Chapter 8 : Bacteriophage Lytic Enzymes as Antimicrobials

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Bacteriophage Lytic Enzymes as Antimicrobials, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap08-2.gif


The gram-negative peptidoglycan, which lies subjacent to the outer membrane, is relatively thin and undecorated by surface proteins or carbohydrates. The cell wall binding domain (CBD) epitopes are usually carbohydrates or teichoic acids that are unique to a species, much like a bacterial fingerprint. The most extensively studied lysins in animal models are Cpl-1, an N-acetylmuramidase, and PAL, an N-acetylmuramoyl-Lalanine amidase, both of which are from phages that infect . PlyG demonstrates lytic activity on a variety of strains as well as one strain. Importantly, the enzyme was shown to be effective in killing and detecting germinating spores in addition to vegetative cells. The spore coat that normally forms an impenetrable surface for lytic enzymes undergoes an increase in porosity following germination, allowing lysins access to the peptidoglycan. Phage therapy has additional advantages of being self-replicating, has over 100 years of historical use, has obtained some regulatory approval, and can target either gram-positive or gram-negative organisms. Lysin therapy, in contrast, is not self-replicating and at the moment requires additional techniques to show efficacy on gram-negative bacteria. Clearly, both phage therapy and lysin therapy represent reasonable alternatives for management of food-borne pathogens.

Citation: Stark C, Bonocora R, Hoopes J, Nelson D. 2010. Bacteriophage Lytic Enzymes as Antimicrobials, p 137-156. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Steps to bacterial lysis in phage and lysin therapy. Phage therapy (left) exploits a natural phage lytic cycle, which occurs over 30 min and is divided into three major steps, including the release of new virions into the environment. Subsequent infection of new hosts illustrates the process of self-amplification. The electron micrograph depicts phage particles adhering to the debris of a lysed streptococcal cell. In comparison, lysin therapy and prophylaxis (right) are defined by only two steps, in which purified lysin binds to and rapidly kills, through osmotic lysis, the target pathogen. The electron micrograph depicts a cross section of treated with the purified PlyG lysin showing an externalized cytoplasmic membrane just before lysis. (Reprinted from with permission of the publisher.)

Citation: Stark C, Bonocora R, Hoopes J, Nelson D. 2010. Bacteriophage Lytic Enzymes as Antimicrobials, p 137-156. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Bacterial peptidoglycan structure and lysin targets. (1) N-acetylglucosaminidase cleaves the glycan component of the peptidoglycan on the reducing side of GlcNAc. (2) -acetylmuramidase likewise cleaves the glycan component of the peptidoglycan, but on the reducing side of MurNAc. This activity is commonly referred to as a muramidase or lysozyme. (3) An -acetylmuramoyl-L-alanine amidase cleaves a critical amide bond between the glycan moiety (MurNAc) and the peptide moiety (L-alanine) of the cell wall. This activity is sometimes referred to generically as an amidase. However, a true endopeptidase, or protease, will also cleave an amide bond, but only if it is between two amino acids. This type of activity may occur in the stem peptide (4) of the cell wall or in an interpeptide bridge (5) connecting two cell wall fragments. CBDs typically bind the peptidoglycan-associated carbohydrate or an epitope directly related to the peptidoglycan structure. Note, the structure of the cell wall, which is distinguished by a pentaglycine interpeptide bridge, is shown for illustration purposes. Other bacterial species have interpeptide bridges composed of different amino acids or may lack an interpeptide bridge all together. In these organisms, an mDAP replaces L-Lys and directly crosslinks to the terminal D-Ala of the opposite peptide chain.

Citation: Stark C, Bonocora R, Hoopes J, Nelson D. 2010. Bacteriophage Lytic Enzymes as Antimicrobials, p 137-156. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Arnon, S. S.,, R. Schechter,, T. V. Inglesby,, D. A. Henderson,, J. G. Bartlett,, M. S. Ascher,, E. Eitzen,, A. D. Fine,, J. Hauer,, M. Layton,, S. Lillibridge,, M. T. Osterholm,, T. O’Toole,, G. Parker,, T. M. Perl,, P. K. Russell,, D. L. Swerdlow, and, K. Tonat. 2001. Botulinum toxin as a biological weapon: medical and public health management. JAMA 285: 10591070.
2. Aureli, P.,, M. Di Cunto,, A. Maffei,, G. De Chiara,, G. Franciosa,, L. Accorinti,, A. M. Gambardella, and, D. Greco. 2000. An outbreak in Italy of botulism associated with a dessert made with mascarpone cream cheese. Eur. J. Epidemiol. 16: 913918.
3. Bortolussi, R. 2008. Listeriosis: a primer. CMAJ 179: 795797.
4. Briers, Y.,, A. Cornelissen,, A. Aertsen,, K. Hertveldt,, C. W. Michiels,, G. Volckaert, and, R. Lavigne. 2008. Analysis of outer membrane permeability of Pseudomonas aeruginosa and bactericidal activity of endolysins KZ144 and EL188 under high hydrostatic pressure. FEMS Microbiol. Lett. 280: 113119.
5. Briers, Y.,, G. Volckaert,, A. Cornelissen,, S. Lagaert,, C. W. Michiels,, K. Hertveldt, and, R. Lavigne. 2007. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages ϕKZ and EL. Mol. Microbiol. 65: 13341344.
6. Brynestad, S., and, P. E. Granum. 2002. Clostridium perfringens and foodborne infections. Int. J. Food Microbiol. 74: 195202.
7. Centers for Disease Control and Prevention. 2008. Outbreak of Salmonella serotype Saintpaul infections associated with multiple raw produce items—United States, 2008. MMWR Morb. Mortal. Wkly. Rep. 57: 929934.
8. Centers for Disease Control and Prevention. 2009a. Preliminary FoodNet Data on the incidence of infection with pathogens transmitted commonly through food—10 states, 2008. MMWR Morb. Mortal. Wkly. Rep. 58: 333337.
9. Centers for Disease Control and Prevention. 2009b. Multistate outbreak of Salmonella infections associated with peanut butter and peanut butter-containing products—United States, 2008–2009. MMWR Morb. Mortal. Wkly. Rep. 58: 8590.
10. Chapot-Chartier, M. P.,, C. Deniel,, M. Rousseau,, L. Vassal, and, J. C. Gripon. 1994. Autolysis of two strains of Lactococcus lactis during cheese ripening. Int. Dairy J. 4: 251259.
11. Cheng, Q.,, D. Nelson,, S. Zhu, and, V. A. Fischetti. 2005. Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Antimicrob. Agents Chemother. 49: 111117.
12. Croux, C.,, C. Ronda,, R. Lopez, and, J. L. Garcia. 1993. Interchange of functional domains switches enzyme specificity: construction of a chimeric pneumococcal-clostridial cell wall lytic enzyme. Mol. Microbiol. 9: 10191025.
13. Diaz, E.,, R. Lopez, and, J. L. Garcia. 1991. Chimeric pneumococcal cell wall lytic enzymes reveal important physiological and evolutionary traits. J. Biol. Chem. 266: 54645471.
14. Donovan, D. M., and, J. Foster-Frey. 2008. LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci. FEMS Microbiol. Lett. 287: 2233.
15. Donovan, D. M.,, M. Lardeo, and, J. Foster-Frey. 2006. Lysis of staphylococcal mastitis pathogens by bacteriophage ϕ11 endolysin. FEMS Microbiol. Lett. 265: 133139.
16. During, K.,, P. Porsch,, A. Mahn,, O. Brinkmann, and, W. Gieffers. 1999. The non-enzymatic microbicidal activity of lysozymes. FEBS Lett. 449: 93100.
17. Entenza, J. M.,, J. M. Loeffler,, D. Grandgirard,, V. A. Fischetti, and, P. Moreillon. 2005. Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob. Agents Chemother. 49: 47894792.
18. Evenson, M. L.,, M. W. Hinds,, R. S. Bernstein, and, M. S. Bergdoll. 1988. Estimation of human dose of staphylococcal enterotoxin A from a large outbreak of staphylococcal food poisoning involving chocolate milk. Int. J. Food Microbiol. 7: 311316.
19. Faille, C.,, C. Jullien,, F. Fontaine,, M. N. Bellon-Fontaine,, C. Slomianny, and, T. Benezech. 2002. Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity. Can. J. Microbiol. 48: 728738.
20. Fischetti, V. A. 2005. Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol. 13: 491496.
21. Fischetti, V. A. 2008. Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol. 11: 393400.
22. Fischetti, V. A.,, D. Nelson, and, R. Schuch. 2006. Reinventing phage therapy: are the parts greater than the sum? Nat. Biotechnol. 24: 15081511.
23. Fischetti, V. A.,, J. B. Zabriskie, and, E. C. Gotschlich. 1972. Physical, chemical and biological properties of Type 6 M-protein extracted with purified streptococcal phage-associated lysin, p. 2636. In M.J. Haverkorn Lactococcus lactis compared with other lactococcal amidases (ed.), Fifth International Symposium on Streptococcus pyogenes. Excerpta Medica, Amsterdam, The Netherlands.
24. Fokine, A.,, K. A. Miroshnikov,, M. M. Shneider,, V. V. Mesyanzhinov, and, M. G. Rossmann. 2008. Structure of the bacteriophage ϕKZ lytic transglycosylase gp144. J. Biol. Chem. 283: 72427250.
25. Foley, S.,, A. Bruttin, and, H. Brüssow. 2000. Widespread distribution of a group I intron and its three deletion derivatives in the lysin gene of Streptococcus thermophilus bacteriophages. J. Virol. 74: 611618.
26. Forsythe, S. J., and, P. R. Hayes. 1998. Food Hygiene, Microbiology and HACCP, 3rd ed., p. 340347. Aspen Publishers, Inc., Gaithersburg, MD.
27. Gaeng, S.,, S. Scherer,, H. Neve, and, M. J. Loessner. 2000. Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl. Environ. Microbiol. 66: 29512958.
28. Garcia, E.,, J. L. Garcia,, P. Garcia,, A. Arraras,, J. M. Sanchez-Puelles, and, R. Lopez. 1988. Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Proc. Natl. Acad. Sci. USA 85: 914918.
29. Garcia, J. L.,, E. Garcia,, A. Arraras,, P. Garcia,, C. Ronda, and, R. Lopez. 1987. Cloning, purification, and biochemical characterization of the pneumococcal bacteriophage Cp-1 lysin. J. Virol. 61: 25732580.
30. Garcia, P.,, E. Garcia,, C. Ronda,, R. Lopez, and, A. Tomasz. 1983. A phage-associated murein hydrolase in Streptococcus pneumoniae infected with bacteriophage Dp-1. J. Gen. Microbiol. 129: 489497.
31. Garcia, P.,, J. L. Garcia,, E. Garcia,, J. M. Sanchez-Puelles, and, R. Lopez. 1990. Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene 86: 8188.
32. Granum, P. E., and, T. Lund. 1997. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157: 223228.
33. Hauben, K. J. L.,, E. Y. Wuytack,, C. C. F. Soontjens, and, C. W. Michiels. 1996. High-pressure transient sensitization of Escherichia coli to lysozyme and nisin by disruption of outer-membrane permeability. J. Food Prot. 59: 350355.
34. Hermoso, J. A.,, B. Monterroso,, A. Albert,, B. Galan,, O. Ahrazem,, P. Garcia,, M. Martinez-Ripoli,, J. L. Garcia, and, M. Menendez. 2003. Structural basis for selective recognition of pneumococcal cell wall by modular endolysin from phage Cp-1. Structure 11: 12391249.
35. Hoopes, J. T.,, C. J. Stark,, H. A. Kim,, D. J. Sussman,, D. M. Donovan, and, D. C. Nelson. 2009. Use of a bacteriophage lysin, PlyC, as an enzyme disinfectant against Streptococcus equi. Appl. Environ. Microbiol. 75: 13881394.
36. Horgan, M.,, G. O’Flynn,, J. Garry,, J. Cooney,, A. Coffey,, G. F. Fitzgerald,, R. P. Ross, and, O. McAuliffe. 2009. Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci. Appl. Environ. Microbiol. 75: 872874.
37. Inouye, M.,, N. Arnheim, and, R. Sternglanz. 1973. Bacteriophage T7 lysozyme is an N-acetylmuramyl-L-alanine amidase. J. Biol. Chem. 248: 72477252.
38. Jado, I.,, R. Lopez,, E. Garcia,, A. Fenoll,, J. Casal, and, P. Garcia. 2003. Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J. Antimicrob. Chemother. 52: 967973.
39. Korndorfer, I. P.,, J. Danzer,, M. Schmelcher,, M. Zimmer,, A. Skerra, and, M.J. Loessner. 2006. The crystal structure of the bacteriophage PSA endolysin reveals a unique fold responsible for specific recognition of Listeria cell walls. J. Mol. Biol. 364: 678689.
40. Krause, R. M. 1957. Studies on bacteriophages of hemolytic streptococci. I. Factors influencing the interaction of phage and susceptible host cells. J. Exp. Med. 106: 365384.
41. Kretzer, J. W.,, R. Lehmann,, M. Schmelcher,, M. Banz,, K. P. Kim,, C. Korn, and, M. J. Loessner. 2007. Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl. Environ. Microbiol. 73: 19922000.
42. Kumar, C. G., and, S. K. Anand. 1998. Significance of microbial biofilms in food industry: a review. Int. J. Food Microbiol. 42: 927.
43. Law, B. A., and, A. S. Wigmore. 1983. Accelerated ripening of Cheddar cheese with a commercial proteinase and intracellular enzymes from starter streptococci. J. Dairy Res. 50: 519525.
44. Loeffler, J. M.,, S. Djurkovic, and, V. A. Fischetti. 2003. Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect. Immun. 71: 61996204.
45. Loeffler, J. M., and, V. A. Fischetti. 2003. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrob. Agents Chemother. 47: 375377.
46. Loeffler, J. M.,, D. Nelson, and, V. A. Fischetti. 2001. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294: 21702172.
47. Loessner, M. J. 2005. Bacteriophage endolysins—current state of research and applications. Curr. Opin. Microbiol. 8: 480487.
48. Loessner, M. J.,, K. Kramer,, F. Ebel, and, S. Scherer. 2002. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol. Microbiol. 44: 335349.
49. Loessner, M. J.,, G. Wendlinger, and, S. Scherer. 1995. Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol. Microbiol. 16: 12311241.
50. Lopez, R.,, E. Garcia,, P. Garcia, and, J. L. Garcia. 1997. The pneumococcal cell wall degrading enzymes: a modular design to create new lysins? Microb. Drug Resist. 3: 199211.
51. Lopez, R.,, E. Garcia,, P. Garcia,, C. Ronda, and, A. Tomasz. 1982. Choline-containing bacteriophage receptors in Streptococcus pneumoniae. J. Bacteriol. 151: 15811590.
52. Low, L. Y.,, C. Yang,, M. Perego,, A. Osterman, and, R. C. Liddington. 2005. Structure and lytic activity of a Bacillus anthracis prophage endolysin. J. Biol. Chem. 280: 3543335439.
53. Lowy, F. D. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339: 520532.
54. Lynch, M.,, J. Painter,, R. Woodruff,, C. Braden, and Centers for Disease Control and Prevention. 2006. Surveillance for foodborne-disease outbreaks—United States, 1998–2002. MMWR Surveill. Summ. 55: 142.
55. Lyytikainen, O.,, T. Autio,, R. Maijala,, P. Ruutu,, T. Honkanen-Buzalski,, M. Miettinen,, M. Hatakka,, J. Mikkola,, V. J. Anttila,, T. Johansson,, L. Rantala,, T. Aalto,, H. Korkeala, and, A. Siitonen. 2000. An outbreak of Listeria monocytogenes serotype 3a infections from butter in Finland. J. Infect. Dis. 181: 18381841.
56. Maijala, R.,, O. Lyytikainen,, T. Autio,, T. Aalto,, L. Haavisto, and, T. Honkanen-Buzalski. 2001. Exposure of Listeria monocytogenes within an epidemic caused by butter in Finland. Int. J. Food Microbiol. 70: 97109.
57. Masschalck, B.,, C. Garcia-Graells,, E. G. Van Haver, and, C. W. Michiels. 2000. Inactivation of high pressure resistant Escherichia coli by nisin and lysozyme under high pressure. Innov. Food Sci. Emerg. Technol. 1: 3947.
58. Masschalck, B., and, C. W. Michiels. 2003. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit. Rev. Microbiol. 29: 191214.
59. Masschalck, B.,, R. Van Houdt, and, C. W. Michiels. 2001. High pressure increases bactericidal activity and spectrum of lactoferrin, lactoferricin and nisin. Int. J. Food Microbiol. 64: 325332.
60. McCullers, J. A.,, A. Karlstrom,, A. R. Iverson,, J. M. Loeffler, and, V. A. Fischetti. 2007. Novel strategy to prevent otitis media caused by colonizing Streptococcus pneumoniae. PLoS Pathog. 3: e28.
61. Mesnage, S.,, F. Chau,, L. Dubost, and, M. Arthur. 2008. Role of N-acetylglucosaminidase and N-acetylmuramidase activities in Enterococcus faecalis peptidoglycan metabolism. J. Biol. Chem. 283: 1984519853.
62. Nakimbugwe, D.,, B. Masschalck,, G. Anim, and, C. W. Michiels. 2006a. Inactivation of gram-negative bacteria in milk and banana juice by hen egg white and lambda lysozyme under high hydrostatic pressure. Int. J. Food Microbiol. 112: 1925.
63. Nakimbugwe, D.,, B. Masschalck,, M. Atanassova,, A. Zewdie-Bosuner, and, C. W. Michiels. 2006b. Comparison of bactericidal activity of six lysozymes at atmospheric pressure and under high hydrostatic pressure. Int. J. Food Microbiol. 108: 355363.
64. Navarre, W. W.,, H. Ton-That,, K. F. Faull, and, O. Schneewind. 1999. Multiple enzymatic activities of the murein hydrolase from staphylococcal phage ϕ11. Identification of a D-alanyl-glycine endopeptidase activity. J. Biol. Chem. 274: 1584715856.
65. Nelson, D.,, L. Loomis, and, V. A. Fischetti. 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. USA 98: 41074112.
66. Nelson, D.,, R. Schuch,, P. Chahales,, S. Zhu, and, V. A. Fischetti. 2006. PlyC: a multimeric bacteriophage lysin. Proc. Natl. Acad. Sci. USA 103: 1076510770.
67. Novak, J. S.,, J. Call,, P. Tomasula, and, J. B. Luchansky. 2005. An assessment of pasteurization treatment of water, media, and milk with respect to Bacillus spores. J. Food Prot. 68: 751757.
68. Obeso, J. M.,, B. Martinez,, A. Rodriguez, and, P. Garcia. 2008. Lytic activity of the recombinant staphylococcal bacteriophage ΦH5 endolysin active against Staphylococcus aureus in milk. Int. J. Food Microbiol. 128: 212218.
69. O’Flaherty, S.,, A. Coffey,, W. Meaney,, G. F. Fitzgerald, and, R. P. Ross. 2005. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J. Bacteriol. 187: 71617164.
70. Peng, J. S.,, W. C. Tsai, and, C. C. Chou. 2001. Surface characteristics of Bacillus cereus and its adhesion to stainless steel. Int. J. Food Microbiol. 65: 105111.
71. Porter, C. J.,, R. Schuch,, A. J. Pelzek,, A. M. Buckle,, S. McGowan,, M. C. Wilce,, J. Rossjohn, R., Russell,, D. Nelson,, V. A. Fischetti, and, J. C. Whisstock. 2007. The 1.6 Å crystal structure of the catalytic domain of PlyB, a bacteriophage lysin active against Bacillus anthracis. J. Mol. Biol. 366: 540550.
72. Pritchard, D. G.,, S. Dong,, J. R. Baker, and, J. A. Engler. 2004. The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology 150: 20792087.
73. Pritchard, D. G.,, S. Dong,, M. C. Kirk,, R. T. Cartee, and, J. R. Baker. 2007. LambdaSa1 and LambdaSa2 prophage lysins of Streptococcus agalactiae. Appl. Environ. Microbiol. 73: 71507154.
74. Rashel, M.,, J. Uchiyama,, T. Ujihara,, Y. Uehara,, S. Kuramoto,, S. Sugihara,, K. Yagyu,, A. Muraoka,, M. Sugai,, K. Hiramatsu,, K. Honke, and, S. Matsuzaki. 2007. Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage ϕMR11. J. Infect. Dis. 196: 12371247.
75. Rode, T. M.,, S. Langsrud,, A. Holck, and, T. Moretro. 2007. Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int. J. Food Microbiol. 116: 372383.
76. Ryu, J. H., and, L. R. Beuchat. 2005. Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer. J. Food Prot. 68: 26142622.
77. Sahl, H.-G., and, G. Bierbaum. 2008. Multiple activities in natural antimicrobials. Microbe 3: 467473.
78. Santo, L. Y., and, R. H. Doi. 1974. Ultrastructural analysis during germination and outgrowth of Bacillus subtilis spores. J. Bacteriol. 120: 475481.
79. Sass, P., and, G. Bierbaum. 2007. Lytic activity of recombinant bacteriophage ϕ11 and ϕ12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl. Environ. Microbiol. 73: 347352.
80. Schantz, E. J., and, E. A. Johnson. 1992. Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol. Rev. 56: 8099.
81. Schuch, R.,, D. Nelson, and, V. A. Fischetti. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418: 884889.
82. Sharma, M., and, S. K. Anand. 2002. Biofilms evaluation as an essential component of HACCP for food/dairy processing industry—a case. Food Control 13: 469477.
83. Sheth, A. N.,, P. Wiersma,, D. Atrubin,, V. Dubey,, D. Zink,, G. Skinner,, F. Doerr,, P. Juliao,, G. Gonzalez,, C. Burnett,, C. Drenzek,, C. Shuler,, J. Austin,, A. Ellis,, S. Maslanka, and, J. Sobel. 2008. International outbreak of severe botulism with prolonged toxemia caused by commercial carrot juice. Clin. Infect. Dis. 47: 12451251.
84. Steen, A.,, S. van Schalkwijk,, G. Buist,, M. Twigt,, M. Szeliga,, W. Meijer,, O. P. Kuipers,, J. Kok, and, J. Hugenholtz. 2007. LytR, a phage-derived amidase is most effective in induced lysis of Lactococcus lactis compared with other lactococcal amidases and glucosaminidases. Int. Dairy J. 17: 926936.
85. Stenfors Arnesen, L. P.,, A. Fagerlund, and, P. E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579606.
86. Townes, J. M.,, P. R. Cieslak,, C. L. Hatheway,, H. M. Solomon,, J. T. Holloway,, M. P. Baker,, C. F. Keller,, L. M. McCroskey, and, P. M. Griffin. 1996. An outbreak of type A botulism associated with a commercial cheese sauce. Ann. Intern. Med. 125: 558563.
87. Turner, M. S.,, F. Waldherr,, M. J. Loessner, and, P. M. Giffard. 2007. Antimicrobial activity of lysostaphin and a Listeria monocytogenes bacteriophage endolysin produced and secreted by lactic acid bacteria. Syst. Appl. Microbiol. 30: 5867.
88. Vaara, M. 1992. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 56: 395411.
89. von Eiff, C.,, K. Becker,, K. Machka,, H. Stammer, and, G. Peters. 2001. Nasal carriage as a source of Staphylococcus aureus bacteremia. N. Engl. J. Med. 344: 1116.
90. Yoong, P.,, R. Schuch,, D. Nelson, and, V. A. Fischetti. 2004. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J. Bacteriol. 186: 48084812.
91. Yoong, P.,, R. Schuch,, D. Nelson, and, V. A. Fischetti. 2006. PlyPH, a bacteriolytic enzyme with a broad pH range of activity and lytic action against Bacillus anthracis. J. Bacteriol. 188: 27112714.
92. Young, R. 1992. Bacteriophage lysis: mechanism and regulation. Microbiol. Rev. 56: 430481.
93. Zimmer, M.,, S. Scherer, and, M. J. Loessner. 2002. Genomic analysis of Clostridium perfringens bacteriophage ϕ3626, which integrates into guaA and possibly affects sporulation. J. Bacteriol. 184: 43594368.


Generic image for table

Comparative advantages and disadvantages of bacteriophage and lysin therapy

Citation: Stark C, Bonocora R, Hoopes J, Nelson D. 2010. Bacteriophage Lytic Enzymes as Antimicrobials, p 137-156. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error