Chapter 4 : Application of Bacteriophages to Control Pathogens in Food Animal Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Application of Bacteriophages to Control Pathogens in Food Animal Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap04-2.gif


In research studies, phage therapy has shown some promise as an effective preharvest intervention by controlling food-borne pathogens in animals before they enter processing plants. Phage therapy is also an effective postharvest intervention, reducing pathogen contamination of foods. Studies have demonstrated that phage therapy is effective against a broad range of food-borne pathogens belonging to the genera , , , and . With the current concern over the misuse of antibiotics, and the development of antibiotic resistance in bacteria, phages may play a leading role as a new class of antimicrobials in the agricultural and food industries. Phages have been successful at reducing O157:H7 during in vitro studies. In vitro studies were used to determine the effects of simulated gastric fluid and bile salts on the viability of free and encapsulated phage. Researchers used a receptor-modeling procedure to produce a phage cocktail to reduce O157:H7 in cattle. This approach allowed the researchers to produce a phage cocktail that contained phages that used multiple different receptors on the cell surface. Unencapsulated Felix-O1 was found to be extremely sensitive to acidic environments and was not detectable after a 5-min exposure to pH values below 3.7. Bacteriophages were isolated at 10 days postinfection from the intestine and from pools of organs of bacteriophage-treated chickens. Approximately 170 bacteriophages with morphologies similar to T4 have been identified. Regardless of the remaining work to be accomplished, phages' general acceptance and use as antimicrobials appear to be closer to reality than ever before.

Citation: Goodridge L. 2010. Application of Bacteriophages to Control Pathogens in Food Animal Production, p 61-77. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Ackermann, H. W. 1998. Tailed bacteriophages: the order Caudovirales. Adv. Virus Res. 51: 135201.
2. Ackermann, H. W., and, H. M. Krisch. 1997. A catalogue of T4-type bacteriophages. Arch. Virol. 14: 23292345.
3. Altekruse, S. F.,, N. J. Stern,, P. I. Fields, and, D. L. Swerdlow. 1999. Campylobacter jejuni—an emerging foodborne pathogen. Emerg. Infect. Dis. 5: 2835.
4. Andreatti Filho, R. L.,, J. P. Higgins,, S. E. Higgins,, G. Gaona,, A. D. Wolfenden,, G. Tellez, and, B. M. Hargis. 2007. Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar Enteritidis in vitro and in vivo. Poult. Sci. 86: 19041909.
5. Atterbury, R. J.,, E. Dillon,, C. Swift,, P. L. Connerton,, J. A. Frost,, C. E. Dodd,, C. E. Rees, and, I. F. Connerton. 2005. Correlation of Campylobacter bacteriophage with reduced presence of hosts in broiler chicken ceca. Appl. Environ. Microbiol. 71: 48854887.
6. Atterbury, R. J.,, M. A. Van Bergen,, F. Ortiz,, M. A. Lovell,, J. A. Harris,, A. DeBoer,, J. A. Wagenaar,, V. M. Allen, and, P. A. Barrow. 2007. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl. Environ. Microbiol. 73: 45434549.
7. Bach, S. J.,, T. A. McAllister,, D. M. Veira,, V. P. J. Gannon, and, R. A. Holley. 2003. Effect of bacteriophage DC22 on Escherichia coli O157:H7 in an artificial rumensystem (Rusitec) and inoculated sheep. Anim. Res. 52: 89101.
8. Berchieri, A., Jr.,, M. A. Lovell, and, P. A. Barrow. 1991. The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium. Res. Microbiol. 142: 541549.
9. Beumer, J.,, E. Hannecart-Pokorni, and, C. Godard. 1984. Bacteriophage receptors. Bull. Inst. Pasteur 82: 173253.
10. Blaser, M. 1997. Epidemiologic and clinical features of Campylobacter jejuni infection. J. Infect. Dis. 176: S103S105.
11. Borie, C.,, I. Albala,, P. Sànchez,, M. L. Sánchez,, S. Ramírez,, C. Navarro,, M. A. Morales,, J. Retamales, and, J. Robeson. 2008. Bacteriophage treatment reduces Salmonella colonization of infected shickens. Avian Dis. 52: 6467.
12. Brichta-Harhay, D. M.,, M. N. Guerini,, T. M. Arthur,, J. M. Bosilevac,, N. Kalchayanand,, S. D. Shackelford,, T. L. Wheeler, and, M. Koohmaraie. 2008. Salmonella and Escherichia coli O157:H7 contamination on hides and carcasses of cull cattle presented for slaughter in the United States: an evaluation of prevalence and bacterial loads by immunomagnetic separation and direct plating methods. Appl. Environ. Microbiol. 74: 62896297.
13. Brüssow, H. 2005. Phage therapy: the Escherichia coli experience. Microbiology 151: 21332140.
14. Buckling, A., and, P. B. Rainey. 2002. Antagonistic coevolution between a bacterium and bacteriophage. Proc. Biol. Soc. 269: 931936.
15. Callaway, T. R.,, R. C. Anderson,, T. S. Edrington,, K. J. Genovese,, K. M. Bischoff,, T. L. Poole,, Y. S. Jung,, R. B. Harvey, and, D. J. Nisbet. 2004. What are we doing about Escherichia coli O157:H7 in cattle? J. Anim. Sci. 82(E. Suppl.): E93E99.
16. Callaway, T. R.,, T. S. Edrington,, R. C. Anderson,, Y. S. Jung,, K. J. Genovese,, R. O. Elder, and, D. J. Nisbet. 2003. Isolation of naturally-occurring bacteriophage from sheep that reduce populations of E. coli O157:H7 in vitro and in vivo, p. 25. Proc. 5th Int. Symp. Shiga Toxin-Producing Escherichia coli Infect., Edinburgh, United Kingdom, 8 to 11 June, 2003.
17. Callaway, T. R.,, T. S. Edrington,, A. D. Brabban,, E. S. Kutter,, R. C. Anderson, and, D. J. Nisbet. 2006. Isolation and use of bacteriophage to reduce E. coli O157:H7 populations in ruminants. Proc. Int. Conf. Perspect. Bacteriophage Preparation,p. 7283.
18. Carlton, R. M.,, W. H. Noordman,, B. Biswas,, E. D. de Meester, and, M. J. Loessner. 2005. Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatics analyses, oral toxicity study, and application. Regul. Toxicol. Pharmacol. 43: 301312.
19. Centers for Disease Control and Prevention. 2006. Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food—selected sites, United States, 2005. MMWR Morb. Mortal. Wkly. Rep. 55: 392395.
20. Chase, J.,, N. Kalchayanand, and, L. D. Goodridge. 2005. Use of bacteriophage therapy to reduce Escherichia coli O157:H7 concentrations in an anaerobic digestor that simulates the bovine gastrointestinal tract, abstr. 108- 6. Inst. Food Technologists Annu. Meet. Food Expo. Institute of Food Technologists, Chicago, IL.
21. Connerton, P. L.,, C. M. L. Carrillo,, C. Swift,, E. Dillon,, A. Scott,, C. E. D. Rees,, C. E. R. Dodd,, J. Frost, and, I. F. Connerton. 2004. Longitudinal study of Campylobacter jejuni bacteriophages and their hosts from broiler chickens. Appl.Environ.Microbiol. 70: 38773883.
22. Doyle, M. P., and, M. C. Erickson. 2006. Reducing the carriage of foodborne pathogens in livestock and poultry. Poult. Sci. 85: 960973.
23. Dykes, G. A., and, S. M. Moorhead. 2002. Combined antimicrobial effect on nisin and a listerio-phage against Listeria monocytogenes in broth but not in buffer or on raw beef. Int. J. Food Microbiol. 73: 7181.
24. El-Shibiny, A.,, P. L. Connerton, and, I. F. Connerton. 2005. Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Appl. Environ. Microbiol. 71: 12591266.
25. European Food Safety Authority. 2009. EFSA evaluates bacteriophages. May 12. European Food Safety Authority, Parma, Italy. http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1211902525764.htm.
26. Figueroa-Bossi, N., and, L. Bossi. 1999. Inducible prophages contribute to Salmonella virulence in mice. Mol. Microbiol. 33: 167176.
27. Fiorentin, L.,, N. D. Vieira, and, W. Barioni, Jr. 2005. Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathol. 34: 258263.
28. Gannon, V. P.,, T. A. Graham,, R. King,, P. Michel,, S. Read,, K. Ziebell, and, R. P. Johnson. 2002. Escherichia coli O157:H7 infection in cows and calves in a beef cattle herd in Alberta, Canada. Epidemiol. Infect. 129: 163172.
29. Goode, D.,, V. M. Allen, and, P. A. Barrow. 2003. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl. Environ. Microbiol. 69: 50325036.
30. Goodridge, L. D., and, S. T. Abedon. 2003. Bacteriophage biocontrol and bioprocessing: application of phage therapy to industry. SIM News 53: 254262.
31. Goodridge, L. D., and, S. T. Abedon. 2008. Bacteriophage biocontrol: the technology matures. Microbiol. Aust. March: 4849.
32. Hancock, D. D.,, T. E. Besser, and, D. H. Rice. 1998. Ecology of Escherichia coli O157:H7 in cattle and impact of management practices, p. 8591. In J. B. Kaper and, A. D. O’Brien (ed.), Escherichia coli O157:H7 and Other Shiga Toxin-Producing E.coli Strains. ASM Press, Washington, DC.
33. Harcombe, W. R., and, J. J. Bull. 2005. Impact of phages on two-species bacterial communities. Appl. Environ. Microbiol. 71: 52545259.
34. Harris, D. L., and, N. Lee. 2 December 2003. Compositions and methods for reducing the amount of Salmonella in livestock.U.S. patent 6,656,463.
35. Higgins, J. P.,, S. E. Higgins,, K. L. Guenther,, W. Huff,, A. M. Donoghue,, D. J. Donoghue, and, B. M. Hargis. 2005. Use of a specific bacteriophage treatment to reduce Salmonella in poultry products. Poult. Sci. 84: 11401145.
36. Jensen, E. C.,, H. S. Schrader,, B. Rieland,, T. L. Thompson,, K. W. Lee,, K. W. Nickerson, and, T. A. Kokjohn. 1998. Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 64: 575580.
37. Johnson, R. P.,, C. L. Gyles,, W. E. Huff,, S. Ojha,, G. R. Huff,, N. C. Rath, and, A. M. Donoghue. 2008. Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Anim. Health Res. Rev. 9: 201215.
38. Jordan, D.,, S. A. McEwen,, A. M. Lammerding,, W. B. McNab, and, J. B. Wilson. 1999. Pre-slaughter to control of Escherichia coli in beef cattle: a simulation study. Prev. Vet. Med. 41: 5574.
39. Kapperud, G.,, E. Skjerve,, N. H. Bean,, S. M. Ostroff, and, J. Lassen. 1992. Risk factors for sporadic Campylobacter infections: results of a case-control study in southeastern Norway. J. Clin. Microbiol. 30: 31173121.
40. Karmali, M. A.,, M. Petric,, C. Lim,, P. C. Fleming,, G. S. Arbus, and, H. Lior. 1985. The association between idiopathic haemolytic syndrome and infection by verotoxin-producing Escherichia coli. J. Infect. Dis. 151: 775782.
41. Kudva, I. T.,, S. Jelacic,, P. I. Tarr,, P. Youderian, and, C. J. Hovde. 1999. Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Appl. Environ. Microbiol. 65: 37673773.
42. Laegreid, W. W.,, R. O. Elder, and, J. E. Keen. 1999. Prevalence of Escherichia coli O157:H7 in range beef calves at weaning. Epidemiol. Infect. 123: 291298.
43. Lee, N., and, D. L. Harris. 2001. The effect of bacteriophage treatment as a preharvest intervention strategy to reduce the rapid dissemination of Salmonella Typhimurium in pigs, p. 555557. Proc. AASV. American Association of Swine Veterinarians, Perry, IA.
44. Levine, B. R., and, J. J. Bull. 1996. Phage therapy revisited: the population biology of a bacterial infection and its treatment with phage and antibiotics. Am. Nat. 147: 881898.
45. Loc Carillo, C.,, R. J. Atterbury,, A. el-Shibiny,, P. L. Connerton,, E. Dillon,, A. Scott, and, I. F. Connerton. 2005. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol. 71: 65546563.
46. Ma, Y.,, J. C. Pacan,, Q. Wang,, Y. Xu,, X. Huang,, A. Korenevsky, and, P. M. Sabour. 2008. Microencapsulation of bacteriophage Felix O1 into chitosan-alginate microspheres for oral delivery. Appl. Environ. Microbiol. 74: 47994805.
47. McCrea, B. A.,, K. H. Tonooka,, C. VanWorth,, C. L. Boggs,, E. R. Atwill, and, J. S. Schrader. 2006. Prevalence of Campylobacter and Salmonella species on farm, after transport, and at processing in specialty market poultry. Poult. Sci. 85: 136143.
48. Mead, G. C., and, P. A. Barrow. 1990. Salmonella control in poultry by competitive exclusion or immunization. Lett. Appl. Microbiol. 10: 221227.
49. Mead, P. S.,, L. Slutsker,, V. Dietz,, L. F. McCaig,, J. S. Bresee,, C. Shapiro,, P. M. Griffin, and, R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5: 607625.
50. Mizoguchi, K.,, M. Morita,, C. R. Fischer,, M. Yoichi,, Y. Tanji, and, H. Unno. 2003. Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture. Appl. Environ. Microbiol. 69: 170176.
51. Nagy, B., and, P. Z. Fekete. 1999. Enterotoxigenic Escherichia coli (ETEC) in farm animals. Vet. Res. 30: 259284.
52. Naylor, S. W.,, J. C. Low,, T. E. Besser,, A. Mahajan,, G. J. Gunn,, M. C. Pearce,, I. J. McKendrick,, D. G. Smith, and, D. L. Gally. 2003. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect. Immun. 71: 15051512.
53. Niu, Y. D.,, Y. Xu,, T. A. McAllister,, E. A. Rozema,, T. P. Stephens,, S. J. Bach,, R. P. Johnson, and, K. Stanford. 2008. Comparison of fecal versus rectoanal mucosal swab sampling for detecting Escherichia coli O157:H7 in experimentally inoculated cattle used in assessing bacteriophage as a mitigation strategy. J. Food Prot. 71: 691698.
54. O’Flynn, G.,, R. P. Ross,, G. F. Fitzgerald, and, A. Coffey. 2004. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl. Environ. Microbiol. 70: 34173424.
55. OmniLytics, Inc. 2007a. OmniLytics announces USDA/FSIS allowance for bacteriophage treatment of Salmonella on livestock. March 21. OmniLytics, Inc., Salt Lake City, UT. http://www.omnilytics.com/news/news019.html.
56. OmniLytics, Inc. 2007b. OmniLytics announces USDA/FSIS allowance for bacteriophage treatment of E. coli O157:H7 on livestock. January 2. OmniLytics, Inc., Salt Lake City, UT. http://www.omnilytics.com/news/news018.html.
57. OmniLytics, Inc. 2008. OmniLytics announces USDA/FSIS allowance of bacteriophage treatment of Salmonella on poultry. July 29. OmniLytics, Inc., Salt Lake City, UT. http://www.omnilytics.com/news/news021.html.
58. Rangel, J. M.,, P. H. Sparling,, C. Crowe,, P. M. Griffin, and, D. L. Swerdlow. 2005. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 11: 603609.
59. Raya, R. R.,, P. Varey,, R. A. Oot,, M. R. Dyen,, T. R. Callaway,, T. S. Edrington,, E. M. Kutter, and, A. D. Brabban. 2006. Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157:H7 levels in sheep. Appl. Environ. Microbiol. 72: 64056410.
60. Rozema, E. A.,, T. P. Stephens,, S.J. Bach,, E. K. Okine,, R. P. Johnson,, K. Stanford, and, T. A. McAllister. 2009. Oral and rectal administration of bacteriophages for control of Escherichia coli O157:H7 in feedlot cattle. J. Food Prot. 72: 241250.
61. Schicklmaier, P.,, E. Moser,, T. Wieland,, W. Rabsch, and, H. Schmieger. 1998. A comparative study of the frequency of prophages among natural isolates of Salmonella and Escherichia coli with emphasis on generalized transducers. Antonie van Leeuwenhoek 73: 4954.
62. Scholl, D.,, S. Adhya, and, C. R. Merril. 2002. Bacteriophage SP6 is closely related to phages K1-5, K5, and K1E but encodes a tail protein very similar to that of the distantly related P22. J. Bacteriol. 184: 28332836.
63. Scholl, D.,, S. Rogers,, S. Adhya, and, C. R. Merril. 2001. Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J. Virol. 75: 25092515.
64. Scott, A. E.,, A. R. Timms,, P. L. Connerton,, C. Loc Carrillo,, K. Adzfa Radzum, and, I. F. Connerton. 2007. Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathog. 3: e119.
65. Sheng, H.,, H. J. Knecht,, I. T. Kudva, and, C. J. Hovde. 2006. Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Appl. Environ. Microbiol. 72: 53595366.
66. Skirrow, M. B. 1982. Campylobacter enteritis—the first five years. J. Hyg. 89: 175184.
67. Sklar, I. B., and, R. D. Joerger. 2001. Attempts to utilize bacteriophage to combat Salmonella enterica serovar Enteritidis infection in chickens. J. Food Saf. 21: 1529.
68. Smith, H. W., and, M. B. Huggins. 1982. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics J. Gen. Microbiol. 128: 307318.
69. Smith, H. W.,, M. B. Huggins, and, K. M. Shaw. 1987. Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. J. Gen. Microbiol. 133: 11271135.
70. Stern, N. J., and, S. U. Kazmi. 1989. Campylobacter, p. 71110. In M. P. Doyle (ed.), Foodborne Bacterial Pathogens. Marcel Dekker, New York, NY.
71. Tam, C. C.,, S. J. O’Brien,, G. K. Adak,, S. M. Meakins, and, J. A. Frost. 2003. Campylobacter coli—an important foodborne pathogen. J. Infect. 47: 2832.
72. Tanji, Y.,, T. Shimada,, M. Yoichi,, K. Miyanaga,, K. Hori, and, H. Unno. 2004. Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Appl. Microbiol. Biotechnol. 64: 270274.
73. Tétart, F.,, C. Desplats,, M. Kutateladze,, C. Monod,, H. W. Ackermann, and, H. M. Krisch. 2001. Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J. Bacteriol. 183: 358366.
74. Toro, H.,, S. B. Price,, S. McKee,, F. J. Hoerr,, J. Krehling,, M. Perdue, and, L. Bauermeister. 2005. Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis. 49: 118124.
75. Twort, F. W. 1915. An investigation on the nature of ultra-microscopic viruses. Lancet 186: 12411243.
76. Waddell, T.,, A. Mazzocco,, R. P. Johnson,, J. Pacan,, S. Campbell,, A. Perets,, A. MacKinnon,, J. Holtslander,, B. Pope, and, C. Gyles. 2000. Control of Escherichia coli O157:H7 infection of calves by bacteriophages. Proc. 4th Int. Symp. Workshop Shiga Toxin (Verocytotoxin)-Producing Escherichia coli Infect., Kyoto, Japan, 20 October to 2 November.
77. Wagenaar, J. A.,, M. A. P. Van Bergen,, M. A. Mueller,, T. M. Wassenaar, and, R. M. Carlton. 2005. Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet. Microbiol. 109: 275283.
78. Zhao, T.,, M. P. Doyle,, J. Shere, and, L. Garber. 1995. Prevalence of enterohemorrhagic Escherichia coli O157:H7 in a survey of dairy herds. Appl. Environ. Microbiol. 61: 12901293.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error