Chapter 18 : Hyphal Growth and Polarity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Hyphal Growth and Polarity, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap18-2.gif


This chapter summarizes the progress achieved toward understanding the organization of fungal hyphae and the cellular systems involved in hyphal morphogenesis. Particular attention is paid to the mechanisms that have been implicated in the regulation of polarized growth and septum formation in filamentous fungi. Finally, the intriguing question of how morphogenetic regulatory systems may have evolved in the fungal kingdom is briefly addressed. Hyphal growth encompasses several different morphogenetic processes. Foremost among these is the establishment and maintenance of a stable axis of polarized growth. As a result, cell surface expansion and cell wall deposition are confined to a discrete location that ultimately becomes the hyphal tip. Genetic analyses demonstrate that Bni1 is absolutely essential for the establishment of hyphal polarity in . The importance of understanding the molecular mechanisms underlying polarized hyphal growth cannot be understated. The genetic tractability of filamentous fungi such as and affords a tremendous opportunity to elucidate these mechanisms and to acquire insight that might be relevant to neurological disorders and other motor diseases. The use of increasingly sophisticated microscopy techniques has revealed the subcellular organization of hyphal tip cells and, in particular, emphasized the role of the Spitzenkörper in polarized hyphal growth. Future experiments that exploit genomic and proteomic tools will undoubtedly provide new insights that test the validity of this hypothesis and reveal the key symmetry-breaking event(s) that lead to polarized hyphal growth.

Citation: Harris S. 2010. Hyphal Growth and Polarity, p 238-259. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Organization of growing hyphae at the edge of a mycelial colony. Shown is the advancing edge of an (strain FGSC9716) colony growing on Vogel’s minimal medium supplemented with histidine. Thick white arrows indicate dominant extending hyphae. Thin black arrows show examples of secondary lateral branches. Note that branch emergence is suppressed in the immediate vicinity of hyphal tips.

Citation: Harris S. 2010. Hyphal Growth and Polarity, p 238-259. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

The organization of hyphal tip cells and subapical cells is shown through a schematic depiction of an extending hypha. Note the asymmetric organization of the hyphal tip cell, whereas the subapical cell remains uniformly organized until a new tip (i.e., the incipient branch) is formed. In hyphal tip cells, nuclei (nuc) exhibit a gradient of mitosis, with condensed mitotic nuclei located proximal to the tip. In addition, vacuoles (vac) and endomembranes (G/ER) are more fragmented near the tip. Finally, the tip also houses the Spitzenkörper (SPK) and the polarisome (pol). The enlarged depiction of the hyphal tip shows the exocyst (exo), microtubules (mTs), actin filaments (mFs), and actin patches (AcP). In the subapical cell, mitosis is blocked until a new branch emerges. At that time, nuclei proximal to the branch site resume mitosis. See the text for further details.

Citation: Harris S. 2010. Hyphal Growth and Polarity, p 238-259. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Model for the coordination of polarity establishment with growth by monomeric GTPases. (Left) Prior to receiving a strong growth signal (e.g., glucose), Ras is in an inactive GDP state that is unable to activate Rac1 or Cdc42. As a result, the latter GTPases (dots) are uniformly distributed. (Right) Upon reception of a strong growth signal, activated Ras (i.e., Ras-GTP) triggers the activation of Rac1 and Cdc42. Stochastic fluctuations in Rac1-GTP and/or Cdc42-GTP levels lead to local asymmetries in what was initially a uniform distribution. Feedback loops reinforce these asymmetries until a threshold is reached at a given site that then becomes the dominant polarity axis (black arrow). Both endocytic recycling of surface components and enhanced Rac1/Cdc42 GAP activity at nonpolarization sites likely play a key role in reinforcing the polarity axis.

Citation: Harris S. 2010. Hyphal Growth and Polarity, p 238-259. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alspaugh, J. A.,, L. M. Carvallo,, J. R. Perfect, and, J. Heitman. 2000. RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol. Microbiol. 36: 352365.
2. Alvarez, F. J.,, L. M. Douglas, and, J. B. Konopka. 2007. Sterol-rich plasma membrane domains in fungi. Eukaryot. Cell 6: 755763.
3. Araujo-Bazan, L.,, M. A. Penalva, and, E. A. Espeso. 2008. Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol. Microbiol. 67: 891905.
4. Arias-Romero, L. E., and, J. Chernoff. 2008. A tale of two Paks. Biol. Cell 100: 97108.
5. Arimura, N., and, K. Kaibuchi. 2007. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat. Rev. Neurosci. 8: 194205.
6. Ayad-Durieux, Y.,, P. Knechtle,, S. Goff,, F. Dietrich, and, P. Philippsen. 2000. A PAK-like protein kinase is required for maturation of young hyphae and septation in the filamentous ascomycete Ashbya gossypii. J. Cell Sci. 113: 45634575.
7. Bahn, Y. S.,, C. Xue,, A. Idnurm,, J. C. Rutherford,, J. Heitman, and, M. E. Cardenas. 2007. Sensing the environment: lessons from fungi. Nat. Rev. Microbiol. 5: 5769.
8. Barelle, C. J.,, E. A. Bohula,, S. J. Kron,, D. Wessels,, D. R. Soll,, A. Schafer,, A. J. Brown, and, N. A. Gow. 2003. Asynchronous cell cycle and asymmetric vacuolar inheritance in true hyphae of Candida albicans. Eukaryot. Cell 2: 398410.
9. Barelle, C. J.,, M. L. Richard,, C. Gaillardin,, N. A. Gow, and, A. J. Brown. 2006. Candida albicans VAC8 is required for vacuolar inheritance and normal hyphal branching. Eukaryot. Cell 5: 359367.
10. Bartnicki-Garcia, S. 2002. Hyphal tip growth: outstanding questions, p. 29–58. In H. D. Osiewacz (ed.), Molecular Biology of Fungal development. Marcel Dekker, New York, NY.
11. Bartnicki-Garcia, S.,, D. D. Bartnicki,, G. Gierz,, R. Lopez-Franco, and, C. E. Bracker. 1995. Evidence that Spitzenkörper behavior determines the shape of a fungal hypha: a test of the hyphoid model. Exp. Mycol. 19: 153159.
12. Bassilana, M., and, R. A. Arkowitz. 2006. Rac1 and Cdc42 have different roles in Candida albicans development. Eukaryot. Cell 5: 321329.
13. Bassilana, M.,, J. Hopkins, and, R. A. Arkowitz. 2005. Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth. Eukaryot. Cell 4: 588603.
14. Bauer, Y.,, P. Knechtle,, J. Wendland,, H. Heifer, and, P. Philippsen. 2004. A Ras-like GTPase is involved in hyphal growth guidance in the filamentous fungus Ashbya gossypii. Mol. Biol. Cell 15: 46224632.
15. Beauvais, A.,, J. M. Bruneau,, P. C. Mol,, M. J. Buitrago,, R. Legrand, and, J. P. Latge. 2001. Glucan synthase complex of Aspergillus fumigatus. J. Bacteriol. 183: 22732279.
16. Bluhm, B. H.,, X. Zhao,, J. E. Flaherty,, J. R. Xu, and, L. D. Dunkle. 2007. RAS2 regulates growth and pathogenesis in Fusarium graminearum. Mol. Plant-Microbe Interact. 20: 627636.
17. Boone, C.,, H. Bussey, and, B. J. Andrews. 2007. Exploring genetic interactions and networks with yeast. Nat. Rev. Genet. 8: 437449.
18. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. Paietta,, N. Plesofsky,, M. Plamann,, M. Goodrich-Tanrikulu,, U. Schulte,, G. Mannhaupt,, F. E. Nargang,, A. Radford,, C. Selitrennikoff,, J. E. Galagan,, J. C. Dunlap,, J. J. Loros,, D. Catcheside,, H. Inoue,, R. Aramayo,, M. Polymenis,, E. U. Selker,, M. S. Sachs,, G. A. Marzluf,, I. Paulsen,, R. Davis,, D. J. Ebbole,, A. Zelter,, E. R. Kalkman,, R. O’Rourke,, F. Bowring,, J. Yeadon,, C. Ishii,, K. Suzuki,, W. Sakai, and, R. Pratt. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68: 1108.
19. Boyce, K. J., and, A. Andrianopoulos. 2007. A p21-activated kinase is required for conidial germination in Penicillium marneffei. PLoS Pathog. 3: 15561569.
20. Boyce, K. J.,, M. J. Hynes, and, A. Andrianopoulos. 2001. The CDC42 homolg of the dimorphic fungus Penicillium marneffei is required for correct cell polarization during growth but not development. J. Bacteriol. 183: 34473457.
21. Boyce, K. J.,, M. J. Hynes, and, A. Andrianopoulos. 2003. Control of morphogenesis and actin localization by the Penicillium marneffei RAC homolog. J. Cell Sci. 116: 12491260.
22. Boyce, K. J.,, M. J. Hynes, and, A. Andrianopoulos. 2005a. The Ras and Rho GTPases genetically interact to co-ordinately regulate cell polarity during development in Penicillium marneffei. Mol. Microbiol. 55: 14871501.
23. Boyce, K. J.,, H. Chang,, C. A. D’Souza, and, J. W. Kronstad. 2005b. A Ustilago maydis septin is required for filamentous growth in culture and for full symptom development on maize. Eukaryot. Cell 4: 20442056.
24. Brand, A.,, S. Shanks,, V. M. Duncan,, M. Yang,, K. Mackenzie, and, N. A. Gow. 2007. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr. Biol. 17: 347352.
25. Brand, A.,, A. Vacharaska,, C. Bendel,, J. Norton,, P. Haynes,, M. Henry-Stanley,, C. Wells,, K. Ross,, N. A. Gow, and, C. A. Gale. 2008. An internal polarity landmark is important for externally induced hyphal behaviors in Candida albicans. Eukaryot. Cell 7: 712720.
26. Bruno, K. S.,, R. Aramayo,, P. F. Minke,, R. L. Metzenberg, and, M. Plamann. 1996a. Loss of growth polarity and mislocalization of septa in a Neurospora mutant altered in the regulatory subunit of cAMP-dependent protein kinase. EMBO J. 15: 57725782.
27. Bruno, K. S.,, J. H. Tinley,, P. F. Minke, and, M. Plamann. 1996b. Genetic interactions among cytoplasmic dynein, dynactin, and nuclear distribution mutants of Neurospora crassa. Proc. Natl. Acad. Sci. USA 93: 47754780.
28. Castillo-Lluva, S.,, I. Alvarez-Tabares,, I. Weber,, G. Steinberg, and, J. Perez-Martin. 2007. Sustained cell polarity and virulence in the phytopathogenic fungus Ustilago maydis depends on an essential cyclin-dependent kinase from the Cdk5/Pho80 family. J. Cell Sci. 120: 15841595.
29. Chang, E. C., and, M. R. Philips. 2006. Spatial segregation of Ras signaling: new evidence from fission yeast. Cell Cycle 5: 19361939.
30. Chang, E. C.,, M. Barr,, Y. Wang,, V. Jung,, H. P. Xu, and, M. H. Wigler. 1994. Cooperative interaction of S. pombe proteins required for mating and morphogenesis. Cell 79: 131141.
31. Chang, F., and, M. Peter. 2003. Yeasts make their mark. Nat. Cell Biol. 5: 294299.
32. Chant, J. 1999. Cell polarity in yeast. Annu. Rev. Cell Dev. Biol. 15: 365391.
33. Chant, J., and, L. Stowers. 1995. GTPase cascades choreographing cellular behavior: movement, morphogenesis, and more. Cell 81: 14.
34. Chater, K. F., and, G. Chandra. 2006. The evolution of development in Streptomyces analyzed by genome comparisons. FEMS Microbiol. Rev. 30: 651672.
35. Chen, C., and, M. B. Dickman. 2002. Colletotrichum trifolii TB3 kinase, a COT1 homolog, is light inducible and becomes localized in the nucleus during hyphal elongation. Eukaryot. Cell 1: 626633.
36. Chen, C., and, M. B. Dickman. 2004. Dominant active Rac and dominant negative Rac revert the dominant active Ras phenotype in Colletotrichum trifolii by distinct signaling pathways. Mol. Microbiol. 51: 14931507.
37. Chen, C.,, Y. S. Ha,, J. Y. Min,, S. D. Memmott, and, M. B. Dickman. 2004. Cdc42 is required for proper growth and development in the fungal pathogen Colletotrichum trifolii. Eukaryot. Cell 5: 155166.
38. Cheng, J.,, T. S. Park,, A. S. Fischl, and, X. S. Ye. 2001. Cell cycle progression and cell polarity require sphingolipid biosynthesis in Aspergillus nidulans. Mol. Cell. Biol. 21: 61986209.
39. Cheung, A. Y., and, H. M. Wu. 2008. Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu. Rev. Plant Biol. 59: 547572.
40. Chhabra, E. S., and, H. N. Higgs. 2007. The many faces of actin: matching assembly factors with cellular structures. Nat. Cell Biol. 9: 11101121.
41. Christensen, M. J.,, R. J. Bennett,, H. A. Ansari,, H. Koga,, R. D. Johnson,, G. T. Bryan,, W. R. Simpson,, J. P. Koolaard,, E. M. Nickless, and, C. R. Voisey. 2008. Epichloe endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet. Biol. 45: 8493.
42. Clutterbuck, A. J. 1970. Synchronous nuclear division and septation in Aspergillus nidulans. J. Gen. Microbiol. 60: 133135.
43. Crampin, H.,, K. Finley,, M. Gerami-Nejad,, H. Court,, C. Gale,, J. Berman, and, P. Sudbery. 2005. Candida albicans hyphae have a Spitzenkörper that is distinct from the polar-isome found in yeast and pseudohyphae. J. Cell Sci. 118: 29352947.
44. Das, M.,, D. J. Wiley,, S. Medina,, H. A. Vincent,, M. Larrea,, A. Oriolo, and, F. Verde. 2007. Regulation of cell diameter, For3p localization, and cell symmetry by fission yeast RhoGAP Rga4p. Mol. Biol. Cell 18: 20902101.
45. Douglas, L. M.,, F. J. Alvarez,, C. McCreary, and, J. B. Konopka. 2005. Septin function in yeast model systems and pathogenic fungi. Eukaryot. Cell 4: 15031512.
46. Dovas, A., and, J. R. Couchman. 2005. RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem. J. 390: 19.
47. Dunkler, A., and, J. Wendland. 2007. Candida albicans Rho-type GTPase-encoding genes required for polarized cell growth and cell separation. Eukaryot. Cell 6: 844854.
48. Egan, M. J.,, Z. Y. Wang,, M. A. Jones,, N. Smirnoff, and, N. J. Talbot. 2007. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc. Natl. Acad. Sci. USA 104: 1177211777.
49. Fiardh, K. 2003. Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol. Microbiol. 49: 15231536.
50. Fiddy, C., and, A. P. J. Trinci. 1976. Mitosis, septation, branching, and the duplication cycle in Aspergillus nidulans. J. Gen. Microbiol. 97: 169184.
51. Fillinger, S.,, M. K. Chaveroche,, K. Shimizu,, N. Keller, and, C. d’Enfert. 2002. cAMP and ras signaling independently control spore germination in the filamentous fungus Aspergillus nidulans. Mol. Microbiol. 44: 10011016.
52. Finger, F. P.,, T. E. Hughes, and, P. Novick. 1998. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92: 559571.
53. Fischer-Parton, S.,, R. M. Parton,, P. C. Hickey,, J. Dijksterhuis,, H. A. Atkinson, and, N. D. Read. 2000. Confocal microscopy of FM4-64 as a tool for analyzing endocytosis and vesicle trafficking in living fungal hyphae. J. Microsc. 198: 246259.
54. Foreman, J.,, V. Demidchik,, J. H. Bothwell,, P. Mylona,, H. Miedema,, M. A. Torres,, P. Linstead,, S. Costa,, C. Brown-lee,, J. D. Jones,, J. M. Davies, and, L. Dolan. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442446.
55. Fortwendel, J. R.,, W. Zhao,, R. Bhabhra,, S. Park,, D. S. Perlin,, D. S. Askew, and, J. C. Rhodes. 2005. A fungus-specific Ras homologue contributes to the hyphal growth and virulence of Aspergillus fumigatus. Eukaryot. Cell 4: 19821989.
56. Fuchs, U.,, G. Hause,, I. Schuchardt, and, G. Steinberg. 2006. Endocytosis is essential for pathogenic development in the corn smut fungus Ustilago maydis. Plant Cell 18: 20662081.
57. Gabriela Roca, M.,, N. D. Read, and, A. E. Wheals. 2005. Conidial anastomosis tubes in filamentous fungi. FEMS Microbiol. Lett. 249: 191198.
58. Gale, C.,, M. Gerami-Nejad,, M. McClellan,, S. Vandoninck,, M. S. Longtine, and, J. Berman. 2001. Candida albicans Int1p interacts with the septin ring in yeast and hyphal cells. Mol. Biol. Cell 12: 35383549.
59. Gao, X. D.,, J. P. Caviston,, S. E. Tcheperegrine, and, E. Bi. 2004. Pxl1p, a paxillin-like protein in Saccharomyces cerevisiae, may coordinate Cdc42p and Rho1p functions during polarized growth. Mol. Biol. Cell 15: 39773985.
60. Garcia, P.,, V. Tajadura,, I. Garcia, and, Y. Sanchez. 2006. Role of the Rho GTPases and Rho-GEFs in the regulation of cell shape and integrity in fission yeast. Yeast 23: 10311043.
61. Girhardt, M. 1957. Der Spitzenkörper von Polystictus versicolor. Planta 50: 4759.
62. Gladfelter, A. S. 2006a. Nuclear anarchy: asynchronous mitosis in multinucleated fungal hyphae. Curr. Opin. Microbiol. 9: 547552.
63. Gladfelter, A. S. 2006b. Control of filamentous fungal cell shape by septins and formins. Nat. Rev. Microbiol. 4: 223229.
64. Gladfelter, A. S.,, A. K. Hungerbuehler, and, P. Philippsen. 2006. Asynchronous nuclear division cycles in multinucleated cells. J. Cell Biol. 172: 347362.
65. Glass, N. L.,, C. Rasmussen,, M. G. Roca, and, N. D. Read. 2004. Hyphal homing, fusion, and mycelial interconnectedness. Trends Microbiol. 12: 135141.
66. Gonzalez-Novo, A.,, J. Correa-Bordes,, L. Labrador,, M. Sanchez,, C. R. Vasquez de Aldana, and, J. Jimenez. 2008. Sep7p is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth. Mol. Biol. Cell 19: 15091518.
67. Gorovits, R.,, K. A. Sjollema,, J. H. Sietsma, and, O. Yarden. 2000. Cellular distribution of COT1 kinase in Neurospora crassa. Fungal Genet. Biol. 30: 6370.
68. Gow, N. A. R. 2004. New angles in mycology: studies in directional growth and directional motility. Mycol. Res. 108: 513.
69. Grinberg, A., and, I. B. Heath. 1997. Direct evidence for Ca 2+ regulation of hyphal branch induction. Fungal Genet. Biol. 22: 127139.
70. Grove, S. N., and, C. E. Bracker. 1970. Protoplasmic organization of hyphal tips among fungi: vesicles and Spitzenkörper. J. Bacteriol. 104: 9891009.
71. Guest, G. M.,, X. Lin, and, M. Momany. 2004. Aspergillus nidulans RhoA is involved in polar growth, branching, and cell wall synthesis. Fungal Genet. Biol. 41: 1322.
72. Guirland, C.,, S. Suzuki,, M. Kojima,, B. Lu, and, J. Q. Zheng. 2004. Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron 42: 5162.
73. Gundelfinger, E. D.,, M. M. Kessels, and, B. Qualmann. 2003. Temporal and spatial coordination of exocytosis and endocytosis. Nat. Rev. Mol. Cell Biol. 4: 127139.
74. Ha, Y. S.,, Memmott, S. D., and, M. B. Dickman. 2003. Functional analysis of Ras in Colletotrichum trifolii. FEMS Microbiol. Lett. 226: 315321.
75. Hall, A. 2005. Rho GTPases and the control of cell behavior. Biochem. Soc. Trans. 33: 891895.
76. Han, G.,, B. Liu,, J. Zhang,, W. Zuo,, N. R. Morris, and, X. Xiang. 2001. The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect micro-tubule dynamics. Curr. Biol. 11: 719724.
77. Hardham, A. 2001. Cell biology of fungal infection of plants, p. 91–129. In R. J. Howard and, N. A. R. Gow (ed.), The Mycota. VIII. Biology of the Fungal Cell. Springer, Berlin, Germany.
78. Harispe, L.,, C. Portela,, C. Scazzocchio,, M. A. Penalva, and, L. Gorfinkiel. 2008. Ras GTPase-activating protein regulation of actin cytoskeleton and hyphal polarity in Aspergillus nidulans. Eukaryot. Cell 7: 141153.
79. Harris, S. D. 1997. The duplication cycle in Aspergillus nidulans. Fungal Genet. Biol. 22: 112.
80. Harris, S. D. 1999. Morphogenesis is coordinated with nuclear division in germinating Aspergillus nidulans conidiospores. Microbiology 145: 22472256.
81. Harris, S. D. 2001. Septum formation in Aspergillus nidulans. Curr. Opin. Microbiol. 4: 736739.
82. Harris, S. D. 2006. Cell polarity in filamentous fungi: shaping the mold. Int. Rev. Cytol. 251: 4177.
83. Harris, S. D., and, M. Momany. 2004. Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet. Biol. 41: 391400.
84. Harris, S. D.,, J. L. Morrell, and, J. E. Hamer. 1994. Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics 136: 517532.
85. Harris, S. D.,, L. Hamer,, K. E. Sharpless, and, J. E. Hamer. 1997. The Aspergillus nidulans sepA gene encodes an FH1/2 protein involved in cytokinesis and the maintenance of cellular polarity. EMBO J. 16: 34743483.
86. Harris, S. D.,, A. F. Hofmann,, H. W. Tedford, and, M. P. Lee. 1999. Identification and characterization of genes required for hyphal morphogenesis in the filamentous fungus Aspergillus nidulans. Genetics 151: 10151025.
87. Harris, S. D.,, N. D. Read,, R. W. Roberson,, B. Shaw,, S. Seiler,, M. Plamann, and, M. Momany. 2005. Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot. Cell 4: 225229.
88. Harris, S. D.,, G. Turner,, V. Meyer,, E. A. Espeso,, T. Specht,, N. Takeshita, and, K. Helmstedt. 2009. Morphology and development of Aspergillus nidulans: a complex puzzle. Fungal Genet. Biol. 46: S82S92.
89. Hausauer, D. L.,, M. Gerami-Nejad,, C. Kistler-Anderson, and, C. A. Gale. 2005. Hyphal guidance and invasive growth in Candida albicans require the Ras-like GTPase Rsr1p and its GTPase-activating protein Bud2p. Eukaryot. Cell 4: 12731286.
90. Heath, I. B., and, G. Steinberg. 1999. Mechanisms of hyphal tip growth: tube dwelling amoebae revisited. Fungal Genet. Biol. 28: 7993.
91. Heath, I. B.,, M. Bonham,, A. Akram, and, G. D. Gupta. 2003. The interrelationships of actin and hyphal tip growth in the ascomycete Geotrichum candidum. Fungal Genet. Biol. 38: 8597.
92. Helfer, H., and, A. S. Gladfelter. 2006. AgSwe1p regulates mitosis in response to morphogenesis and nutrients in multinucleated Ashbya gossypii cells. Mol. Biol. Cell 17: 44944512.
93. Hergovich, A.,, M. R. Stegert,, D. Schmitz, and, B. A. Hemmings. 2006. NDR kinases regulate essential cell processes from yeast to humans. Nat. Rev. Mol. Cell Biol. 7: 253264.
94. Hoch, H. C., and, R. C. Staples. 1983. Ultrastructural organization of non-differentiated uredospore germlings of Uromyces phaseoli variety typica. Mycologia 75: 795824.
95. Horio, T., and, B. R. Oakley. 2005. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol. Biol. Cell 16: 918926.
96. Howard, R. J. 1981. Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton, and endomembranes after freeze-substitution. J. Cell Sci. 48: 89103.
97. Hubbard, M. A., and, S. G. Kaminskyj. 2008. Rapid tip-directed movement of Golgi equivalents in growing Aspergillus nidulans hyphae suggests a mechanism for delivery of growth-related materials. Microbiology 154: 15441553.
98. Ibi, M.,, M. Katsuyama,, C. Fan,, K. Iwata,, T. Nishinaki,, T. Yokoyama, and, C. Yabe-Nishimura. 2006. NOX1/NADPH oxidase negatively regulates nerve growth factor-induced neurite outgrowth. Free Radic. Biol. Med. 40: 17851795.
99. Jackson, S. L., and, I. B. Heath. 1993. Roles of calcium ions in hyphal tip growth. Microbiol. Rev. 57: 367382.
100. James, T. Y.,, F. Kauff,, C. L. Schoch,, P. B. Matheny,, V. Hofstetter,, C. J. Cox,, G. Celio,, C. Gueidan,, E. Fraker,, J. Miadlikowska,, H. T. Lumbsch,, A. Rauhut,, V. Reeb,, A. E. Arnold,, A. Amtoft,, J. E. Stajich,, K. Hosaka,, G. -H. Sung,, D. Johnson,, B. O’Rourke,, M. Crockett,, M. Binder,, J. M. Curtis,, J. C. Slot,, Z. Wang,, A. W. Wilson,, A. Schusler,, J. E. Longcore,, K. O’Donnell,, S. Mozley-Stanbridge,, D. Porter,, P. M. Letcher,, M. J. Powell,, J. W. Taylor,, M. M. White,, G. W. Griffith,, D. R. Davies,, R. A. Humber,, J. B. Morton,, J. Sugiyama,, A. Y. Rossman,, J. D. Rogers,, D. H. Pfister,, D. Hewitt,, K. Hansen,, S. Hambleton,, R. A. Shoemaker,, J. Kohlmeyer,, B. Volkmann-Kohlmeyer,, R. A. Spotts,, M. Serdani,, P. W. Crous,, K. W. Hughes,, K. Matsuura,, E. Langer,, G. Langer,, W. A. Untereiner,, R. Lucking,, B. Budel,, D. M. Geiser,, A. Aptroot,, P. Diederich,, I. Schmitt,, M. Schultz,, R. Yahr,, D. S. Hibbett,, F. Lutzoni,, D. J. McLaughlin,, J. W. Spatafora, and, R. Vilgalys. 2006. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443: 818822.
101. Jaquenoud, M., and, M. Peter. 2000. Gic2p may link activated Cdc42p to components involved in actin polarization, including Bni1p and Bud6p (Aip3p). Mol. Cell. Biol. 20: 62446258.
102. Johns, S. A.,, A. C. Leeder,, M. Safaie, and, G. Turner. 2006. Depletion of Aspergillus nidulans cotA causes a severe polarity defect which is not suppressed by the nuclear migration mutation nudA2. Fungal Genet. Biol. 275: 593604.
103. Knaus, M.,, M. P. Pelli-Gulli,, F. von Drogen,, S. Springer,, M. Jaquenoud, and, M. Peter. 2007. Phosphorylation of Bem2p and Bem3p may contribute to local activation of Cdc42p at bud emergence. EMBO J. 26: 45014513.
104. Knechtle, P.,, F. Dietrich, and, P. Philippsen. 2003. Maximal polar growth potential depends on the polarisome component AgSpa2 in the filamentous fungus Ashbya gossypii. Mol. Biol. Cell 14: 41404154.
105. Knechtle, P.,, J. Wendland, and, P. Philippsen. 2006. The SH3/PH domain protein AgBoi1/2 collaborates with the Rho-type GTPase AgRho3 to prevent nonpolar growth at hyphal tips of Ashbya gossypii. Eukaryot. Cell 5: 16351647.
106. Knechtle, P.,, A. Kaufmann,, D. Cavicchioli, and, P. Philippsen. 2008. The paxillin-like protein AgPxl1 is required for apical branching and maximal hyphal growth in A. gossypii. Fungal Genet. Biol. 45: 829838.
107. Kondoh, O.,, Y. Tachibana,, Y. Ohya,, M. Arisawa, and, T. Watanabe. 1997. Cloning of the RHO1 gene from Candida albicans and its regulation of beta-1,3-glucan synthase. J. Bacteriol. 179: 77347741.
108. Konzack, S.,, P. E. Rischitor,, C. Enke, and, R. Fischer. 2005. The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol. Biol. Cell 16: 497506.
109. Kreis, T., and, R. Vale. 1995. Guidebook to the Cytoskeletal and Motor Proteins. Oxford University Press, New York, NY.
110. Leberer, E.,, D. Marcus,, I. D. Broadbent,, K. L. Clark,, D. Dignard,, K. Ziegelbauer,, A. Schmidt,, N. A. Gow,, A. J. Brown, and, D. Y. Thomas. 1996. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. USA 93: 1321713222.
111. Leberer, E.,, K. Ziegelbauer,, A. Schmidt,, D. Marcus,, D. Dignard,, J. Ash,, L. Johnson, and, D. Y. Thomas. 1997. Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr. Biol. 7: 539546.
112. Lee, N., and, J. W. Kronstad. 2002. ras2 controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis. Eukaryot. Cell 1: 954966.
113. Li, C. R.,, Y. M. Wang,, X. De Zheng,, H. Y. Liang,, J. C. Tang, and, Y. Wang. 2005. The formin family protein CaBni1p has a role in cell polarity control during both yeast and hyphal growth in Candida albicans. J. Cell Sci. 118: 26372648.
114. Li, C. R.,, R. T. Lee,, Y. M. Wang,, X. D. Zheng, and, Y. Wang. 2007. Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation. J. Cell Sci. 120: 18981907.
115. Li, L.,, C. Xue,, K. Bruno,, M. Nishimura, and, J. R. Xu. 2004. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Mol. Plant-Microbe Interact. 17: 547556.
116. Li, S.,, L. Du,, G. Yuen, and, S. D. Harris. 2006. Distinct ceramide synthases regulate polarized growth in the filamentous fungus Aspergillus nidulans. Mol. Biol. Cell 17: 12181227.
117. Lindsey, R., and, M. Momany. 2006. Septin localization across kingdoms: three themes with variations. Curr. Opin. Microbiol. 9: 559565.
118. Liu, X.,, N. Osherov,, R. Yamashita,, H. Brzeska,, E. D. Korn, and, G. S. May. 2001. Myosin I mutants with only 1% of wild-type actin-activated MgATPase activity retain essential in vivo function(s). Proc. Natl. Acad. Sci. USA 98: 91229127.
119. Longcore, J. E.,, A. P. Pessier, and, D. K. Nichols. 1999. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91: 219227.
120. Longtine, M. S.,, D. J. DeMarini,, M. L. Valencik,, O. S. Al-Awar,, H. Fares,, C. De Virgilio, and, J. R. Pringle. 1996. The septins: roles in cytokinesis and other processes. Curr. Opin. Cell Biol. 8: 106119.
121. Lopez-Franco, R., and, C. E. Bracker. 1996. Diversity and dynamics of the Spitzenkörper in growing tips of higher fungi. Protoplasma 195: 90111.
122. Lopez-Franco, R.,, S. Bartnicki-Garcia, and, C. E. Bracker. 1994. Pulsed growth of fungal hyphal tips. Proc. Natl. Acad. Sci. USA 91: 1222812232.
123. Mahlert, M.,, L. Leveleki,, A. Hlubek,, B. Sandrock, and, M. Bolker. 2006. Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis. Mol. Microbiol. 59: 567578.
124. Malavazi, I.,, C. P. Semighini,, M. R. Kress,, S. D. Harris, and, G. H. Goldman. 2006. Regulation of hyphal morphogenesis and the DNA damage response by the Aspergillus nidulans ATM homolog AtmA. Genetics 173: 99109.
125. Malhotra, V., and, S. Mayor. 2006. Cell biology: the Golgi grows up. Nature 441: 939940.
126. Marco, E.,, R. Wedlich-Soldner,, R. Li,, S. J. Altschuler, and, L. F. Wu. 2007. Endocytosis optimizes the dynamic localization of membrane proteins that regulate cortical polarity. Cell 129: 411422.
127. Markham, P. 1995. Organelles of filamentous fungi, p. 75–98. In N. A. R. Gow and, G. M. Gadd (ed.), The Growing Fungus. Chapman and Hall, London, United Kingdom.
128. Martin, R.,, A. Walther, and, J. Wendland. 2005. Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Eukaryot. Cell 4: 17121724.
129. Martin, S., and, J. B. Konopka. 2004. Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot. Cell 3: 675698.
130. Martin, S. G., and, F. Chang. 2006. Dynamics of the formin For3p in actin cable assembly. Curr. Biol. 16: 11611170.
131. McCusker, D.,, C. Denison,, S. Anderson,, T. A. Egelhofer,, J. R. Yates III,, S. P. Gygi, and, D. R. Kellogg. 2007. Cdk1 coordinates cell-surface growth with the cell cycle. Nat. Cell Biol. 9: 506515.
132. McGoldrick, C. A.,, C. Gruver, and, G. S. May. 1995. myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. J. Cell Biol. 128: 577587.
133. Meyer, V.,, M. Arentshorst,, C. A. van den Hondel, and, A. Ram. 2008. The polarisome component SpaA localizes to hyphal tips of Aspergillus niger and is important for polar growth. Fungal Genet. Biol. 45: 152164.
134. Mishra, N. C. 1977. Genetics and biochemistry of morphogenesis in Neurospora. Adv. Genet. 19: 341405.
135. Miyamoto, S.,, Y. Ohya,, Y. Sano,, S. Sakaguchi,, H. Iida, and, Y. Anraku. 1991. A DBL-homologous region of the yeast CLS4/ CDC24 gene product is important for Ca(2 +)-modulated bud assembly. Biochem. Biophys. Res. Commun. 181: 604610.
136. Momany, M. 2002. Polarity in filamentous fungi: establishment, maintenance, and new axes. Curr. Opin. Microbiol. 5: 580585.
137. Momany, M.,, P. J. Westfall, and, G. Abramowsky. 1999. Aspergillus nidulans swo mutants show defects in polarity establishment, polarity maintenance and hyphal morphogenesis. Genetics 151: 557567.
138. Mosch, H. U.,, R. L. Roberts, and, G. R. Fink. 1996. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93: 53525356.
139. Moseley, J. B., and, B. L. Goode. 2006. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol. Mol. Biol. Rev. 70: 605645.
140. Muller, P.,, J. D. Katzenberger,, G. Loubradou, and, R. Kah-mann. 2003. Guanyl nucleotide exchange factor Sql2 and Ras2 regulate filamentous growth in Ustilago maydis. Eukaryot. Cell 2: 609617.
141. Nichols, C. B.,, J. A. Fraser, and, J. Heitman. 2004. PAK kinases Ste20 and Pak1 govern cell polarity at different stages of mating in Cryptococcus neoformans. Mol. Biol. Cell 15: 44764489.
142. Oberholzer, U.,, A. Marcil,, E. Leberer,, D. Y. Thomas, and, M. Whiteway. 2002. Myosin I is required for hypha formation in Candida albicans. Eukaryot. Cell 1: 213228.
143. Osherov, N., and, G. May. 2000. Conidial germination in Aspergillus nidulans requires RAS signaling and protein synthesis. Genetics 155: 647656.
144. Ovechkina, Y.,, P. Maddox,, C. E. Oakley,, X. Xiang,, S. A. Osmani,, E. D. Salmon, and, B. R. Oakley. 2003. Spindle formation in Aspergillus is coupled to tubulin movement into the nucleus. Mol. Biol. Cell 14: 21922200.
145. Ozaki-Kuroda, K.,, Y. Yamamoto,, H. Nohara,, M. Kinoshita,, I. Fujiwara,, K. Irie, and, Y. Takai. 2001. Dynamic localization and function of Bni1p at the sites of directed growth in Saccharomyces cerevisiae. Mol. Cell. Biol. 21: 827839.
146. Ozbudak, E. M.,, A. Becskel, and, A. van Oudenaarden. 2005. A system of counteracting feedback loops regulates Cdc42p activity during spontaneous polarization. Dev. Cell 9: 565571.
147. Pan, F.,, R. L. Malmberg, and, M. Momany. 2007. Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol. Biol. 7: 103.
148. Park, G.,, C. Xue,, X. Zhao,, Y. Kim,, M. Orbach, and, J. R. Xu. 2006. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18: 28222835.
149. Park, H. -O., and, E. Bi. 2007. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol. Mol. Biol. Rev. 71: 4896.
150. Pearson, C. L.,, K. Xu,, K. Sharpless, and, S. D. Harris. 2004. MesA, a novel fungal protein required for the stabilization of polarity axes in Aspergillus nidulans. Mol. Biol. Cell 15: 36583672.
151. Philippsen, P.,, A. Kaufmann, and, H. -P. Schmitz. 2005. Homologues of yeast polarity genes control the development of multinucleated hyphae in Ashbya gossypii. Curr. Opin. Microbiol. 8: 18.
152. Pollard, T. D. 2003. Functional genomics of cell morphology using RNA interference: pick your style, broad or deep. J. Biol. 2: 25.
153. Pollard, T. D. 2007. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36: 451477.
154. Proszynski, T. J.,, R. Klemm,, M. Bagnat,, K. Gaus, and, K. Simons. 2006. Plasma membrane polarization during mating in yeast cells. J. Cell Biol. 173: 861866.
155. Pruyne, D., and, A. Bretscher. 2000. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J. Cell Sci. 113: 365375.
156. Qadota, H.,, C. P. Python,, S. B. Inoue,, M. Arisawa,, Y. Anraku,, Y. Zheng,, T. Watanabe,, D. E. Levin, and, Y. Ohya. 1996. Identification of yeast Rho1p as a regulatory subunit of 1,3-beta-glucan synthase. Science 272: 279281.
157. Rasmussen, C. G., and, N. L. Glass. 2005. A Rho-type GTPase, rho- 4, is required for septation in Neurospora crassa. Eukaryot. Cell 4: 19131925.
158. Rasmussen, C. G.,, R. M. Morgenstein,, S. Peck, and, N. L. Glass. 2008. Lack of the GTPase RHO- 4 in Neurospora crassa causes a reduction in numbers and aberrant stabilization of microtubules at hyphal tips. Fungal Genet. Biol. 45: 10271039.
159. Rayner, A. D. M. 1991. The challenge of the individualistic mycelium. Mycologia 83: 4871.
160. Rida, P. C., and, U. Surana. 2005. Cdc42-dependent localization of polarisome component Spa2 to the incipient bud site is independent of the GDP/GTP exchange factor Cdc24. Eur. J. Cell Biol. 84: 939949.
161. Rida, P. C.,, A. Nishikawa,, G. Y. Won, and, N. Dean. 2006. Yeast-to-hyphal transition triggers formin-dependent Golgi localization to the growing tip in Candida albicans. Mol. Biol. Cell 17: 43644378.
162. Ridley, A. J. 2001. Rho family proteins: coordinating cell responses. Trends Cell Biol. 11: 471477.
163. Riquelme, M.,, R. Fischer, and, S. Bartnicki-Garcia. 2003. Apical growth and mitosis are independent processes in Aspergillus nidulans. Protoplasma 222: 211215.
164. Riquelme, M.,, C. G. Reynaga-Pena,, G. Gierz, and, S. Bart-nicki-Garcia. 1998. What determines growth direction in fungal hyphae? Fungal Genet. Biol. 24: 101109.
165. Riquelme, M.,, S. Bartnicki-Garcia,, J. M. Gonzalez-Prieto,, E. Sanchez-Leon,, J. A. Verdin-Ramos,, A. Beltran-Aguilar, and, M. Freitag. 2007. Spitzenkörper localization and intra-cellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryot. Cell 6: 18531864.
166. Rittenour, W. R., and, S. D. Harris. 2008. Characterization of Fusarium graminearum Mes1 reveals roles in cell surface organization and virulence. Fungal Genet. Biol. 45: 933946.
167. Robson, G. D.,, E. Prebble,, A. Rickers,, S. Hosking,, D. W. Denning,, A. P. J. Trinci, and, W. Robertson. 1996. Polarized growth of fungal hyphae is defined by an alkaline pH gradient. Fungal Genet. Biol. 20: 289298.
168. Rolke, Y., and, P. Tudzynski. 2008. The small GTPase Rac and the p21-activated kinase Cla4 in Claviceps purpurea: interaction and impact on polarity, development, and pathogenicity. Mol. Microbiol. 68: 405423.
169. Rossman, K. L.,, C. J. Der, and, J. Sondek. 2005. GEF means go: turning on Rho GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6: 167180.
170. Sagot, I.,, S. K. Klee, and, D. Pellman. 2002. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat. Cell Biol. 4: 4250.
171. Sampson, K., and, I. B. Heath. 2005. The dynamic behavior of microtubules and their contributions to hyphal tip growth in Aspergillus nidulans. Microbiology 151: 15431555.
172. Scheffer, J.,, C. Chen,, P. Heidrich,, M. B. Dickman, and, P. Tudzynski. 2005a. A CDC42 homologue in Claviceps purpurea is involved in vegetative differentiation and is essential for pathogenicity. Eukaryot. Cell 4: 12281238.
173. Scheffer, J.,, C. Ziv,, O. Yarden, and, P. Tudzynski. 2005b The COT1 homologue CP COT1 regulates polar growth and branching and is essential for pathogenicity in Claviceps purpurea. Fungal Genet. Biol. 42: 107118.
174. Schmid, J., and, F. M. Harold. 1988. Dual roles for calcium ions in apical growth of Neurospora crassa. J. Gen. Microbiol. 134: 26232631.
175. Schmitz, H. -P.,, A. Kaufmann,, M. Kohli,, P. P. Laissue, and, P. Philippsen. 2006. From function to shape: a novel role of a forming in morphogenesis of the fungus Ashbya gossypii. Mol. Biol. Cell 17: 130145.
176. Schuchardt, I.,, D. Aβmann,, E. Thines,, C. Schuberth, and, G. Steinberg. 2005. Myosin-V, kinesin-1, and kinesin-3 cooperate in hyphal growth of the fungus Ustilago maydis. Mol. Biol. Cell 16: 51915201.
177. Segal, M.,, K. Bloom, and, S. I. Reed. 2000. Bud6 directs sequential microtubule interactions with the bud tip and bud neck during spindle morphogenesis in Saccharomyces cerevisiae. Mol. Biol. Cell 11: 36893702.
178. Seiler, S., and, M. Plamann. 2003. The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Mol. Biol. Cell 14: 43524364.
179. Seiler, S.,, M. Plamann, and, M. Schliwa. 1999. Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora. Curr. Biol. 12: 779785.
180. Seiler, S.,, N. Vogt,, C. Ziv,, R. Gorovits, and, O. Yarden. 2006. The STE20/germinal center kinase POD4 interacts with the NDR kinase COT1 and is involved in polar tip extension in Neurospora crassa. Mol. Biol. Cell 17: 40804092.
181. Semighini, C. P., and, S. D. Harris. 2008. Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen species. Genetics 179: 19191932.
182. Sharpless, K. E., and, S. D. Harris. 2002. Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol. Biol. Cell 13: 469479.
183. Sheu, Y. J.,, B. Santos,, N. Fortin,, C. Costigan, and, M. Snyder. 1998. Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol. Cell. Biol. 18: 40534069.
184. Shi, X.,, Y. Sha, and, S. Kaminskyj. 2004. Aspergillus nidulans hypA regulates morphogenesis through the secretion pathway. Fungal Genet. Biol. 41: 7588.
185. Siafakas, A. R.,, L. C. Wright,, T. C. Sorrell, and, J. T. Djordjevic. 2006. Lipid rafts in Cryptococcus neoformans concentrate the virulence determinants phospholipase B1 and Cu/Zn superoxide dismutase. Eukaryot. Cell 5: 488498.
186. Sietsma, J., and, J. Wessels. 1994. Apical wall biogenesis, p. 126–141. In J. Wessels and, F. Meinhardt (ed.), The Mycota, vol. 1. Springer, Berlin, Germany.
187. Sinha, I.,, Y. M. Wang,, R. Philp,, C. R. Li,, W. H. Yap, and, Y. Wang. 2007. Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development. Dev. Cell 13: 421432.
188. Som, T., and, V. S. Kolaparthi. 1994. Developmental decisions in Aspergillus nidulans are modulated by Ras activity. Mol. Cell. Biol. 14: 53335348.
189. Song, Y., and, J. Y. Kim. 2006. Role of CaBud6p in the polarized growth of Candida albicans. J. Microbiol. 44: 311319.
190. Sopko, R.,, D. Huang,, J. C. Smith,, D. Figeys, and, B. J. Andrews. 2007. Activation of the Cdc42p GTPase by cyclin-dependent kinases in budding yeast. EMBO J. 26: 44874500.
191. Steinberg, G. 2007. Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryot. Cell 6: 351360.
192. Steinberg, G., and, U. Fuchs. 2004. The role of microtubules in cellular organization and endocytosis in the plant pathogen Ustilago maydis. J. Microsc. 214: 114123.
193. Straube, A.,, M. Brill,, B. R. Oakley,, T. Horio, and, G. Steinberg. 2003. Microtubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis. Mol. Biol. Cell 14: 642657.
194. Su, Z.,, H. Li, and, F. Ni. 2007. Inhibition of the pathogenically related morphologic transition in Candida albicans by disrupting Cdc42 binding to its effectors. Chem. Biol. 14: 12731282.
195. Sudbery, P., and, H. Court. 2007. Polarized growth in fungi, p. 137–166. In R. J. Howard and, N. A. R. Gow (ed.), The Mycota. VIII. Biology of the Fungal Cell, 2nd ed. Springer, Berlin, Germany.
196. Taheri-Talesh, N.,, T. Horio,, L. Araujo-Bazan,, X. Dou,, E. A. Espeso,, M. A. Penalva,, S. A. Osmani, and, B. R. Oakley. 2008. The tip growth apparatus of Aspergillus nidulans. Mol. Biol. Cell 19: 14391449.
197. Takeda, S.,, C. Gapper,, H. Kaya,, E. Bell,, K. Kuchitsu, and, L. Dolan. 2008. Local positive feedback regulation determines cell shape in root hair cells. Science 319: 12411244.
198. Takeda, T.,, T. Kawate, and, F. Chang. 2004. Organization of a sterol-rich membrane domain by cdc15p during cytokinesis in fission yeast. Nat. Cell Biol. 6: 11421144.
199. Takemoto, D.,, A. Tanaka, and, B. Scott. 2007. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet. Biol. 44: 10651076.
200. Takeshita, N.,, Y. Higashitsuji,, S. Konzack, and, R. Fischer. 2008. Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol. Biol. Cell 19: 339351.
201. Tanaka, A.,, M. J. Christensen,, D. Takemoto,, P. Park, and, B. Scott. 2006. Reactive oxygen species play a role in regulating a fungus-specific ryegrass mutualistic interaction. Plant Cell 18: 10521066.
202. Tanaka, A.,, D. Takemoto,, G. S. Hyon,, P. Park, and, B. Scott. 2008. NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloe festucae and perennial ryegrass. Mol. Microbiol. 68: 11651178.
203. Taylor, J. W.,, J. Spatafora,, K. O’Donnell,, F. Lutzoni,, T. James,, D. S. Hibbett,, D. Geiser,, T. D. Bruns, and, M. Blackwell. 2004. The fungi, p. 171–194. In J. Cracraft and, M. J. Donoghue (ed.), Assembling the Tree of Life. Oxford University Press, New York, NY.
204. Tcheperegine, S. E.,, X. D. Gao, and, E. Bi. 2005. Regulation of cell polarity by interactions of Msb3 and Msb4 with Cdc42 and polarisome components. Mol. Cell. Biol. 25: 85678580.
205. Tcherkezian, J., and, N. Lamarche-Vane. 2007. Current knowledge of the large RhoGAP family of proteins. Biol. Cell 99: 6786.
206. Torralba, S.,, M. Raudaskoski,, A. M. Pedregosa, and, F. Laborda. 1998. Effect of cytochalasin A on apical growth, actin cytoskeleton organization, and enzyme secretion in Aspergillus nidulans. Microbiology 144: 4553.
207. Trinci, A. P. J. 1978. The duplication cycle and vegetative development in moulds, p. 132–163. In J. E. Smith and, D. E. Berry (ed.), The Filamentous Fungi. Vol. III. Developmental Mycology. John Wiley, New York, NY.
208. Upadhyay, S., and, B. D. Shaw. 2008. The role of actin, fimbrin, and endocytosis in growth of hyphae in Aspergillus nidulans. Mol. Microbiol. 68: 690705.
209. Ushinsky, S. C.,, D. Harcus,, J. Ash,, D. Dignard,, A. Marcil,, J. Morschhauser,, D. Y. Thomas,, M. Whiteway, and, E. Leberer. 2002. CDC42 is required for polarized growth in human pathogen Candida albicans. Eukaryot. Cell 1: 95104.
210. Valdez-Taubus, J., and, H. R. Pelham. 2003. Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr. Biol. 13: 16361640.
211. Vallen, E. A.,, J. Caviston, and, E. Bi. 2000. Roles of Hof1p, Bni1p, Bnr1p, and Myo1p in cytokinesis in Saccharomyces cerevisiae. Mol. Biol. Cell 11: 593611.
212. van Drogen, F., and, M. Peter. 2002. Spa2p functions as a scaffold-like protein to recruit the Mpk1 MAP kinase module to sites of polarized growth. Curr. Biol. 12: 16981703.
213. Virag, A., and, A. J. Griffiths. 2004. A mutation in the Neurospora crassa actin gene results in multiple defects in tip growth and branching. Fungal Genet. Biol. 41: 213225.
214. Virag, A., and, S. D. Harris. 2006. Functional characterization of Aspergillus nidulans homologues of Saccharomyces cerevisiae Spa2 and Bud6. Eukaryot. Cell 5: 881895.
215. Virag, A.,, M. P. Lee,, H. Si, and, S. D. Harris. 2007. Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans. Mol. Microbiol. 66: 15791596.
216. Vjestica, A.,, X. Z. Tang, and, S. Oliferenko. 2008. The actomyosin ring recruits early secretory compartments to the division site in fission yeast. Mol. Biol. Cell 19: 11251138.
217. Vopalenska, I.,, M. Hulkova,, B. Janderova, and, Z. Palkova. 2005. The morphology of Saccharomyces cerevisiae colonies is affected by cell adhesion and budding pattern. Res. Microbiol. 156: 921931.
218. Walther, A., and, J. Wendland. 2003. Septation and cytokinesis in fungi. Fungal Genet. Biol. 40: 187196.
219. Walther, A., and, J. Wendland. 2004. Polarized hyphal growth in Candida albicans requires the Wiskott-Aldrich Syndrome protein homolog Wal1p. Eukaryot. Cell 3: 471482.
220. Warenda, A. J., and, J. B. Konopka. 2002. Septin function in Candida albicans morphogenesis. Mol. Biol. Cell 13: 27322746.
221. Weber, I.,, C. Gruber, and, G. Steinberg. 2003. A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Plant Cell 15: 28262842.
222. Wedlich-Soldner, R.,, M. Bolker,, R. Kahmann, and, G. Steinberg. 2000. A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus Ustilago maydis. EMBO J. 19: 19741986.
223. Wedlich-Soldner, R.,, S. Altschuler,, L. Wu, and, R. Li. 2003. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299: 12311235.
224. Weirich, C. S.,, J. P. Erzberger, and, Y. Barral. 2008. The septin family of GTPases: architecture and dynamics. Nat. Rev. Mol. Cell Biol. 9: 478489.
225. Wendland, J. 2003. Analysis of the landmark protein Bud3 of Ashbya gossypii reveals a novel role in septum construction. EMBO Rep. 4: 200204.
226. Wendland, J., and, P. Philippsen. 2000. Determination of cell polarity in germinated spores and hyphal tips of the filamentous ascomycete Ashbya gossypii requires a rhoGAP homolog. J. Cell Sci. 113: 16111621.
227. Wendland, J., and, P. Philippsen. 2001. Cell polarity and hyphal morphogenesis are controlled by multiple rho-protein modules in the filamentous ascomycete Ashbya gossypii. Genetics 157: 601610.
228. Westfall, P. J., and, M. Momany. 2002. Aspergillus nidulans septin AspB plays pre- and postmitotic roles in septum, branch, and conidiophore development. Mol. Biol. Cell 13: 110118.
229. Whittaker, S. L.,, P. Lunness,, K. J. Milward,, J. H. Doonan, and, S. J. Assinder. 1999. sod VI C is an alpha-COP-related gene which is essential for establishing and maintaining polarized growth in Aspergillus nidulans. Fungal Genet. Biol. 26: 236252.
230. Wolkow, T. D.,, S. D. Harris, and, J. E. Hamer. 1996. Cytokinesis in Aspergillus nidulans is controlled by cell size, nuclear positioning and mitosis. J. Cell Sci. 109: 21792188.
231. Woo, M.,, K. Lee, and, K. Song. 2003. MYO2 is not essential for viability, but is required for polarized growth and dimorphic switches in Candida albicans. FEMS Microbiol. Lett. 218: 195202.
232. Xiang, X., and, R. Fischer. 2004. Nuclear migration and positioning in filamentous fungi. Fungal Genet. Biol. 41: 411419.
233. Yang, Y.,, A. M. El-Ganiny,, G. E. Bray,, D. A. Sanders, and, S. G. Kaminskyj. 2008. Aspergillus nidulans hypB encodes a Sec7-domain protein important for hyphal morphogenesis. Fungal Genet. Biol. 45: 749759.
234. Yarden, O.,, M. Plamann,, D. J. Ebbole, and, C. Yanofsky. 1992. cot- 1, a gene required for hyphal elongation in Neurospora crassa, encodes a protein kinase. EMBO J. 11: 21592166.
235. Yoshida, S., and, D. Pellman. 2008. Plugging the GAP between polarity and the cell cycle. EMBO Rep. 9: 3941.
236. Zhang, J.,, S. Li,, R. Fischer, and, X. Xiang. 2003. Accumulation of cytoplasmic dynein at microtubule plus ends in Aspergillus nidulans is kinesin dependent. Mol. Biol. Cell 14: 14791488.
237. Zheng, X. D.,, Y. M. Wang, and, Y. Wang. 2003. CaSPA2 is important for polarity establishment and maintenance in Candida albicans. Mol. Microbiol. 49: 13911405.
238. Zheng, X. D.,, R. T. Lee,, Y. M. Wang,, O. S. Lin, and, Y. Wang. 2007. Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. EMBO J. 26: 37603769.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error