Iakova,, P. Jegier, and, G. S. Sayler. 2007. Bacteriophage-based bioluminescent bioreporter for the detection of Escherichia coli O157:H7. J. Food Prot. 70: 13861392.
20. Bright, N. G.,, R. J. Carroll, and, B. M. Applegate. 2002. Filter based assay for pathogen detection using a two component bacteriophage/bioluminescent reporter system, abstr.P-304. Abstr. 102nd Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
21. Brussaard, C. P. D. 2009. Enumeration of bacteriophages using flow cytometry. Methods Mol. Biol. 501: 97111.
22. Bunina, V. D.,, O. V. Ignatov,, O. I. Guliy,, I. S. Zaitseva,, D. O’Nell, and, D. Ivnitski. 2004. Electrooptical analysis of the Escherichia coli-phage interaction. Anal. Biochem. 328: 181186.
23. Cademartiri, R.,, H. Anany,, I. Gros,, R. Bhayani,, M. Griffiths, and, M. A. Brook. 2010. Immobilization of bacteriophages on modified silica particles. Biomaterials 31: 19041910.
24. Carminati, D., and, E. Neviani. 1991. Application of the conductance measurement technique for detection of Streptococcus salivarius ssp. thermophilus phages. J. Dairy Sci. 74: 14721476.
25. Carriere, C.,, P. F. Riska,, O. Zimhony,, J. Kriakov,, S. Bardarov,, J. Burns,, J. Chan, and, W. R. Jacobs. 1997. Conditionally replicating luciferase reporter phages: improved sensitivity for rapid detection and assessment of drug susceptibility of Mycobacterium tuberculosis. J. Clin. Microbiol. 35: 32323239.
26. Chang, T. C.,, H. C. Ding, and, S. W. Chen. 2002. A conductance method for the identification of Escherichia coli O157:H7 using bacteriophage AR1. J. Food Prot. 65: 1217.
27. Chatterjee, S.,, M. Mitra, and, S. K. Das Gupta. 2000. A high yielding mutant of mycobacteriophage L1 and its application as a diagnostic tool. FEMS Microbiol. Lett. 188: 4753.
28. Chen, J., and, M. W. Griffiths. 1996. Salmonella detection in eggs using Lux + bacteriophages. J. Food Prot. 59: 908914.
29. Crane, D. D.,, L. D. Martin, and, D. C. Hirsh. 1984. Detection of Salmonella in feces by using Felix-01 bacteriophage and high-performance liquid-chromatography. J. Microbiol. Methods 2: 251256.
30. Craven, J.,, L. Goodridge,, A. Hill, and, M. Griffiths. 2006. PCR detection of lactococcal bacteriophages in milk. Milchwissenschaft 61: 382385.
31. Cruz-Martin, M.,, B. del Rio,, N. Martinez,, A. H. Magadan, and, M. A. Alvarez. 2008. Fast real-time polymerase chain reaction for quantitative detection of Lactobacillus delbrueckii bacteriophages in milk. Food Microbiol. 25: 978982.
32. Dadarwal, R.,, A. Namvar,, D. F. Thomas,, J. C. Hall, and, K. Warriner. 2009. Organic conducting polymer electrode based sensors for detection of Salmonella infecting bacteriophages. Mater. Sci. Eng. C Biomim. Supramol. Syst. 29: 761765.
33. de Siqueira, R. S.,, C. E. R. Dodd, and, C. E. D. Rees. 2003. Phage amplification assay as rapid method for Salmonella detection. Braz.J. Microbiol. 34: 118120.
34. de Siqueira, R. S.,, C. E. R. Dodd, and, C. E. D. Rees. 2006. Evaluation of the natural virucidal activity of teas for use in the phage amplification assay. Int. J. Food Microbiol. 111: 259262.
35. Dobozi-King, M.,, S. Seo,, J. U. Kim,, R. Young,, M. Cheng, and, L. B. Kish. 2005. Rapid detection and identification of bacteria: SEnsing of Phage-Triggered Ion Cascade (SEPTIC). J. Biol. Phys. Chem. 5: 37.
36. Dultsev, F. N.,, R. E. Speight,, M. T. Florini,, J. M. Blackburn,, C. Abell,, V. P. Ostanin, and, D. Klenerman. 2001. Direct and quantitative detection of bacteriophage by “hearing” surface detachment using a quartz crystal microbalance. Anal. Chem. 73: 39353939.
37. Edelman, D. C., and, J. Barletta. 2003. Real-time PCR provides improved detection and titer determination of bacteriophage. BioTechniques 35: 368375.
38. Edgar, R.,, M. McKinstry,, J. Hwang,, A. B. Oppenheim,, R. A. Fekete,, G. Giulian,, C. Merril,, K. Nagashima, and, S. Adhya. 2006. Highsensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc. Natl. Acad. Sci. USA 103: 48414845.
39. Favrin, S. J.,, S. A. Jassim, and, M. W. Griffiths. 2001. Development and optimization of a novel immunomagnetic separation-bacteriophage assay for detection of Salmonella enterica serovar Enteritidis in broth. Appl. Environ. Microbiol. 67: 217224.
40. Favrin, S. J.,, S. A. Jassim, and, M. W. Griffiths. 2003. Application of a novel immunomagnetic separation-bacteriophage assay for the detection of Salmonella enteritidis and Escherichia coli O157:H7 in food. Int. J. Food Microbiol. 85: 6371.
41. Foddai, A.,, C. T. Elliott, and, I. R. Grant. 2009. Optimization of a phage amplification assay to permit accurate enumeration of viable Mycobacterium avium subsp. paratuberculosis cells. Appl. Environ. Microbiol. 75: 38963902.
42. Fu, L. L.,, S. Q. Li,, K. W. Zhang,, I. H. Chen,, V. A. Petrenko, and, Z. Y. Cheng. 2007. Magnetostrictive microcantilever as an advanced transducer for biosensors. Sensors 7: 29292941.
43. Fujinami, Y.,, Y. Hirai,, I. Sakai,, M. Yoshino, and, J. Yasuda. 2007. Sensitive detection of Bacillus anthracis using a binding protein originating from gamma-phage. Microbiol. Immunol. 51: 163169.
44. Funatsu, T.,, T. Taniyama,, T. Tajima,, H. Tadakuma, and, H. Namiki. 2002. Rapid and sensitive detection method of a bacterium by using a GFP reporter phage. Microbiol. Immunol. 46: 365369.
45. Gabig-Ciminska, M.,, M. Los,, A. Holmgren,, J. Albers,, A. Czyz,, R. Hintsche,, G. Wegrzyn, and, S. O. Enfors. 2004. Detection of bacteriophage infection and prophage induction in bacterial cultures by means of electric DNA chips. Anal. Biochem. 324: 8491.
46. Gervals, L.,, M. Gel,, B. Allain,, M. Tolba,, L. Brovko,, M. Zourob,, R. Mandeville,, M. Griffiths, and, S. Evoy. 2007. Immobilization of biotinylated bacteriophages on biosensor surfaces. Sens. Actuators B Chem. 125: 615621.
47. Goeller, L. J., and, M. R. Riley. 2007. Discrimination of bacteria and bacteriophages by Raman spectroscopy and surface-enhanced Raman spectroscopy. Appl. Spectrosc. 61: 679685.
48. Goodridge, L.,, J. Chen, and, M. Griffiths. 1999a. Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157:H7. Appl. Environ. Microbiol. 65: 13971404.
49. Goodridge, L.,, J. Chen, and, M. Griffiths. 1999b. The use of a fluorescent bacteriophage assay for detection of Escherichia coli O157:H7 in inoculated ground beef and raw milk. Int. J. Food Microbiol. 47: 4350.
50. Goodridge, L., and, M. Griffiths. 2002. Reporter bacteriophage assays as a means to detect food-borne pathogenic bacteria. Food Res. Int. 35: 863870.
51. Griffiths, M. W. 1996. The role of ATP bioluminescence in the food industry: new light on old problems. Food Technol. 50: 6272.
52. Griffiths, M. W. 2000. How novel methods can help discover more information about foodborne pathogens. Can. J. Infect. Dis. 11: 142153.
53. Guan, J. W.,, M. Chan,, B. Allain,, R. Mandeville, and, B. W. Brooks. 2006. Detection of multiple antibiotic-resistant Salmonella enterica serovar Typhimurium DT104 by phage replication-competitive enzyme-linked immunosorbent assay. J. Food Prot. 69: 739742.
54. Gulig, P. A.,, J. L. Martin,, H. G. Messer,, B. L. Deffense, and, C. J. Harpley. 2008. Phage display methods for detection of bacterial pathogens, p. 755783. In M. Zourob,, S. Elwary, and, A. Turner (ed.), Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY.
55. Guntupalli, R.,, I. Sorokulova,, A. Krumnow,, O. Pustovyy,, E. Olsen, and, V. Vodyanoy. 2008. Real-time optical detection of methicillin-resistant Staphylococcus aureus using lytic phage probes. Biosens. Bioelectron. 24: 151154.
56. Hagens, S., and, M. J. Loessner. 2007. Application of bacteriophages for detection and control of foodborne pathogens. Appl. Microbiol. Biotechnol. 76: 513519.
57. Hennes, K. P., and, C. A. Suttle. 1995. Direct counts of viruses in natural waters and laboratory cultures by epifluorescence microscopy. Limnol. Oceanogr. 40: 10501055.
58. Hennes, K. P.,, C. A. Suttle, and, A. M. Chan. 1995. Fluorescently labeled virus probes show that natural virus populations can control the structure of marine microbial communities. Appl. Environ. Microbiol. 61: 36233627.
59. Hirsh, D. C., and, L. D. Martin. 1983a. Detection of Salmonella spp. in milk by using Felix-O1 bacteriophage and high-pressure liquid chromatography. Appl. Environ. Microbiol. 46: 12431245.
60. Hirsh, D. C., and, L. D. Martin. 1983b. Rapid detection of Salmonella spp.by using Felix-O1 bacteriophage and high-performance liquid chromatography. Appl. Environ. Microbiol. 45: 260264.
61. Hirsh, D. C., and, L. D. Martin. 1984. Rapid detection of Salmonella in certified raw milk by using charge-modified filters and Felix-O1 bacteriophage. J. Food Prot. 47: 388390.
62. Irwin, P.,, A. Gehring,, I. T. Shu,, J. Brewster,, J. Fanelli, and, E. Ehrenfeld. 2000. Minimum detectable level of salmonellae using a binomial-based bacterial ice nucleation detection assay (BIND®). J. AOAC Int. 83: 10871095.
63. Jacobs, W. R. J.,, R. G. Barletta,, R. Udani,, J. Chan,, G. Kalkut,, G. Sosne,, T. Kieser,, G. J. Sarkis,, G. F. Hatfull, and, B. R. Bloom. 1993. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260: 819822.
64. Jassim, S. A. A., and, M. W. Griffiths. 2007. Evaluation of a rapid microbial detection method via phage lytic amplification assay coupled with live/dead fluorochromic stains. Lett. Appl. Microbiol. 44: 673678.
65. Jia, Y. F.,, M. Qin,, H. K. Zhang,, W. C. Niu,, X. Li,, L. K. Wang,, Y. P. Bai,, Y. J. Cao, and, X. Z. Feng. 2007. Label-free biosensor: a novel phage-modified light addressable potentiometric sensor system for cancer cell monitoring. Biosens. Bioelectron. 22: 32613266.
66. Johnson, M. L.,, J. H. Wan,, S. C. Huang,, Z. Y. Cheng,, V. A. Petrenko,, D. J. Kim,, I. H. Chen,, J. M. Barbaree,, J. W. Hong, and, B. A. Chin. 2008. A wireless biosensor using microfabricated phage-interfaced magnetoelastic particles. Sens. Actuators A Phys. 144: 3847.
67. Kalantri, S.,, M. Pai,, L. Pascopella,, L. Riley, and, A. Reingold. 2005. Bacteriophage-based tests for the detection of Mycobacterium tuberculosis in clinical specimens: a systematic review and meta-analysis. BMC Infect. Dis. 5: 59.
68. Kim, S.,, B. Schuler,, A. Terekhov,, J. Auer,, L. J. Mauer,, L. Perry, and, B. Applegate. 2009. A bioluminescence-based assay for enumeration of lytic bacteriophage. J. Microbiol. Methods 79: 1822.
69. Kodikara, C. P.,, H. H. Crew, and, G. S. A. B. Stewart. 1991. Near on-line detection of enteric bacteria using lux recombinant bacteriophage. FEMS Microbiol. Lett. 83: 261265.
70. Kremser, L.,, D. Blaas, and, E. Kenndler. 2009. Virus analysis using electromigration techniques. Electrophoresis 30: 133140.
71. Kretzer, J. W.,, R. Lehmann,, M. Schmelcher,, M. Banz,, K. P. Kim,, C. Korn, and, M. J. Loessner. 2007. Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl. Environ. Microbiol. 73: 19922000.
72. Kuhn, J.,, M. Suissa,, J. Wyse,, I. Cohen,, I. Weiser,, S. Reznick,, S. Lubinsky-Mink,, G. Stewart, and, S. Ulitzur. 2002. Detection of bacteria using foreign DNA: the development of a bacteriophage reagent for Salmonella. Int. J. Food Microbiol. 74: 229238.
73. Kuhn, J. C. 2007. Detection of Salmonella by bacteriophage Felix 01. Methods Mol. Biol. 394: 2137.
74. Kutin, R. K.,, A. Alvarez, and, D. M. Jenkins. 2009. Detection of Ralstonia solanacearum in natural substrates using phage amplification integrated with real-time PCR assay. J. Microbiol. Methods 76: 241246.
75. Lakshmanan, R. S.,, R. Guntupalli,, J. W. Hong,, D. J. Kim,, Z. Y. Cheng,, V. A. Petrenko,, J. M. Barbaree, and, B. A. Chin. 2008. Selective detection of Salmonella Typhimurium in the presence of high concentrations of masking bacteria. Sens. Instrum. Food Qual. Saf. 2: 234239.
76. Lakshmanan, R. S.,, R. Guntupalli,, J. Hu,, D. J. Kim,, V. A. Petrenko,, J. M. Barbaree, and, B. A. Chin. 2007a. Phage immobilized magnetoelastic sensor for the detection of Salmonella typhimurium. J. Microbiol. Methods 71: 5560.
77. Lakshmanan, R. S.,, R. Guntupalli,, J. Hu,, V. A. Petrenko,, J. M. Barbaree, and, B. A. Chin. 2007b. Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetoelastic sensor. Sens. Actuators B Chem. 126: 544550.
78. Lee, S. H.,, M. Onuki,, H. Satoh, and, T. Mino. 2006. Isolation, characterization of bacteriophages specific to Microlunatus phosphovorus and their application for rapid host detection. Lett. Appl. Microbiol. 42: 259264.
79. Li, Z.,, M. Tolba,, M. Griffiths, and, T. G. van de Ven. 2010. Effect of unassembled phage protein complexes on the attachment to cellulose of genetically modified bacteriophages containing cellulose binding modules. Colloids Surf. B Biointerf. 76: 529534.
80. Loessner, M. 2005a. The enemy’s enemy is our friend: phageborne tools for detection and control of foodborne pathogens. Mitt. Lebensmittelunters. Hyg. 96: 3038.
81. Loessner, M. J. 2005b. Bacteriophage endolysins—current state of research and applications. Curr. Opin. Microbiol. 8: 480487.
82. Loessner, M. J.,, C. E. D. Rees,, G. Stewart, and, S. Scherer. 1996. Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells. Appl. Environ. Microbiol. 62: 11331140.
83. Loessner, M. J.,, M. Rudolf, and, S. Scherer. 1997. Evaluation of luciferase reporter bacteriophage A511::luxAB for detection of Listeria monocytogenes in contaminated foods. Appl. Environ. Microbiol. 63: 29612965.
84. Loessner, M. J.,, A. Schneider, and, S. Scherer. 1995. A new procedure for efficient recovery of DNA, RNA, and proteins from Listeria cells by rapid lysis with a recombinant bacteriophage endolysin. Appl. Environ. Microbiol. 61: 11501152.
85. Luna, C. G.,, A. Costan-Longares,, F. Lucena, and, J. Jofre. 2009. Detection of somatic coliphages through a bioluminescence assay measuring phage mediated release of adenylate kinase and adenosine 5’-triphosphate. J. Virol. Methods 161: 107113.
86. Madonna, A. J.,, S. Van Cuyk, and, K. J. Voorhees. 2003. Detection of Escherichia coli using immunomagnetic separation and bacteriophage amplification coupled with matrix-assisted laser desorption/ionization time-of-flight mass spec-trometry. Rapid Commun. Mass Spectrom. 17: 257263.
87. Mandeville, R.,, M. Griffiths,, L. Goodridge,, L. McIntyre, and, T. T. Ilenchuk. 2003. Diagnostic and therapeutic applications of lytic phages. Anal. Lett. 36: 32413259.
88. Mao, C. B.,, A. H. Liu, and, B. R. Cao. 2009. Virus-based chemical and biological sensing. Angew. Chem. Int. Ed. Eng. 48: 67906810.
89. Marei, A. M.,, E. M. El-Behedy,, H. A. Mohtady, and, A. F. M. Afify. 2003. Evaluation of a rapid bacteriophage-based method for the detection of Mycobacterium tuberculosis in clinical samples. J. Med. Microbiol. 52: 331335.
90. Marks, T., and, R. Sharp. 2000. Bacteriophages and biotechnology: a review. J. Chem. Technol. Biotechnol. 75: 617.
91. McIntyre, L., and, M. W. Griffiths. 1997. A bacteriophage-based impedimetric method for the detection of pathogens in dairy products. J. Dairy Sci. 80: 107.
92. McNerney, R.,, K. Mallard,, H. M. R. Urassa,, E. Lemma, and, H. D. Donoghue. 2007. Colorimetric phage-based assay for detection of rifampin-resistant Mycobacterium tuberculosis. J. Clin. Microbiol. 45: 13301332.
93. Michelsen, O.,, A. Cuesta-Dominguez,, B. Albrechtsen, and, P. R. Jensen. 2007. Detection of bacteriophage-infected cells of Lactococcus lactis by using flow cytometry. Appl. Environ. Microbiol. 73: 75757581.
94. Miyanaga, K.,, T. F. Hijikata,, C. Furukawa,, H. Unno, and, Y. Tanji. 2006. Detection of Escherichia coli in the sewage influent by fluorescent labeled T4 phage. Biochem. Eng. J. 29: 119124.
95. Mole, R. J., and, T. W. O. Maskell. 2001. Phage as a diagnostic—the use of phage in TB diagnosis. J. Chem. Technol. Biotechnol. 76: 683688.
96. Moll, N.,, E. Pascal,, D. H. Dinh,, J. L. Lachaud,, L. Vellutini,, J. P. Pillot,, D. Rebiere,, D. Moynet,, J. Pistre,, D. Mossalayi,, Y. Mas,, B. Bennetau, and, C. Dejous. 2008. Multipurpose Love acoustic wave immunosensor for bacteria, virus or proteins detection. IRBM 29: 155- 161.
97. Mosier-Boss, P. A.,, S. H. Lieberman,, J. M. Andrews,, F. L. Rohwer,, L. E. Wegley, and, M. Breitbart. 2003. Use of fluorescently labeled phage in the detection and identification of bacterial species. Appl. Spectrosc. 57: 11381144.
98. Muldoon, M. T.,, G. Teaney,, L. Jingkun,, D. V. Onisk, and, J. W. Stave. 2007. Bacteriophage-based enrichment coupled to immunochromatographic strip-based detection for the determination of Salmonella in meat and poultry. J. Food Prot. 70: 22352242.
99. Namura, M.,, T. Hijikata,, K. Miyanaga, and, Y. Tanji. 2008. Detection of Escherichia coli with fluorescent labeled phages that have a broad host range to E. coli in sewage water. Biotechnol. Prog. 24: 481486.
100. Nanduri, V.,, S. Balasubramanian,, S. Sista,, V. J. Vodyanoy, and, A. L. Simonian. 2007. Highly sensitive phage-based biosensor for the detection of β-galactosidase. Anal. Chim. Acta 589: 166172.
101. Nanduri, V.,, I. B. Sorokulova,, A. M. Samoylov,, A. L. Simonian,, V. A. Petrenko, and, V. Vodyanoy. 2007. Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens. Bioelectron. 22: 986992.
102. Nelson, D. C.,, L. Loomis, and, V. A. Fischetti. 2002. Bacteriophage lytic enzymes as tools for rapid and specific detection of bacterial contamination, abstr. P-106. Abstr. 102nd Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
103. Neufeld, T.,, A. Schwartz-Mittelmann,, D. Biran,, E. Z. Ron, and, J. Rishpon. 2003. Combined phage typing and amperometric detection of released enzymatic activity for the specific identification and quantification of bacteria. Anal. Chem. 75: 580585.
104. Oda, M.,, M. Morita,, H. Unno, and, Y. Tanji. 2004. Rapid detection of Escherichia coli O157:H7 by using green fluorescent protein-labeled PP01 bacteriophage. Appl. Environ. Microbiol. 70: 527534.
105. Ogwang, S.,, B. B. Asiimwe,, H. Traore,, F. Mumbowa,, A. Okwera,, K. D. Eisenach,, S. Kayes,, E. C. Jones-Lopez,, R. McNerney,, W. Worodria,, I. Ayakaka,, R. D. Mugerwa,, P. G. Smith,, J. Ellner, and, M. L. Joloba. 2009. Comparison of rapid tests for detection of rifampicin-resistant Mycobacterium tuberculosis in Kampala, Uganda. BMC Infect. Dis. 9: 139.
106. Olsen, E. V.,, I. B. Sorokulova,, V. A. Petrenko,, I. H. Chen,, J. M. Barbaree, and, V. J. Vodyanoy. 2006. Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of Salmonella typhimurium. Biosens. Bioelectron. 21: 14341442.
107. Pagotto, F.,, L. Brovko, and, M. W. Griffiths. 1996. Phage-mediated detection of Staphylococcus aureus and E. coli O157:H7 using bioluminescence, p. 152156. In Symposium on Bacteriological Quality of Raw Milk. International Dairy Federation, Brussels, Belgium.
108. Pai, M.,, S. Kalantri,, L. Pascopella,, L. W. Riley, and, A. L. Reingold. 2005. Bacteriophage-based assays for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a meta-analysis. J. Infect. 51: 175187.
109. Peplow, M. O.,, M. Correa-Prisant,, M. E. Stebbins,, F. Jones, and, P. Davies. 1999. Sensitivity, specificity and predictive values of three Salmonella rapid detection kits using fresh and frozen poultry environmental samples versus those of standard plating. Appl. Environ. Microbiol. 65: 10551060.
110. Petrenko, V. A. 2008. Landscape phage as a molecular recognition interface for detection devices. Microelectronics J. 39: 202207.
111. Petrenko, V. A., and, V. J. Vodyanoy. 2003. Phage display for detection of biological threat agents. J. Microbiol. Methods 53: 253262.
112. Petty, N. K.,, T. J. Evans,, P. C. Fineran, and, G. P. C. Salmond. 2007. Biotechnological exploitation of bacteriophage research. Trends Biotechnol. 25: 715.
113. Pugh, S. J.,, J. L. Griffiths,, M. L. Arnott, and, C. S. Gutteridge. 1988. A complete protocol using conductance for rapid detection of salmonellas in confectionery materials. Lett. Appl. Microbiol. 7: 2327.
114. Qi, C.,, Y. Lin,, J. Feng,, Z.-H. Wang,, C.-F. Zhu,, Y.-H. Meng,, X.-Y. Yan,, L.-J. Wan, and, G. Jin. 2009. Phage M13KO7 detection with biosensor based on imaging ellipsometry and AFM microscopic confirmation. Virus Res. 140: 7984.
115. Rees, C. E. D., and, C. E. R. Dodd. 2006. Phage for rapid detection and control of bacterial pathogens in food. Adv. Appl. Microbiol. 59: 159186.
116. Rees, C. E. D., and, M. J. Loessner. 2005. Phage for the detection of pathogenic bacteria, p. 264281. In E. Kutter and, A. Sulakvelidze (ed.), bacteriophages: Biology and Applications. CRC Press, Boca Raton, FL.
117. Rees, J. C., and, K. J. Voorhees. 2005. Simultaneous detection of two bacterial pathogens using bacteriophage amplification coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 19: 27572761.
118. Regan, P. M.,, J. Wilson,, T. To, and, A. Margolin. 2001. Application of a phage-based assay to determine the viability of Mycobacterium bovis following disinfectant treatment, abstr. P-595. Abstr. 101st Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
119. Reiman, R. W.,, D. H. Atchley, and, K. J. Voorhees. 2007. Indirect detection of Bacillus anthracis using real-time PCR to detect amplified gamma phage DNA. J. Microbiol. Methods 68: 651653.
120. Ripp, S.,, P. Jegier,, M. Birmele,, C. M. Johnson,, K. A. Daumer,, J. L. Garland, and, G. S. Sayler. 2006. Linking bacteriophage infection to quorum sensing signalling and bioluminescent bioreporter monitoring for direct detection of bacterial agents. J. Appl. Microbiol. 100: 488499.
121. Ripp, S.,, P. Jegier,, C. M. Johnson,, J. R. Brigati, and, G. S. Sayler. 2008. Bacteriophage-amplified bioluminescent sensing of Escherichia coli O157:H7. Anal. Bioanal. Chem. 391: 507514.
122. Riska, P. F., and, W. R. Jacobs, Jr. 1998. The use of luciferase-reporter phage for antibiotic-susceptibility testing of mycobacteria. Methods Mol. Biol. 101: 431455.
123. Riska, P. F.,, W. R. Jacobs, Jr.,, B. R. Bloom,, J. McKitrick, and, J. Chan. 1997. Specific identification of Mycobacterium tuberculosis with the luciferase reporter mycobacteriophage: use of p-nitro-α-acetylamino-β-hydroxy propiophenone. J. Clin. Microbiol. 35: 32253231.
124. Romero, P.,, L. Perry,, M. Morgan, and, B. Applegate. 2008. A cobA based bacteriophage reporter for detection of Escherichia coli O157:H7, p. 498499. Abstr. 108th Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
125. Rusckowski, M.,, S. Gupta,, G. Z. Liu,, S. P. Dou, and, D. J. Hnatowich. 2008. Investigation of four 99mTc-labeled bacteriophages for infection-specific imaging. Nucl. Med. Biol. 35: 433440.
126. Sanders, C. A.,, D. M. Yajko,, P. S. Nassos,, W. C. Hyun,, M.J. Fulwyler, and, W. K. Hadley. 1991. Detection and analysis by dual-laser flow cytometry of bacteriophage T4 DNA inside Escherichia coli. Cytometry 12: 167171.
127. Sanders, M. F. 9 December 2003. Methods of identifying bacteria of specific bacterial genus, species or serotype. U.S. patent 6,660,470.
128. Sarkis, G. J.,, W. R. Jacobs, Jr., and, G. F. Hatfull. 1995. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol. Micobiol. 15: 10551067.
129. Sasahara, K. C., and, K. Boor. 2001. Detection of viable Mycobacterium avium subsp. paratuberculosis using luciferase reporter systems, abstr. 576. Abstr. 101st Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
130. Schmelcher, M., and, M. J. Loessner. 2008. Bacteriophage: powerful tools for the detection of bacterial pathogens, p. 731754. In M. Zourob,, S. Elwary, and, A. Turner (ed.), Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY.
131. Schofield, D. A., and, C. Westwater. 2009. Phage-mediated bioluminescent detection of Bacillus anthracis. J. Appl. Microbiol. 107: 14681478.
132. Schuch, R.,, D. Nelson, and, V. A. Fischetti. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418: 884889.
133. Sechter, I.,, C. B. Gerichter, and, D. Cahan. 1975. Method for detecting small numbers of Vibrio cholerae in very polluted substrates. Appl. Microbiol. 29: 814818.
134. Seo, S.,, M. Dobozi-King,, R. F. Young,, L. B. Kish, and, M. S. Cheng. 2008. Patterning a nanowell sensor biochip for specific and rapid detection of bacteria. Microelectronic Eng. 85: 14841489.
135. Shabani, A.,, M. Zourob,, B. Allain,, C. A. Marquette,, M. F. Lawrence, and, R. Mandeville. 2008. Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal. Chem. 80: 94759482.
136. Singh, A.,, N. Glass,, M. Tolba,, L. Brovko,, M. Griffiths, and, S. Evoy. 2009. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens. Bioelectron. 24: 36453651.
137. Singh, S.,, T. P. Saluja,, M. Kaur, and, G. C. Khilnani. 2008. Comparative evaluation of FASTPlaque assay with PCR and other conventional in vitro diagnostic methods for the early detection of pulmonary tuberculosis. J. Clin. Lab. Anal. 22: 367374.
138. Smith, B. C.,, M. Izzo, and, D. Smith. 2009. Detection of S. aureus skin and soft tissue infections by use of bacteriophage amplification technology, p. C-161. Abstr. 109th Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
139. Squirrel, D. J., and, M. J. Murphy. 1994. Adenylate kinase as a cell marker in bioluminescent assays, p. 486489. In A. K. Campbell,, L. J. Kricka, and, P. E. Stanley (ed.), Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects. John Wiley & Sons, Chichester, United Kingdom.
140. Squirrel, D. J.,, R. L. Price, and, M. J. Murphy. 2002. Rapid and specific detection of bacteria using bioluminescence. Anal. Chim. Acta 457: 109114.
141. Stanek, J. E., and, J. O. Falkinham. 2001. Rapid coliphage detection assay. J. Virol. Methods 91: 9398.
142. Stanley, E. C.,, R. J. Mole,, R. J. Smith,, S. M. Glenn,, M. R. Barer,, M. McGowan, and, C. E. D. Rees. 2007. Development of a new, combined rapid method using phage and PCR for detection and identification of viable Mycobacterium paratuberculosis bacteria within 48 hours. Appl. Environ. Microbiol. 73: 18511857.
143. Stewart, G.,, S. A. A. Jassim,, S. P. Denyer,, P. Newby,, K. Linley, and, V. K. Dhir. 1998. The specific and sensitive detection of bacterial pathogens within 4 h using bacteriophage amplification. J. Appl. Microbiol. 84: 777783.
144. Stewart, G. S. A. B.,, T. Smith, and, S. P. Denyer. 1989. Genetic engineering for bioluminescent bacteria. Food Sci. Technol. Today 3: 1922.
145. Sun, W.,, L. Brovko, and, M. Griffiths. 2000. Use of bioluminescent Salmonella for assessing the efficiency of constructed phage-based biosorbent. J. Ind. Microbiol. Biotechnol. 25: 273275.
146. Svensson, U. 1993. Assay of starter culture activity and detecting the presence of bacteriophage by a conductance method. Int. Dairy J. 3: 568.
147. Svensson, U. K. 1994. Conductimetric analyses of bacteriophage infection of two groups of bacteria in DL-lactococcal starter cultures. J. Dairy Sci. 77: 35243531.
148. Tamarin, O.,, S. Comeau,, C. Dejous,, D. Moynet,, D. Rebiere,, J. Bezian, and, J. Pistre. 2003a. Real time device for biosensing: design of a bacteriophage model using Love acoustic waves. Biosens. Bioelectron. 18: 755763.
149. Tamarin, O.,, C. Dejous,, D. Rebiere,, J. Pistre,, S. Comeau,, D. Moynet, and, J. Bezian. 2003b. Study of acoustic Love wave devices for real time bacteriophage detection. Sens. Actuators B Chem. 91: 275284.
150. Tanji, Y.,, C. Furukawa,, S. H. Na,, T. Hijikata,, K. Miyanaga, and, H. Unno. 2004. Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage. J. Biotechnol. 114: 1120.
151. Thouand, G.,, P. Vachon,, S. Liu,, M. Dayre, and, M. W. Griffiths. 2008. Optimization and validation of a simple method using P22 ::luxAB bacteriophage for rapid detection of Salmonella enterica serotypes A, B, and D in poultry samples. J. Food Prot. 71: 380385.
152. Tolba, M. H.,, L. Brovko, and, M. W. Griffiths. 2008. Bacteriophage-based biosorbent for specific capture, concentration and detection of bacteria, abstr.P-059/0764. Abstr. 108th Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
153. Tolba, M.,, O. Minikh,, L. Y. Brovko,, S. Evoy, and, M. W. Griffiths. 2010. Oriented immobilization of bacteriophages for biosensor applications. Appl. Environ. Microbiol. 76: 528535.
154. Turpin, P. E.,, K. A. Maycroft,, J. Bedford,, C. L. Rowlands, and, E. M. H. Wellington. 1993. A rapid luminescent-phage based MPN method for the enumeration of Salmonella typhimurium in environmental samples. Lett. Appl. Microbiol. 16: 2427.
155. Ulitzur, N., and, S. Ulitzur. 2006. New rapid and simple methods for detection of bacteria and determination of their antibiotic susceptibility by using phage mutants. Appl. Environ. Microbiol. 72: 74557459.
156. Ulitzur, S., and, J. Kuhn. 1987. Introduction of lux genes into bacteria, a new approach for specific determination of bacteria and their antibiotic susceptibility, p. 463472. In J. Scholmerich,, R. Andreesen,, A. Japp,, M. Ernst, and, W. G. Woods (ed.), Bioluminescence and Chemiluminescence: New Perspectives. John Wiley & Sons Inc., New York, NY.
157. Ulitzur, S. Y., and, J. C. Kuhn. 29 August 1989. Detection and/or identification of microorganisms in a test sample using bioluminescence or other exogenous genetically introduced marker.U.S. patent 4,861,709.
158. Ulitzur, S.,, M. Suissa, and, J. Kuhn. 1989. A new approach for the specific determination of bacteria and their antimicrobial susceptibilities, p. 235240. In A. Balows,, R. C. Tilton, and, A. Turano (ed.), Rapid Methods and Automation in Microbiology and Immunology. Brixia Academic Press, Brescia, Italy.
159. Uttenthaler, E.,, M. Schraml,, J. Mandel, and, S. Drost. 2001. Ultrasensitive quartz crystal microbalance sensors for detection of M13 phages in liquids. Biosens. Bioelectron. 16: 735743.
160. Varkey, S.,, K. Wing,, F. Cooling, and, D. R. DeMarco. 2006. Sensitivity and inclusivity of a Listeria genus PCR detection assay using a novel bacteriophage derived cell binding domain (CBD) and phage endolysin lysis, abstr.no. P-064, p. 453454. Abstr. 106th Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
161. Waddell, T. E., and, C. Poppe. 2000. Construction of mini-Tn 10luxABcam/Ptac-ATS and its use for developing a bacteriophage that transduces bioluminescence to Escherichia coli O157:H7. FEMS Microbiol. Lett. 182: 285289.
162. Wan, J. H.,, M. L. Johnson,, R. Guntupalli,, V. A. Petrenko, and, B. A. Chin. 2007. Detection of Bacillus anthracis spores in liquid using phage-based magnetoelastic micro-resonators. Sens. Actuators B Chem. 127: 559566.
163. Willford, J., and, L. D. Goodridge. 2008. An integrated assay for rapid detection of Escherichia coli O157:H7 on beef samples. Food Prot. Trends 28: 468472.
164. Wolber, P. K., and, R. L. Green. 1990. New rapid method for the detection of Salmonella in foods. Trends Food Sci. Technol. 1: 8082.
165. Wu, Y.,, L. Brovko, and, M. W. Griffiths. 2001. Influence of phage population on the phage-mediated bioluminescent adenylate kinase (AK) assay for detection of bacteria. Lett. Appl. Microbiol. 33: 311315.
166. Yemini, M.,, Y. Levi,, E. Yagil, and, J. Rishpon. 2007. Specific electrochemical phage sensing for Bacillus cereus and Mycobacterium smegmatis. Bioelectrochemistry 70: 180184.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error