Chapter 10 : Transposable Elements and Repeat-Induced Point Mutation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Transposable Elements and Repeat-Induced Point Mutation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap10-2.gif


This chapter concentrates on the impact of repeat-induced point mutation (RIP) on transposable elements (TEs). It is clear that RIP does not follow an identical pattern in all fungi: whereas RIP in is intense enough to reduce the C+G content of the most affected elements to below 30% and widespread enough for unmutated TEs to be absent from the sequenced genome, in and RIP is described as "light" or "mild", and init was observed only in late-maturing ascospores. The genomes of and other filamentous fungi show a large variety of sequences homologous to TEs found in other organisms. The distribution of TEs in fungal genomes suggests that there are a limited number of innocuous genomic locations. A striking feature of some of the TE sequences is illustrated. Like other genomic components, TEs provide a record of the evolutionary processes to which they were subjected, but unlike most genomic components, their turnover is rapid and the record they leave is largely one of decay, including defeat by the defense mechanisms of the host. RIP is the most potent genome defense system known in eukaryotes. It is perhaps surprising that RIP is apparently unique to filamentous ascomycetes, but genome defense mechanisms appear to be unusually labile in evolution perhaps because they have to be retailored to meet each new emergency encountered by the host.

Citation: Clutterbuck A, Selker E. 2010. Transposable Elements and Repeat-Induced Point Mutation, p 124-131. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Diagram of RIP in . Two haploid strains of opposite mating type are illustrated, one containing an unlinked duplication (open boxes). For clarity, only two chromosomes are shown. The lightning bolt indicates the time that RIP occurs, and the filled boxes indicate new alleles created by RIP. The four possible combinations of chromosomes in the meiotic progeny are represented below. In cases in which an essential gene was duplicated, only the left-hand two products would be expected to be viable. Unlinked gene-sized duplications pass through a cross without being discovered and mutated by RIP at an appreciable frequency (~50%), but direct duplications of the same sequences rarely survive untouched. Most products of RIP are left methylated at remaining cytosines.

Citation: Clutterbuck A, Selker E. 2010. Transposable Elements and Repeat-Induced Point Mutation, p 124-131. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Graphic list of TEs in . Each vertical line represents one element, elements being ranked by length within families. In each element the black, upper portion of the line represents A+T content while the gray lower part represents C+G; the predominance of A+T in some elements is suggestive of the action of RIP. (A) Long elements and their fragments. (B) Small elements, including solo LTRs and nonautonomous elements.

Citation: Clutterbuck A, Selker E. 2010. Transposable Elements and Repeat-Induced Point Mutation, p 124-131. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aleksenko, A., and, A. J. Clutterbuck. 1997. Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. Fungal Genet. Biol. 21: 373387.
2. Antequera, F.,, M. Tamame,, J. R. Villanueva, and, T. Santos. 1984. DNA methylation in the fungi. J. Biol. Chem. 259: 80338036.
3. Arnaise, S.,, D. Zickler,, A. Bourdais,, M. Dequard-Chablat, and, R. Debuchy. 2008. Mutations in mating-type genes greatly decrease repeat-induced point mutation process in the fungus Podospora anserina. Fungal Genet. Biol. 45: 207220.
4. Barry, C.,, G. Faugeron, and, J.-L. Rossignol. 1993. Methylation induced premeiotically in Ascobolus: coextension with DNA repeat lengths and effect on transcript elongation. Proc. Natl. Acad. Sci. USA 90: 45574561.
5. Bhat, A., and, D. P. Kasbekar. 2001. Escape from repeat-induced point mutation of a gene-sized duplication in Neurospora crassa crosses that are heterozygous for a larger chromosome segment duplication. Genetics 157: 15811590.
6. Bouhouche, K.,, D. Zickler,, R. Debuchy, and, S. Arnaise. 2004. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina. Genetics 167: 151159.
7. Bouvet, G. F.,, V. Jacobi,, K. V. Plourde, and, L. Bernier. 2007. Stress-induced mobility of OPHIO1 and OPHIO2, DNA transposons of the Dutch elm disease fungi. Fungal Genet. Biol. 45: 565578.
8. Braumann, I.,, M. van den Berg, and, F. Kempken. 2007. Transposons in biotechnologically relevant strains of Aspergillus niger and Penicillium chrysogenum. Fungal Genet. Biol. 44: 13991414.
9. Bushman, F. D. 2003. Targeting survival integration site selection by retroviruses and LTR-retrotransposons. Cell 115: 135138.
10. Cam, H. P.,, K. Noma,, H. Ebina,, H. L. Levin, and, S. I. S. Grewal. 2008. Host genome surveillance for retrotransposons by transposon-derived proteins. Nature 451: 431436.
11. Cambareri, E. B.,, B. C. Jensen,, E. Schabtach, and, E. U. Selker. 1989. Repeat-induced G-C to A-T mutations in Neurospora. Science 244: 15711575.
12. Cambareri, E. B.,, M. J. Singer, and, E. U. Selker. 1991. Recurrence of repeat-induced point mutation (RIP) in Neurospora crassa. Genetics 127: 699710.
13. Casola, C.,, D. Hucks, and, C. Feschotte. 2008. Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol. Biol. Evol. 25: 2941.
14. Chalker, D. L., and, S. B. Sandmeyer. 1992. Ty3 integrates within the region of polymerase III transcription initiation. Genes Dev. 6: 117128.
15. Clutterbuck, A. J. 2004. MATE transposable elements in Aspergillus nidulans: evidence of repeat-induced point mutation. Fungal Genet. Biol. 41: 308316.
16. Clutterbuck, A. J., and, M. Farman. 2008. Aspergillus nidulans linkage map and genome sequence: closing gaps and adding telomeres, p. 57–73. In G. H. Goldman and, S. A. Osmani (ed.), The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods. CRC Press, Boca Raton, FL.
17. Clutterbuck, A. J.,, V. V. Kapitonov, and, J. Jurka. 2008. Transposable elements and repeat-induced point mutation in Aspergillus nidulans, Aspergillus fumigatus and Aspergillus oryzae, p. 343–355. In G. H. Goldman and, S. A. Osmani (ed.), The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods. CRC Press, Boca Raton, FL.
18. Connelly, J. C., and, H. N. Arst, Jr. 1991. Identification of a telomeric fragment from the right arm of chromosome III of Aspergillus nidulans. FEMS Microbiol. Lett. 80: 295297.
19. Coyle, S., and, E. Kroll. 2008. Starvation induces genomic rearrangements and starvation-resilient phenotype in yeast. Mol. Biol. Evol. 25: 310318.
20. Craig, N. L. 1997. Target site selection in transposition. Annu. Rev. Biochem. 66: 43784474.
21. Crouch, J. A.,, B. M. Glasheen,, M. A. Giunta,, B. B. Clarke, and, B. I. Hillman. 2008. The evolution of transposon repeat-induced point mutation in the genome of Colletotrichum cereale: reconciling sex, recombination and homoplasy in an “asexual” pathogen. Fungal Genet. Biol. 45: 190206.
22. Cultrone, A.,, Y. R. Dominguez,, C. Drevet,, C. Scazzocchio, and, R. Fernandez-Martin. 2007. The tightly regulated promoter of the xanA gene of Aspergillus nidulans is included in a helitron. Mol. Microbiol. 63: 15891599.
23. Daboussi, M. -J., and, P. Capy. 2003. Transposable elements in filamentous fungi. Annu. Rev. Microbiol. 57: 275299.
24. Dai, J.,, W. Xie,, T. L. Brady,, J. Gao, and, D. F. Voytas. 2007. Phosphorylation regulates integration of the yeast Ty5 retrotransposon into heterochromatin. Mol. Cell 27: 289299.
25. de Lima Fávaro, L. C.,, W. L. de Araújo,, J. L. de Azevedo, and, L. D. Paccola-Meirelles. 2005. The biology and potential for genetic research of transposable elements in filamentous fungi. Genet. Mol. Biol. 28: 804813.
26. Faugeron, G.,, L. Rhounim, and, J.-L. Rossignol. 1990. How does the cell count the number of ectopic copies of a gene in the premeiotic inactivation process acting in Ascobolus immersus? Genetics 124: 585591.
27. Fedorova, N. D.,, W. C. Nierman,, G. Turner,, V. Joardar,, R. Maiti,, M. J. Anderson,, D. W. Denning, and, J. R. Wortman. 2008. A comparative view of the genome of Aspergillus fumigatus, p. 25–42. In G. H. Goldman and, S. A. Osmani (ed.), The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods. CRC Press, Boca Raton, FL.
28. Foss, E. J.,, P. W. Garrett,, J. A. Kinsey, and, E. U. Selker. 1991. Specificity of repeat-induced point mutation (RIP) in Neurospora: sensitivity of non- Neurospora sequences, a natural diverged tandem duplication, and unique DNA adjacent to a duplicated region. Genetics 127: 711717.
29. Foss, H. M.,, C. J. Roberts,, K. M. Claeys, and, E. U. Selker. 1993. Abnormal chromosome behavior in Neurospora mutants defective in DNA methylation. Science 262: 17371741.
30. Freitag, M.,, R. L. Williams,, G. O. Kothe, and, E. U. Selker. 2002. A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc. Natl. Acad. Sci. USA 99: 88028807.
31. Galagan, J. E.,, S. E. Calvo,, K. A. Borkovich,, E. U. Selker,, N. D. Read,, D. Jaffe,, W. FitzHugh,, L. -J. Ma,, S. Smirnov,, S. Purcell,, B. Rehman,, T. Elkins,, R. Engels,, S. Wang,, C. B. Nielsen,, J. Butler,, M. Endrizzi,, D. Qui,, P. Ianakiev,, D. Bell-Pedersen,, M. A. Nelson,, M. Werner-Washburne,, C. Selitrennikoff,, J. A. Kinsey,, E. L. Braun,, A. Zelter,, U. Schulte,, G. Kothe,, G. Jedd,, W. Mewes,, C. Staben,, E. Marcotte,, D. Greenberg,, A. Roy,, K. Foley,, J. Naylor,, N. Stange-Thomann,, R. Barrett,, S. Gnerre,, M. Kamal,, M. Kamvysselis,, E. Mauceli,, C. Bielke,, S. Rudd,, D. Frishman,, S. Krystofova,, C. Rasmussen,, R. L. Metzenberg,, D. D. Perkins,, S. Kroken, Scott, C. Cogoni,, G. Macino,, D. Catcheside,, W. Li,, R. J. Pratt,, S. A. Osmani,, C. P. DeSouza,, L. Glass,, M. J. Orbach,, J. A. Berglund,, R. Voelker,, O. Yarden,, M. Plamann,, S. Seiler,, J. Dunlap,, A. Radford,, R. Aramayo,, D. O. Natvig,, L. A. Alex,, G. Mannhaupt,, D. J. Ebbole,, M. Freitag,, I. Paulsen,, M. S. Sachs,, E. S. Lander,, C. I. Nusbaum, and, B. Birren. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422: 859868.
32. Galagan, J. E.,, S. E. Calvo,, C. Cuomo,, L. -J. Ma,, J. R. Wortman,, S. Batzoglou,, S. -I. Lee,, M. Batürkmen,, C. C. Spevak,, J. Clutterbuck,, V. Kapitonov,, J. Jurka,, C. Scazzocchio,, M. Farman,, J. Butler,, S. Purcell,, S. Harris,, G. H. Braus,, O. Draht,, S. Busch,, C. D’Enfert,, C. Bouchier,, G. H. Goldman,, D. Bell-Pedersen,, S. Griffiths-Jones,, J. H. Doonan,, J. Yu,, K. Vienken,, A. Pain,, M. Freitag,, E. U. Selker,, D. B. Archer,, M. Á. Peñalva,, B. R. Oakley,, M. Momany,, T. Tanaka,, T. Kumagai,, K. Asai, Ma. Machida,, W. C. Nierman,, D. W. Denning,, M. Caddick,, M. Hynes,, M. Paoletti,, R. Fischer,, B. Miller,, P. Dyer,, M. S. Sachs,, S. A. Osmani, and, B. W. Birren. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438: 11051115.
33. Galagan, J. E., and, E. U. Selker. 2004. RIP: the evolutionary cost of genome defense. Trends Genet. 20: 417423.
34. Geiser, D. M.,, W. E. Timberlake, and, M. L. Arnold. 1996. Loss of meiosis in Aspergillus. Mol. Biol. Evol. 13: 809817.
35. Giles, H. H.,, R. F. Geever,, D. K. Asch,, J. Avalos, and, M. E. Case. 1991. Organization and regulation of the Qa (quinic acid) genes in Neurospora crassa and other fungi. J. Hered. 82: 17.
36. Gowher, H.,, K. C. Ehrlich, and, A. Jeltsch. 2001. DNA from Aspergillus flavus contains 5-methylcytosine. FEMS Micro-biol. Lett. 205: 151155.
37. Goyon, C.,, C. Barry,, A. Grégoire,, G. Faugeron, and, J. L. Rossignol. 1996. Methylation of DNA repeats of decreasing sizes in Ascobolus immersus. Mol. Cell. Biol. 16: 30543065.
38. Goyon, C., and, G. Faugeron. 1989. Targeted transformation of Ascobolus immersus and de novo methylation of the resulting duplicated DNA sequences. Mol. Cell. Biol. 9: 28182827.
39. Graia, F.,, O. Lespinet,, B. Rimbault,, M. Dequard-Chablet,, E. Coppin, and, M. Picard. 2001. Genome quality control: RIP (repeat-induced point mutation) comes to Podospora. Mol. Microbiol. 40: 586595.
40. Hammond, T. M.,, J. W. Bok,, M. D. Andrewski,, Y. Reyes-Domínguez,, C. Scazzocchio, and, N. P. Keller. 2008. RNA silencing gene truncation in the filamentous fungus Aspergillus nidulans. Eukaryot. Cell 7: 339349.
41. Hey, P.,, G. Robson,, M. Birch, and, M. Bromley. 2008. Characterization of Aft1 a Fot/Pogo type transposon of Aspergillus fumigatus. Fungal Genet. Biol. 45: 117126.
42. Hood, M. E.,, M. Katawczik, and, T. Giraud. 2005. Repeat-induced point mutation and the population structure of transposable elements in Microbotryum violaceum. Genetics 170: 10811089.
43. Hua-Van, A.,, T. Langin, and, M. J. Daboussi. 2002. Aberrant transposition of a Tc1-mariner element, impala, in the fungus Fusarium oxysporum. Mol. Genet. Genomics 267: 7987.
44. Idnurm, A., and, B. J. Howlett. 2003. Analysis of loss of pathogenicity mutants reveals that repeat-induced point mutation can occur in the Dothidiomycete Leptosphaeria maculans. Fungal Genet. Biol. 39: 3137.
45. Ikeda, K. -I.,, H. Nakayashiki,, T. Kataoka,, H. Tamba,, Y. Hashimoto,, Y. Tosa, and, S. Mayama. 2002. Repeat-induced point mutation (RIP) in Magnaporthe grisea: implications for its sexual cycle in the natural field context. Mol. Microbiol. 45: 13551364.
46. Jurka, J.,, O. Kohany,, A. Pavlicek,, V. V. Kapitonov, and, M. V. Jurka. 2005. Repbase update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110: 462467.
47. Kapitonov, V. V., and, J. Jurka. 2001. Rolling-circle transposons in eukaryotes. Proc. Natl. Acad. Sci. USA 98: 87148719.
48. Kapitonov, V. V., and, J. Jurka. 2006. Self-synthesizing DNA transposons in eukaryotes. Proc. Natl. Acad. Sci. USA 103: 45404545.
49. Kinsey, J. A., and, J. Haber. 1989. Isolation of a transposable element from Neurospora crassa. Proc. Natl. Acad. Sci. USA 86: 19291933.
50. Kouzminova, E. A., and, E. U. Selker. 2001. Dim-2 encodes a DNA-methyltransferase responsible for all known cytosine methylation in Neurospora. EMBO J. 20: 43094323.
51. Le Chevanton, L.,, G. Leblon, and, S. Lebilcot. 1989. Duplications created by transformation in Sordaria macrospora are not inactivated during meiosis. Mol. Gen. Genet. 218: 390396.
52. Lee, D. W.,, M. Freitag,, E. U. Selker, and, R. Aramayo. 2008. A cytosine methyltransferase homologue is essential for sexual development in Aspergillus nidulans. PLoS ONE 3: e2531.
53. Li Destri Nicosia, M. G.,, C. Brocard-Masson,, S. Demais,, A. Hua-Van,, M. -J. Daboussi, and, C. Scazzocchio. 2001. Heterologous transposition in Aspergillus nidulans. Mol. Microbiol. 39: 13301344.
54. LoBuglio, K. F.,, J. I. Pitt, and, J. W. Taylor. 1993. Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 85: 592604.
55. Machida, M.,, K. Asai,, M. Sano,, T. Tanaka,, T. Kumagai,, G. Terai,, K. -I. Kusumoto,, T. Arima,, O. Akita,, Y. Kashiwagi,, K. Abe,, K. Gomi,, H. Horiuchi,, K. Kitamoto,, T. Kobayashi,, M. Takeuchi,, D. W. Denning,, J. E. Galagan,, W. C. Nierman,, J. Yu,, D. B. Archer,, J. W. Bennett,, D. Bhatnagar,, T. E. Cleveland,, N. D. Fedorova,, O. Gotoh,, H. Horikawa,, A. Hosoyama,, M. Ichinomiya,, R. Igarashi,, K. Iwashita,, P. R. Juvvadi,, M. Kato,, Y. Kato,, T. Kin,, A. Kokubun,, H. Maeda,, N. Maeyama,, J. -i. Maruyama,, H. Nagasaki,, T. Nakajima,, K. Oda,, K. Okada,, I. Paulsen,, K. Sakamoto,, T. Sawano,, M. Takahashi,, K. Takase,, Y. Terabayashi,, J. R. Wortman,, O. Yamada,, Y. Yamagata,, H. Anazawa,, Y. Hata,, Y. Koide,, T. Komori,, Y. Koyama,, T. Minetoki,, S. Suharnan,, A. Tanaka,, K. Isono,, S. Kuhara,, N. Ogasawara, and, H. Kikuchi. 2005. Genome sequencing and analysis of Aspergillus oryzae. Nature 438: 11571161.
56. Malagnac, F.,, A. Grégoire,, C. Goyon,, J. L. Rossignol, and, G. Faugeron. 1999. Masc2, a gene from Ascobolus encoding a protein with a DNA-methyltransferase activity in vitro, is dispensable for in vivo methylation. Mol. Microbiol. 31: 331338.
57. Martin, F.,, A. Aerts,, D. Ahrén,, A. Brun,, E. G. Danchin,, F. Duchaussoy,, J. Gibon,, A. Kohler,, E. Lindquist,, V. Pereda,, A. Salamov,, H. J. Shapiro,, J. Wuyts,, D. Blaudez,, M. Buée,, P. Brokstein,, B. Canbäck,, D. Cohen,, P. E. Courty,, P. M. Coutinho,, C. Delaruelle,, J. C. Detter,, A. Deveau,, S. Di-Fazio,, S. Duplessis,, L. Fraissinet-Tachet,, E. Lucic,, P. Frey-Klett,, C. Fourrey,, I. Feussner,, G. Gay,, J. Grimwood,, P. J. Hoegger,, P. Jain,, S. Kilaru,, J. Labbé,, Y. C. Lin,, V. Legué,, F. Le Tacon,, R. Marmeisse,, D. Melayah,, B. Montanini,, M. Muratet,, U. Nehls,, H. Niculita-Hirzel,, M. P. Oudot-Le Secq,, M. Peter,, H. Quesneville,, B. Rajashekar,, M. Reich,, N. Rouhier,, J. Schmutz,, T. Yin,, M. Chalot,, B. Henrissat,, U. Kües,, S. Lucas,, Y. Van de Peer,, G. K. Podila,, A. Polle,, P. J. Pukkila,, P. M. Richardson,, P. Rouzé,, I. R. Sanders,, J. E. Stajich,, A. Tunlid,, G. Tuskan, and, I. V. Grigoriev. 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452: 8892.
58. Maxwell, P. H., and, M. J. Curcio. 2007. Host factors that control long terminal repeat retrotransposons in Saccharomyces cerevisiae: implications for regulation of mammalian retroviruses. Eukaryot. Cell 6: 10691080.
59. Montiel, M. D.,, H. A. Lee, and, D. B. Archer. 2006. Evidence of RIP (repeat-induced point mutation) in transposase sequences of Aspergillus oryzae. Fungal Genet. Biol. 43: 439445.
60. O’Gorman, C. M.,, Fuller, H., T. Nakayashiki, H.,, N. Nishimoto,, K. Ikeda,, Y. Tosa, and, P. S. Dyer. 2009. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 472: 471474.
61. Perkins, D. D.,, B. S. Margolin,, E. U. Selker, and, S. D. Haedo. 1997. Occurrence of repeat induced point mutation in long segmental duplications of Neurospora. Genetics 147: 125136.
62. Rhounim, L.,, J.-L. Rossignol, and, G. Faugeron. 1992. Epimutation of repeated genes in Ascobolus immersus. EMBO J. 11: 44514457.
63. Rossignol, J.-L., and, G. Faugeron. 1994. MIP: an epigenetic gene silencing process in Ascobolus immersus, p. 179–191. In P. Meyer (ed.), Gene Silencing in Higher Plants and Related Phenomena in Other Eukaryotes. Springer Verlag, Heidelberg, Germany.
64. Selker, E. U. 1990. Premeiotic instability of repeated sequences in Neurospora crassa. Annu. Rev. Genet. 24: 579613.
65. Selker, E. U.,, E. B. Cambareri,, B. C. Jensen, and, K. R. Haack. 1987. Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell 51: 741752.
66. Selker, E. U., and, P. W. Garrett. 1988. DNA sequence duplications trigger gene inactivation in Neurospora crassa. Proc. Natl. Acad. Sci. USA 85: 68706874.
67. Selker, E. U.,, N. A. Tountas,, S. H. Cross,, B. S. Margolin,, J. G. Murphy,, A. P. Bird, and, M. Freitag. 2003. The methylated component of the Neurospora crassa genome. Nature 422: 893897.
68. Slotkin, R. K., and, R. Martienssen. 2007. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8: 272285.
69. Takehashi, T.,, Y. Senou, and, Y. Koyama. 2006. Construction of large-scale genomic DNA deletions in the koji mold Aspergillus sojae, abstr. VIIp-17. Abstr. 8th Eur. Conf. Fungal Genet.
70. Thon, M. R.,, S. L. Martin,, S. Goff,, R. A. Wing, and, R. A. Dean. 2004. BAC end sequences and a physical map reveal transposable element content and clustering patterns in the genome of Magnaporthe grisea. Fungal Genet. Biol. 41: 657666.
71. Thon, M. R.,, H. Pan,, S. Diener,, J. Papalas,, A. Taro,, T. K. Mitchell, and, R. Dean. 2006. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Mangaporthe oryzae. Genome Biol. 7: R16.
72. Touchon, M., and, E. P. C. Rocha. 2007. Causes of insertion sequence abundance in prokaryotic genomes. Mol. Biol. Evol. 24: 969981.
73. Walz, M., and, U. Kück. 1995. Transformation of Sordaria macrospora to hygromycin B resistance: characterization of transformants by electrophoretic karyotyping and tetrad analysis. Curr. Genet. 29: 8895.
74. Wicker, T.,, F. Sabot,, A. Hua-Van,, J. L. Bennetzen,, P. Capy,, B. Chalhoub,, A. Flavell,, P. Leroy,, M. Morgante,, O. Panaud,, E. Paux,, P. SanMiguel, and, A. H. Schulman. 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8: 973982.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error