Chapter 7 : Application of Bacteriophages to Control Pathogenic and Spoilage Bacteria in Food Processing and Distribution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Application of Bacteriophages to Control Pathogenic and Spoilage Bacteria in Food Processing and Distribution, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap07-2.gif


Bacteriophages biocontrol in foods has been investigated primarily in fresh produce, dairy products, and meat products, while most work with pathogenic bacteria and spoilage bacteria has focused on meat. The effect of added phages is relatively rapid, and while phages may survive on foods for some time after application and possibly during distribution, there is little biocontrol being exerted during distribution and control does not rely on phage replication to be effective. Beyond their use to control bacteria in foods directly, phages might also be used as sanitizers in food production facilities, and their activities against biofilms have received some attention. Research into phage control of spoilage bacteria has tended to focus on . The pathogen O157:H7 has received comparatively little attention in terms of control by phages on produce. A conference paper described phage biocontrol on lettuce and melon. This work used a commercially available mixture of phages with incubation at 4°C. The formation of biofilms can pose significant problems to the food industry. spp. are common in aquatic habitats and can be detected in many seafoods. Many reports describing successful biocontrol on foods use very large numbers of phages. Data have been presented illustrating a dose dependent response for the inactivation of on salmon and other foods. The data indicate that phages show promise as biocontrol agents for the control of food-borne pathogenic bacteria and spoilage bacteria, especially since their mode of action is becoming better understood.

Citation: Hudson J, McIntyre L, Billington C. 2010. Application of Bacteriophages to Control Pathogenic and Spoilage Bacteria in Food Processing and Distribution, p 119-135. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Abuladze, T.,, M. Li,, M. Y. Menetrez,, T. Dean,, A. Senecal, and, A. Sulakvelidze. 2008. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli and ground beef by Escherichia coli O157:H7. Appl. Environ. Microbiol. 74: 62306238.
2. Atterbury, R. J.,, P. L. Connerton,, C. E. R. Dodd,, C. E. D. Rees, and, I. F. Connerton. 2003. Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl. Environ. Microbiol. 69: 63026306.
3. Bigwood, T.,, J. A. Hudson, and, C. Billington. 2009. Influence of host and phage concentration on the inactivation of foodborne pathogenic bacteria by two bacteriophages. FEMS Microbiol. Lett. 291: 5964.
4. Bigwood, T.,, J. A. Hudson,, C. Billington,, G. V. Carey-Smith, and, J. A. Heinemann. 2008. Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiol. 25: 400406.
5. Borucki, M. K.,, J. D. Peppin,, D. White,, F. Loge, and, D. R. Call. 2003. Variation in biofilm formation among strains of Listeria monocytogenes. Appl. Environ. Microbiol. 69: 73367342.
6. Carlton, R. M.,, W. H. Noordman,, B. Biswas,, E. D. de Meester, and, M. J. Loessner. 2005. Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analysis, oral toxicity study, and application. Regul. Toxicol. Pharmacol. 43: 301312.
7. DePaola, A.,, M. L. Motes,, A. M. Chan, and, C. A. Suttle. 1998. Phages infecting Vibrio vulnificus are abundant and diverse in oysters (Crassostrea virginica) collected from the Gulf of Mexico. Appl. Environ. Microbiol. 64: 346351.
8. Doolittle, M. M.,, J. J. Cooney, and, D. E. Caldwell. 1995. Lytic infection of Escherichia coli biofilms by bacteriophage T4. Can. J. Microbiol. 41: 1218.
9. Dykes, G. A., and, S. M. Moorhead. 2002. Combined antimicrobial affect of nisin and listeriophage against Listeria monocytogenes in broth but not in buffer or on raw beef. Int. J. Food Microbiol. 73: 7181.
10. EBI Food Safety. 2007. FDA extends GRAS approval LISTEX™ to all food products. July 3. EBI Food Safety, Wageningen, The Netherlands. http://www.ebifoodsafety.com/images/FDA%20and%20USDA%20GRAS%20Approval%20for%20LISTEX%20on%20all%20Foods_July%203%202007.pdf.
11. Ellis, D. E.,, P. A. Whitman, and, R. T. Marshall. 1973. Effect of homologous bacteriophage on growth of Pseudomonas fragi WY in milk. Appl. Microbiol. 25: 2425.
12. Federal Register. 2006. Food additives permitted for direct addition to human consumption; bacteriophage preparation, final rule. 21 CFR part 172. Fed. Regist. 71: 4772947732.
13. García, P.,, C. Madera,, B. Martínez, and, A. Rodríguez. 2007. Biocontrol of Staphylococcus aureus in curd manufacturing processes using bacteriophages. Int. Dairy J. 17: 12321239.
14. Gill, J. J.,, P. M. Sabour,, K. E. Leslie, and, M. W. Griffiths. 2006. Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K. J. Appl. Microbiol. 101: 377386.
15. Goode, D.,, V. M. Allen, and, P. A. Barrow. 2003. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophage. Appl. Environ. Microbiol. 69: 50325036.
16. Greer, G. G. 1988. Effects of phage concentration, bacterial density, and temperature on phage control of beef spoilage. J. Food Sci. 53: 12261227.
17. Greer, G. G. 1986. Homologous bacteriophage control of Pseudomonas growth and beef spoilage. J. Food Prot. 49: 104109.
18. Greer, G. G. 1983. Psychrotrophic Brochothrix thermosphacta bacteriophages isolated from beef. Appl. Environ. Microbiol. 46: 245251.
19. Greer, G., and, B. D. Dilts. 2002. Control of Brochothrix thermosphacta spoilage of pork adipose tissue using bacteriophages. J. Food Prot. 65: 861863.
20. Greer, G. G., and, B. D. Dilts. 1990. Inability of a bacteriophage pool to control beef spoilage. Int. J. Food Microbiol. 10: 331342.
21. Greer, G. G.,, B. D. Dilts, and, H.-W. Ackermann. 2007. Characterization of a Leuconostoc gelidum bacteriophage from pork. Int. J. Food Microbiol. 114: 370375.
22. Guenther, S.,, D. Huwyler,, S. Richard, and, M. J. Loessner. 2009. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl. Environ. Microbiol. 75: 93100.
23. Hagens, S., and, M. L. Offerhaus. 2008. Bacteriophages—new weapons for food safety. Food Technol. April: 4654.
24. Hibma, A. M.,, S. A. A. Jassim, and, M. W. Griffiths. 1997. Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophage. Int. J. Food Microbiol. 34: 197207.
25. Higgins, J. P.,, S. E. Higgins,, K. L. Guenther,, W. Huff,, A. M. Donoghue,, D. J. Donoghue, and, B. M. Hargis. 2005. Use of a specific bacteriophage treatment to reduce Salmonella in poultry. Poult. Sci. 84: 11411145.
26. Hong, Y.,, B. Leverentz,, W. S. Conway,, W. J. Janisiewicz,, M. Abadias, and, M. Camp. 2006. Biocontrol of Listeria monocytogenes on fresh-cut honeydew melon using a bacterial antagonist and a bacteriophage. Phytopathology 96: S51.
27. Hughes, K. A.,, I. W. Sutherland,, J. Clark, and, M. V. Jones. 1998a. Bacteriophage and associated polysaccharide depolymerases—novel tools for study of bacterial biofilms. J. Appl. Microbiol. 85: 583590.
28. Hughes, K. A.,, I. W. Sutherland, and, M. V. Jones. 1998b. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144: 30393047.
29. Iversen, C.,, A. Lehner,, N. Mullane,, J. Marugg,, S. Fanning,, R. Stephen, and, H. Joosten. 2007. Identification of “ Cronobacter” spp. (Enterococcus sakazakii). J. Clin. Microbiol. 45: 38143816.
30. Kasman, L. M.,, A. Kasman,, C. Westwater,, J. Dolan,, M. G. Schmidt, and, J. S. Norris. 2002. Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J. Virol. 76: 55575564.
31. Kim, K.-P.,, J. Klumpp, and, M. J. Loessner. 2007. Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int. J. Food Microbiol. 115: 195203.
32. Kocharunchitt, C.,, T. Ross, and, D. L. McNeill. 2009. Use of bacteriophages as biocontrol agents to control Salmonella associated with seed sprouts. Int. J. Food Microbiol. 128: 453459.
33. Lee, W. J.,, J. A. Hudson,, J. A. Heinemann,, C. Billington, and, L. McIntyre. 2008. Isolation of bacteriophages infecting Gram-positive foodborne pathogens, abstr. P4-69. Abstr. 35th Annu. Meet. Int. Assoc. Food Prot. International Association for Food Protection, Columbus, OH.
34. Leverentz, B.,, W. S. Conway,, Z. Alavidze,, W. J. Janisiewicz,, Y. Fuchs,, M. J. Camp,, E. Chighladze, and, A. Sulakvelidze. 2001. Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J. Food Prot. 64: 11161121.
35. Leverentz, B.,, W. S. Conway,, M. J. Camp,, W. J. Janisiewicz,, T. Abuladze,, M. Yang,, R. Saftner, and, A. Sulakvelidze. 2003. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl. Environ. Microbiol. 69: 45194526.
36. Leverentz, B.,, W. S. Conway,, W. J. Janisiewicz, and, M. J. Camp. 2004. Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. J. Food Prot. 67: 16821686.
37. Loessner, M. J., and, R. M. Carlton. October 2008. Virulent phages to control Listeria monocytogenes in foodstuffs and in food processing plants. U.S. patent 7,438,901.
38. Lu, T. K., and, J. J. Collins. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104: 1119711202.
39. Luftig, R. B., and, W. Pelon. 1997. Bacteriophage biodepuration of Vibrio vulnificus-containing shellfish. J. Shellfish Res. 16: 271.
40. Lyhs, U.,, J. M. K. Koort,, H.-S. Lundström, and, K. J. Björkroth. 2004. Leuconostoc gelidum and Leuconostoc gasicomitatum strains dominated the lactic acid bacterium population associated with strong slime formation in an acetic-acid herring preserve. Int. J. Food Microbiol. 90: 207218.
41. Mandeville, R.,, M. Griffiths,, L. Goodridge,, L. McIntyre, and, T. T. Ilenchuk. 2003. Diagnostic and therapeutic applications of lytic phages. Anal. Lett. 26: 32413259.
42. Martínez, B.,, J. M. Obeso,, A. Rodríguez, and, P. García. 2008. Nisin-bacteriophage corresistance in Staphylococcus aureus. Int. J. Food Microbiol. 122: 253258.
43. Modi, R.,, Y. Hirvi,, A. Hill, and, M. W. Griffiths. 2001. Effect of phage on survival of Salmonella Enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurised milk. J. Food Prot. 64: 927933.
44. Munsch, P., and, J. M. Olivier. 1995. Biocontrol of bacterial blotch of the cultivated mushroom with lytic phages: some practical considerations. Mushroom Sci. 14: 595602.
45. Munsch, P., and, J. M. Olivier. 1993. Biological control of mushroom bacterial blotch with bacteriophages, p. 469. In B. Fritig and, M. Legrand (ed.), Mechanisms of Plant Defence Responses. Kluwer Academic Publishers, Dordrecht, The Netherlands.
46. Obeso, J. M.,, B. Martínez,, A. Rodríguez, and, P. García. 2008. Lytic acitvity of the recombinant staphylococcal bacteriophage ΦH5 endolysin active against Staphylococcus aureus in milk. Int. J. Food Microbiol. 128: 212218.
47. O’Flaherty, S.,, A. Coffey,, W. J. Meaney,, G. F. Fitzgerald, and, R. P. Ross. 2005. Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett. Appl. Microbiol. 41: 274279.
48. O’Flynn, G.,, R. P. Ross,, G. F. Fitzgerald, and, A. Coffey. 2004. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl. Environ. Microbiol. 70: 34173424.
49. Pao, S.,, S. P. Randolph,, E. W. Westbrook, and, H. Shen. 2004. Use of bacteriophages to control Salmonella in experimentally contaminated sprout seeds. J. Food Sci. 69: M127M130.
50. Pelon, W.,, R. B. Luftig, and, K. H. Johnston. 2005. Vibrio vulnificus load reduction in oysters after combined exposure to Vibrio vulnificus-specific bacteriophage and to an oyster extract component. J. Food Prot. 68: 11881191.
51. Poulsen, L. V. 1999. Microbial biofilm in food processing. Food Sci. Technol. 32: 321326.
52. Rees, C., E. D., and, C. E. R. Dodd. 2006. Phage for rapid detection and control of bacterial pathogens. Adv. Appl. Microbiol. 59: 159186.
53. Roy, B.,, H.-W. Ackerman,, S. Pandian,, G. Picard, and, J. Goulet. 1993. Biological inactivation of adhering Listeria monocytogenes by listeria-phages and quaternary ammonium compound. Appl. Environ. Microbiol. 59: 29142917.
54. Russo, F.,, D. Ercolini,, G. Mauriello, and, F. Villani. 2006. Behaviour of Brochothrix thermosphacta in presence of other meat spoilage microbial groups. Int. J. Food Microbiol. 23: 797802.
55. Schellekens, M. M.,, J. Wouters,, S. Hagens, and, J. Hugenholtz. 2007. Bacteriophage P100 application to control Listeria monocytogenes on smeared cheese. Milchwissenschaft 62: 284287.
56. Sharma, M.,, J. Patel,, W. S. Conway,, S. Ferguson, and, A. Sulakvelidze. 2008. Biocontrol of Escherichia coli O157:H7 on fresh-cut lettuce and cantaloupe by treatment with bacteriophage, abstr. P5-25. Abstr. 35th Annu. Meet. Int. Assoc. Food Prot. International Association for Food Protection, Columbus, OH.
57. Sharma, M.,, J.-H. Ryu, and, L. R. Beuchat. 2005. Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with and alkaline cleaner and bacteriophage. J. Appl. Microbiol. 99: 449459.
58. Sillankorva, S.,, P. Neubauer, and, J. Azeredo. 2008. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol. 8: 79.
59. Strom, M. S., and, R. N. Paranjpye. 2000. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect. 2: 177188.
60. Tait, K.,, L. C. Skillman, and, I. W. Sutherland. 2002. The efficacy of bacteriophage as a method of biofilm eradication. Biofouling 18: 305311.
61. Tarahovsky, Y. S.,, G. R. Ivanitsky, and, A. A. Khusainov. 1994. Lysis of Escherichia coli cells induced by bacteriophage T4. FEMS Microbiol. Lett. 122: 195200.
62. Tarantino, L. M. 2007. Agency response letter GRAS Notice No. GRN 000218. www.fda.gov/Food/FoodIngredientsPackaging/GenerallyRecognizedasSafeGRAS/GRASListings/ucm153865.htm.
63. Verthé, K., and, W. Verstraete. 2006. Use of flow cytometry for analysis of phage-mediated killing of Enterobacter aerogenes. Res. Microbiol. 157: 613618.
64. Vihavainen, E. J., and, K. J. Björkroth. 2007. Spoilage of value-added, high-oxygen modified-atmosphere packaged raw beef steaks by Leuconostoc gasicomitatum and Leuconostoc gelidum. Int. J. Food Microbiol. 119: 340345.
65. Whichard, J. M.,, N. Sriranganathan, and, F. W. Pierson. 2003. Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J. Food Prot. 66: 220225.
66. Yoichi, M.,, M. Morita,, K. Mizoguchi,, C. R. Fischer,, H. Unno, and, Y. Tanji. 2004. The criterion for selecting effective phage for Escherichia coli O157:H7 control. Biochem. Eng. J. 19: 221227.
67. Yost, C. K., and, F. M. Nattress. 2002. Molecular typing techniques to characterize the development of lactic acid bacteria community on vacuum-packaged beef. Int. J. Food Microbiol. 72: 97105.
68. Zuber, S.,, C. Boisson-Delaporte,, L. Michot,, C. Iversen,, B. Diep,, H. Brüssow, and, P. Breeuwer. 2008. Decreasing Enterobacter sakazakii (Cronobacter spp.) food contamination level with bacteriophages: prospects and problems. Microb. Biotechnol. 1: 532543.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error