Chapter 11 : Meiotic -Sensing and Silencing in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Meiotic -Sensing and Silencing in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap11-2.gif


Before any genetic exchange can take place between the chromosomes participating in meiosis, the molecules must first physically pair. The process of meiotic long-distance pairing must involve -sensing between chromosomal segments, but the relationship between these kinds of sensing and that of the -sensing that activates meiotic silencing is unknown. This chapter considers the -sensing that is involved in the early evaluation of every chromosomal DNA segment and the one involved in meiotic silencing as being the same. The -sensing between the genomes participating in meiosis occurs concomitantly with the coalignment of homologous chromosomes and requires extensive searching and satisfaction of stringent molecular homology criteria before recombination is allowed. Understanding meiotic silencing in requires knowledge about the life cycle of . The pairs of homologous chromosomes of will first undergo premeiotic DNA replication, generating sister chromatids attached along their length by cohesin. The participating parental nuclei will then fuse at karyogamy, generating a diploid nucleus. In , testing the involvement of genes in meiotic silencing is not straightforward. The diploid nature of the meiotic cell makes it difficult to identify recessive alleles in genes involved in the process. The ancient origins of meiotic silencing in all of its current manifestations are likely grounded in RNAi-mediated genome defense mechanisms. The study of meiotic -sensing and meiotic silencing is important not only from a mechanistic perspective but also from an evolutionary point of view.

Citation: Aramayo R, Pratt R. 2010. Meiotic -Sensing and Silencing in , p 132-144. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Genome defense mechanisms in the life cycle of has two mating types, and . Sexual spores (ascospores) are formed when strains of opposite mating type mate and undergo sex. Germinated ascospores form mycelia from which asexual spores (conidia) are produced. Mating occurs when, in response to nitrogen starvation, a strain (either or ) forms a protoperithecium (female element) that is fertilized by a male element of the opposite mating type to initiate perithecium development. After fertilization, the male- and the female-derived nuclei coexist in a heterokaryotic tissue and divide mitotically until they are sorted into a dikaryotic tissue (dikaryotic cells contain only one nucleus of each mating type). The nuclei then pair and undergo a series of synchronous mitoses until the tip of the hyphal cell in which they reside bends to form a hook-shaped cell called a crozier. One crozier will originate one ascus, containing eight ascospores. The time and places in the life cycle where quelling, RIP, meiotic -sensing, and meiotic silencing occur are indicated. Homologs pair inside the only diploid nucleus present in the zygote, immediately after karyogamy. The oval representing a diploid nucleus shows only one pair of chromosomes in the process of sensing. (Adapted from 633–651, 2007.)

Citation: Aramayo R, Pratt R. 2010. Meiotic -Sensing and Silencing in , p 132-144. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Meiosis, meiotic -sensing, and meiotic silencing. (A) Homologous chromosomes are represented by the squiggly lines contained inside the dashed rectangles. The temporal stage during which the prekaryogamic events occur inside the haploid and nuclei is represented by the horizontal dashed line. The stages where cell division occurs are indicated by vertical lines. The active comparison between chromosomal regions that occurs during meiotic -sensing and recombination is represented by the vertical dashed lines connecting the homologous chromosomes participating in the process. The clear region located on one chromosome represents a transposable or an insertion element. The small squiggly lines represent a hypothetical diffusible signal containing the sequence information from the unpaired region. Meiotic silencing uses this sequence information to silence homologous regions. (B) Depiction of the close connection seen in between meiotic -sensing and silencing. The resultant phenotypic output, which may or may not reveal the result of meiotic gene silencing, can be detected by the use of appropriate reporters, which, according to their nature can affect the color and/or the shape of the ascospores product of the cross. The close temporal and developmental connection between meiosis and spore formation makes of one of the most, if not the most powerful model system available for studying the molecular mechanisms behind meiotic sensing. See the text for more details.

Citation: Aramayo R, Pratt R. 2010. Meiotic -Sensing and Silencing in , p 132-144. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Meiotic silencing in : detection and suppression. Simplified views of the genetic composition of the participants in, and of the predicted phenotypic outputs of, several different crosses are presented using as a reporter gene. (A) In crosses where the diploid is / / , silencing of the reporter gene is not activated due to the lack of unpaired chromatin/DNA. As a result, the sole functional copy of can complement the heterozygous condition, which results in the production of wild-type spindle-shaped ascospores. This observation establishes that the product of acts before cellularization and that all spores, regardless of their individual genotypes, are spindle shaped. (B) As expected, in crosses where the diploid is / / , all spores are round, which establishes that it is the product of that controls spore shape. (C to F) A box represents the diploid stage. Inside it, only one homologous chromosome pair is depicted with the and the loci indicated. A predicted ascus product of the cross is shown to the right of the diploid cell. Arrows represent SAD-1 activity, and bars represent silencing. The thickness of these lines represents relative levels of silencing or activity. (C) Unpaired resulting in silencing. (D) Unpaired ectopic resulting in -silencing. (E) In the absence of functional product of , development stops at the pachytene stage of meiosis I. This makes the evaluation of the presence or absence of silencing by use of impossible. (F) The dominance of the allele can be suppressed in crosses heterozygous for . See the text for details.

Citation: Aramayo R, Pratt R. 2010. Meiotic -Sensing and Silencing in , p 132-144. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

A model for meiotic silencing. An ascus at the pachytene stage of meiosis I is presented. Inside this cell, the meiotic nucleus, delineated by its nuclear membrane, apparently remains intact and is surrounded by a perinuclear structure that supports the attachment of components of the meiotic silencing apparatus. Inside the nucleus unpaired DNA (not paired DNA) induces meiotic silencing of homologous regions. The degree of unpairing determines the strength of the induction step, which presumably involves the synthesis of aberrant RNA (aRNA) and its conversion to double-stranded RNA (dsRNA) by the SAD-1 RdRP. The presence of dsRNA triggers the initiation of the meiotic RNA silencing process, which is composed of the following steps: the conversion of the dsRNA trigger into siRNAs via the SMS-3 Dicer (initiation step); the use of guide RNAs (gRNAs) as primers and single-stranded RNA (ssRNA) as a template by SAD-1 RdRP to generate dsRNA (amplification cycle); the incorporation of the gRNAs generated by both the initiation step and the amplification cycles into the RNA-inducing silencing complex (RISC), to direct the endonucleolytic cleavage of mRNA or ssRNA (effector cycle). It is possible that SAD-1 and SMS-2 maintain the silencing by participating in complexes related to the RdRP and the RNA-induced transcriptional silencing complexes detected in , respectively.

Citation: Aramayo R, Pratt R. 2010. Meiotic -Sensing and Silencing in , p 132-144. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alexander, W. G.,, N. B. Raju,, H. Xiao,, T. M. Hammond,, T. D. Perdue,, R. L. Metzenberg,, P. J. Pukkila, and, P. K. Shiu. 2008. DCL-1 colocalizes with other components of the MSUD machinery and is required for silencing. Fungal Genet. Biol. 45: 719727.
2. Alleman, M.,, L. Sidorenko,, K. McGinnis,, V. Seshadri,, J. E. Dorweiler,, J. White,, K. Sikkink, and, V. L. Chandler. 2006. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442: 295298.
3. Anantharaman, V.,, E. V. Koonin, and, L. Aravind. 2002. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 30: 14271464.
4. Aramayo, R., and, R. L. Metzenberg. 1996. Meiotic transvection in fungi. Cell 86: 103113.
5. Aramayo, R.,, Y. Peleg,, R. Addison, and, R. Metzenberg. 1996. Asm-1 +, a Neurospora crassa gene related to transcriptional regulators of fungal development. Genetics 144: 9911003.
6. Aravind, L.,, H. Watanabe,, D. J. Lipman, and, E. V. Koonin. 2000. Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc. Natl. Acad. Sci. USA 97: 1131911324.
7. Baarends, W. M.,, E. Wassenaar,, R. van der Laan,, J. Hoogerbrugge,, E. Sleddens-Linkels,, J. H. Hoeijmakers,, P. de Boer, and, J. A. Grootegoed. 2005. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol. Cell. Biol. 25: 10411053.
8. Bean, C. J.,, C. E. Schaner, and, W. G. Kelly. 2004. Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans. Nat. Genet. 36: 100105.
9. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. Paietta,, N. Plesofsky,, M. Plamann,, M. Goodrich-Tanrikulu,, U. Schulte,, G. Mannhaupt,, F. E. Nargang,, A. Radford,, C. Selitrennikoff,, J. E. Galagan,, J. C. Dunlap,, J. J. Loros,, D. Catcheside,, H. Inoue,, R. Aramayo,, M. Polymenis,, E. U. Selker,, M. S. Sachs,, G. A. Marzluf,, I. Paulsen,, R. Davis,, D. J. Ebbole,, A. Zelter,, E. R. Kalkman,, R. O’Rourke,, F. Bowring,, J. Yeadon,, C. Ishii,, K. Suzuki,, W. Sakai, and, R. J. Pratt. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68: 1108.
10. Bourc’his, D., and, T. H. Bestor. 2004. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431: 9699.
11. Bowring, F. J.,, P. J. Yeadon,, R. G. Stainer, and, D. E. Catcheside. 2006. Chromosome pairing and meiotic recombination in Neurospora crassa spo11 mutants. Curr. Genet. 50: 115123.
12. Breakspear, A., and, M. Momany. 2007. Aspergillus nidulans conidiation genes dewA, fluG, and stuA are differentially regulated in early vegetative growth. Eukaryot. Cell 6: 16971700.
13. Busby, T. M.,, K. Y. Miller, and, B. L. Miller. 1996. Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes. Genetics 143: 155163.
14. Cambareri, E. B.,, J. Helber, and, J. A. Kinsey. 1994. Tad1-1, an active LINE-like element of Neurospora crassa. Mol. Gen. Genet. 242: 658665.
15. Case, M. E. 1986. Genetical and molecular analyses of qa-2 transformants in Neurospora crassa. Genetics 113: 569587.
16. Case, M. E.,, M. Schweizer,, S. R. Kushner, and, N. H. Giles. 1979. Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc. Natl. Acad. Sci. USA 76: 52595263.
17. Catalanotto, C.,, G. Azzalin,, G. Macino, and, C. Cogoni. 2002. Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora. Genes Dev. 16: 790795.
18. Catalanotto, C.,, M. Pallotta,, P. ReFalo,, M. S. Sachs,, L. Vayssie,, G. Macino, and, C. Cogoni. 2004. Redundancy of the two dicer genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa. Mol. Cell. Biol. 24: 25362545.
19. Chandler, V. L.,, W. B. Eggleston, and, J. E. Dorweiler. 2000. Paramutation in maize. Plant Mol. Biol. 43: 121145.
20. Chandler, V. L., and, M. Stam. 2004. Chromatin conversations: mechanisms and implications of paramutation. Nat. Rev. Genet. 5: 532544.
21. Cogoni, C. 2001. Homology-dependent gene silencing mechanisms in fungi. Annu. Rev. Microbiol. 55: 381406.
22. Cogoni, C., and, G. Macino. 1999a. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399: 166169.
23. Cogoni, C., and, G. Macino. 1999b. Homology-dependent gene silencing in plants and fungi: a number of variations on the same theme. Curr. Opin. Microbiol. 2: 657662.
24. Cogoni, C., and, G. Macino. 2000. Post-transcriptional gene silencing across kingdoms. Curr. Opin. Genet. Dev. 10: 638643.
25. Cook, P. R. 1997. The transcriptional basis of chromosome pairing. J. Cell Sci. 110(Pt. 9): 10331040.
26. Davis, R. H., and, F. J. de Serres. 1970. Genetic and microbiological research techniques for Neurospora crassa, p. 79–143. In S. P. Colowick and, N. O. Kaplan (ed.), Metabolism of Amino Acids and Amines, vol. 17A. Academic Press, New York, NY.
27. DeLange, A. M., and, A. J. Griffiths. 1980a. Meiosis in Neurospora crassa. I. The isolation of recessive mutants defective in the production of viable ascospores. Genetics 96: 367378.
28. DeLange, A. M., and, A. J. Griffiths. 1980b. Meiosis in Neurospora crassa. II. Genetic and cytological characterization of three meiotic mutants. Genetics 96: 379398.
29. Dhawale, S. S., and, G. A. Marzluf. 1985. Transformation of Neurospora crassa with circular and linear DNA and analysis of the fate of the transforming DNA. Curr. Genet. 10: 205212.
30. Dodge, B. O. 1946. Self-sterility in “bisexual” heterocaryons of Neurospora. Bull. Torrey Bot. Club 73: 410416.
31. Dodge, B. O. 1935. The mechanics of sexual reproduction in Neurospora. Mycologia 27: 418438.
32. Dutton, J. R.,, S. Johns, and, B. L. Miller. 1997. StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans. EMBO J. 16: 57105721.
33. Freitag, M.,, L. M. Ciuffetti, and, E. U. Selker. 2001. Expression and visualization of green fluorescent protein (GFP) in Neurospora crassa. Fungal Genet. Newslett. 48: 1519.
34. Freitag, M.,, D. W. Lee,, G. O. Kothe,, R. J. Pratt,, R. Aramayo, and, E. U. Selker. 2004. DNA methylation is independent of RNA interference in Neurospora. Science 304: 1939.
35. Freitag, M.,, R. L. Williams,, G. O. Kothe, and, E. U. Selker. 2002. A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc. Natl. Acad. Sci. USA 99: 88028807.
36. Galagan, J. E.,, S. E. Calvo,, K. A. Borkovich,, E. U. Selker,, N. D. Read,, D. Jaffe,, W. FitzHugh,, L. J. Ma,, S. Smirnov,, S. Purcell,, B. Rehman,, T. Elkins,, R. Engels,, S. Wang,, C. B. Nielsen,, J. Butler,, M. Endrizzi,, D. Qui,, P. Ianakiev,, D. Bell-Pedersen,, M. A. Nelson,, M. Werner-Washburne,, C. P. Selitrennikoff,, J. A. Kinsey,, E. L. Braun,, A. Zelter,, U. Schulte,, G. O. Kothe,, G. Jedd,, W. Mewes,, C. Staben,, E. Marcotte,, D. Greenberg,, A. Roy,, K. Foley,, J. Naylor,, N. Stange-Thomann,, R. Barrett,, S. Gnerre,, M. Kamal,, M. Kamvysselis,, E. Mauceli,, C. Bielke,, S. Rudd,, D. Frishman,, S. Krystofova,, C. Rasmussen,, R. L. Metzenberg,, D. D. Perkins,, S. Kroken,, C. Cogoni,, G. Macino,, D. Catcheside,, W. Li,, R. J. Pratt,, S. A. Osmani,, C. P. DeSouza,, L. Glass,, M. J. Orbach,, J. A. Berglund,, R. Voelker,, O. Yarden,, M. Plamann,, S. Seiler,, J. Dunlap,, A. Radford,, R. Aramayo,, D. O. Natvig,, L. A. Alex,, G. Mannhaupt,, D. J. Ebbole,, M. Freitag,, I. Paulsen,, M. S. Sachs,, E. S. Lander,, C. Nusbaum, and, B. Birren. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422: 859868.
37. Handel, M. A. 2004. The XY body: a specialized meiotic chromatin domain. Exp. Cell Res. 296: 5763.
38. Herman, H.,, M. Lu,, M. Anggraini,, A. Sikora,, Y. Chang,, B. J. Yoon, and, P. D. Soloway. 2003. Trans allele methylation and paramutation-like effects in mice. Nat. Genet. 34: 199202.
39. Hickey, D. A. 1993. Molecular symbionts and the evolution of sex. J. Hered. 84: 410414.
40. Huynh, K. D., and, J. T. Lee. 2005. X-chromosome inactivation: a hypothesis linking ontogeny and phylogeny. Nat. Rev. Genet. 6: 410418.
41. Ivanovska, I., and, T. L. Orr-Weaver. 2006. Histone modifications and the chromatin scaffold for meiotic chromosome architecture. Cell Cycle 5: 20642071.
42. Johnson, T. 1978. Isolation and characterization of perithecial development mutants in Neurospora. Genetics 88: 2747.
43. Katayama, S.,, Y. Tomaru,, T. Kasukawa,, K. Waki,, M. Nakanishi,, M. Nakamura,, H. Nishida,, C. C. Yap,, M. Suzuki,, J. Kawai,, H. Suzuki,, P. Carninci,, Y. Hayashizaki,, C. Wells,, M. Frith,, T. Ravasi,, K. C. Pang,, J. Hallinan,, J. Mattick,, D. A. Hume,, L. Lipovich,, S. Batalov,, P. G. Engstrom,, Y. Mizuno,, M. A. Faghihi,, A. Sandelin,, A. M. Chalk,, S. Mottagui-Tabar,, Z. Liang,, B. Lenhard, and, C. Wahlestedt. 2005. Antisense transcription in the mammalian transcriptome. Science 309: 15641566.
44. Kim, S. Y., and, G. A. Marzluf. 1988. Transformation of Neurospora crassa with the trp-1 gene and the effect of host strain upon the fate of the transforming DNA. Curr. Genet. 13: 6570.
45. Kinsey, J. A. 1989. Restricted distribution of the Tad transposon in strains of Neurospora. Curr. Genet. 15: 271275.
46. Kinsey, J. A., and, J. Helber. 1989. Isolation of a transposable element from Neurospora crassa. Proc. Natl. Acad. Sci. USA 86: 19291933.
47. Kouzminova, E., and, E. U. Selker. 2001. dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora. EMBO J. 20: 43094323.
48. Kutil, B. L.,, K. Y. Seong, and, R. Aramayo. 2003. Unpaired genes do not silence their paired neighbors. Curr. Genet. 43: 425432.
49. Lee, D. W.,, R. J. Pratt,, M. McLaughlin, and, R. Aramayo. 2003. An argonaute-like protein is required for meiotic silencing. Genetics 164: 821828.
50. Lee, D. W.,, K. -Y. Seong,, R. J. Pratt,, K. Baker, and, R. Ara-mayo. 2004. Properties of unpaired DNA required for efficient silencing in Neurospora crassa. Genetics 167: 131150.
51. Lewis, E. B. 1954. The theory and application of a new method of detecting chromosomal rearrangements in Drosophila melanogaster. Am. Nat. 88: 225239.
52. Martienssen, R. A.,, M. Zaratiegui, and, D. B. Goto. 2005. RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet. 21: 450456.
53. Matzke, M. A., and, J. A. Birchler. 2005. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6: 2435.
54. Miao, V. P.,, M. Freitag, and, E. U. Selker. 2000. Short TpA-rich segments of the zeta-eta region induce DNA methylation in Neurospora crassa. J. Mol. Biol. 300: 249273.
55. Miller, K. Y.,, T. M. Toennis,, T. H. Adams, and, B. L. Miller. 1991. Isolation and transcriptional characterization of a morphological modifier: the Aspergillus nidulans stunted (stuA) gene. Mol. Gen. Genet. 227: 285292.
56. Miller, K. Y.,, J. Wu, and, B. L. Miller. 1992. StuA is required for cell pattern formation in Aspergillus. Genes Dev. 6: 17701782.
57. Mochizuki, K., and, M. A. Gorovsky. 2004. Small RNAs in genome rearrangement in Tetrahymena. Curr. Opin. Genet. Dev. 14: 181187.
58. Mylyk, O. M., and, S. F. Threlkeld. 1974. A genetic study of female sterility in Neurospora crassa. Genet. Res. 24: 91102.
59. Nolan, T.,, L. Braccini,, G. Azzalin,, A. De Toni,, G. Macino, and, C. Cogoni. 2005. The post-transcriptional gene silencing machinery functions independently of DNA methylation to repress a LINE1-like retrotransposon in Neurospora crassa. Nucleic Acids Res. 33: 15641573.
60. Okamoto, I.,, D. Arnaud,, P. Le Baccon,, A. P. Otte,, C. M. Disteche,, P. Avner, and, E. Heard. 2005. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438: 369373.
61. Pardue, M. L., and, P. G. DeBaryshe. 2003. Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu. Rev. Genet. 37: 485511.
62. Perkins, D. D. 1988. Comments on Metzenberg’s procedure for isolating unordered Neurospora asci. Fungal Genet. Newslett. 35: 29.
63. Perkins, D. D. 1966. Details for collection of asci as unordered groups of eight projected ascospores. Neurospora Newslett. 9: 11.
64. Pickford, A. S.,, C. Catalanotto,, C. Cogoni, and, G. Macino. 2002. Quelling in Neurospora crassa. Adv. Genet. 46: 277303.
65. Pratt, R. J.,, D. W. Lee, and, R. Aramayo. 2004. DNA methylation affects meiotic trans-sensing, not meiotic silencing, in Neurospora. Genetics 168: 19251935.
66. Prieto, P.,, P. Shaw, and, G. Moore. 2004. Homologue recognition during meiosis is associated with a change in chromatin conformation. Nat. Cell Biol. 6: 906908.
67. Raju, N. B. 1992. Genetic control of the sexual cycle in Neurospora. Mycol. Res. 96: 241262.
68. Raju, N. B. 1980. Meiosis and ascospore genesis in Neurospora. Eur. J. Cell Biol. 23: 208223.
69. Rassoulzadegan, M.,, V. Grandjean,, P. Gounon,, S. Vincent,, I. Gillot, and, F. Cuzin. 2006. RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse. Nature 441: 469474.
70. Rassoulzadegan, M.,, M. Magliano, and, F. Cuzin. 2002. Transvection effects involving DNA methylation during meiosis in the mouse. EMBO J. 21: 440450.
71. Romano, N., and, G. Macino. 1992. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6: 33433353.
72. Rountree, M. R., and, E. U. Selker. 1997. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev. 11: 23832395.
73. Selker, E. U. 1997. Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends Genet. 13: 296301.
74. Selker, E. U. 1990. Premeiotic instability of repeated sequences in Neurospora crassa. Annu. Rev. Genet. 24: 579613.
75. Shiu, P. K.,, D. Zickler,, N. B. Raju,, G. Ruprich-Robert, and, R. L. Metzenberg. 2006. SAD-2 is required for meiotic silencing by unpaired DNA and perinuclear localization of SAD-1 RNA-directed RNA polymerase. Proc. Natl. Acad. Sci. USA 103: 22432248.
76. Shiu, P. K. T.,, B. N. Raju,, D. Zickler, and, R. Metzenberg. 2001. Meiotic silencing by unpaired DNA. Cell 107: 905916.
77. Singer, M. J.,, B. A. Marcotte, and, E. U. Selker. 1995. DNA methylation associated with repeat-induced point mutation in Neurospora crassa. Mol. Cell. Biol. 15: 55865597.
78. Smith, D. A. 1975. A mutant affecting meiosis in Neurospora. Genetics 80: 125133.
79. Tamaru, H.,, X. Zhang,, D. McMillen,, P. B. Singh,, J. Nakayama,, S. I. Grewal,, C. D. Allis,, X. Cheng, and, E. U. Selker. 2003. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat. Genet. 34: 7579.
80. Tesse, S.,, A. Storlazzi,, N. Kleckner,, S. Gargano, and, D. Zickler. 2003. Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. Proc. Natl. Acad. Sci. USA 100: 1286512870.
81. Turner, J. M.,, S. K. Mahadevaiah,, P. J. Ellis,, M. J. Mitchell, and, P. S. Burgoyne. 2006. Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev. Cell 10: 521529.
82. Turner, J. M.,, S. K. Mahadevaiah,, O. Fernandez-Capetillo,, A. Nussenzweig,, X. Xu,, C. X. Deng, and, P. S. Burgoyne. 2005. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat. Genet. 37: 4147.
83. Vigfusson, N. V., and, J. Weijer. 1972. Sexuality in Neurospora crassa. II. Genes affecting the sexual development cycle. Genet. Res. 19: 205211.
84. Volpe, T. A.,, C. Kidner,, I. M. Hall,, G. Teng,, S. I. Grewal, and, R. A. Martienssen. 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297: 18331837.
85. Weijer, J., and, N. V. Vigfusson. 1972. Sexuality in Neurospora crassa. I. Mutations to male sterility. Genet. Res. 19: 191204.
86. Wendel, U.,, H. Wentrup, and, H. W. Rudiger. 1975. Maple syrup urine disease: analysis of branched chain ketoacid decarboxylation in cultured fibroblasts. Pediatr. Res. 9: 709717.
87. Wu, C. T., and, J. R. Morris. 1999. Transvection and other homology effects. Curr. Opin. Genet. Dev. 9: 237246.
88. Wu, J., and, B. L. Miller. 1997. Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression. Mol. Cell. Biol. 17: 61916201.
89. Zickler, D. 2006. From early homologue recognition to synaptonemal complex formation. Chromosoma 115: 158174.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error