Chapter 44 : : Budding Yeast and Dimorphic Filamentous Fungus

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

: Budding Yeast and Dimorphic Filamentous Fungus, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap44-1.gif /docserver/preview/fulltext/10.1128/9781555816636/9781555814731_Chap44-2.gif


and are closely related basidiomycetous fungi that commonly infect humans to predominantly cause meningoencephalitis. Both grow as budding yeasts in the environment and in the infected host yet undergo a dimorphic transition to a filamentous monokaryon or dikaryon during sexual reproduction. This chapter covers recent exciting advances in the field with special consideration of features of the virulence and life cycle relevant to studies of filamentous fungi and the emergence of microbial pathogens successfully infecting animals. The iron regulatory network and iron acquisition functions have been examined in some detail for . Initially, the response of the fungus to iron deprivation was examined by transcriptional profiling, and this study identified general patterns of gene expression as well as specific iron-responsive functions. The latter genes encoded iron acquisition functions and a predicted mannoprotein described as a cytokine-inducing glycoprotein (Cig1). The availability of the genome sequences and molecular techniques for strains provides an opportunity to define the transcriptome of the pathogen under a variety of growth conditions. An interesting recent study on extracellular proteome targeted proteins associated with extracellular vesicles. The contribution of the α allele to pathogenicity is background dependent, and virulence is a quantitative trait, in which mating-type locus () interacts with other unlinked genes to contribute to virulence.

Citation: Kronstad J, Lodge J, Heitman J. 2010. : Budding Yeast and Dimorphic Filamentous Fungus, p 717-735. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch44
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

The morphology of sexual reproduction in . A diagram representing the stages in sexual reproduction for (center) is surrounded by images showing representative stages in the process. Two haploid cells of opposite mating types (α and ) respond to a panoply of appropriate environmental cues (including nutrient limitation, the presence of inositol and copper ions, desiccation, darkness, low temperature, low levels of carbon dioxide, surface growth, the presence of plants, or growth on pigeon guano) that stimulate pheromone production and early morphological changes including conjugation tube formation that lead to cell-cell fusion. Following cell-cell fusion, the nuclei congress, but nuclear fusion is delayed, and the resulting dikaryon switches from growth as a budding yeast to growth as a dikaryotic hyphae. Unknown signals trigger the production of terminal fruiting structures, the basidia, wherein karyogamy and meiosis occur, and long chains of infectious basidiospores are then produced by basipetal budding from the basidium. Germination of spores produces haploid meiotic products that return to the budding yeast growth mode. Images show (counterclockwise from the lower right hand corner) (i) microcolonies producing conjugation tubes oriented towards dikaryotic hyphae from a mating mixture as a source of pheromones (left panel) and microcolonies on the surface of V8 mating medium linked by conjugation tubes; larger dikaryotic filaments are also seen emanating from the central microcolony of cells as a result of cell-cell fusion mediated by conjugation tubes; (ii) confrontation assay on filament agar medium showing the formation of conjugation tubes and monokaryotic fruiting by the α partner and the production of enlarged cells by the partner; (iii) fusion assay, in which the production of prototrophic dikaryons or diploids following cell-cell fusion is monitored by growth on minimal medium lacking lysine and adenine; (iv) dikaryotic filament with a terminal basidium decorated with four long intertwined spore chains; (v) edge of a mating mixture on V8 mating medium showing profuse dikaryotic hyphae with terminal basidia and spore chains (not resolved at this magnification).

Citation: Kronstad J, Lodge J, Heitman J. 2010. : Budding Yeast and Dimorphic Filamentous Fungus, p 717-735. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

mating partners respond to mating pheromones during confrontational growth. The diagram depicts morphological events transpiring during the early events in sexual reproduction that can be detected using a confrontation assay in which mating partners are grown in close proximity but not touching on V8, SLAD (super low ammonium dextrose), or filamentation agar. With serotype D strains, α cells respond to pheromone to form conjugation tubes and then undergo monokaryotic fruiting, which may serve as a response to locate more-distant mating partners. By contrast, cells often undergo an isotropic expansion in response to α pheromone to form enlarged cells, possibly to serve as targets for fusion by conjugation tubes or hyphae produced by the α mating partner. Under other conditions, or with other isolates, cells can also be observed producing conjugation tubes in response to α pheromone.

Citation: Kronstad J, Lodge J, Heitman J. 2010. : Budding Yeast and Dimorphic Filamentous Fungus, p 717-735. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Clamp cells ensure faithful nuclear segregation during dikaryotic hyphal growth. During hyphal growth of the dikaryon, a specialized cell known as a clamp cell plays a central role in ensuring that each hyphal cell receives one copy of each nucleus. Stages in clamp cell formation, nuclear migration and division, and clamp cell fusion are depicted. Based on studies in other basidiomycetous fungi, it is hypothesized that pheromone production and sensing are involved in the clamp cell-hyphal cell fusion events. Nuclear fusion (karyogamy) is depicted occurring in the terminal basidium, followed by meiosis and mitotic production of long chains of basidiospores. The two opposite-mating-type nuclei are depicted with filled and solid circles.

Citation: Kronstad J, Lodge J, Heitman J. 2010. : Budding Yeast and Dimorphic Filamentous Fungus, p 717-735. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Mitochondria are inherited in a uniparental fashion during sexual reproduction. Directed growth of the conjugation tube from an α mating partner towards the recipient mating partner is depicted. Mitochondria are depicted with oval symbols; shaded symbols indicate those from the parent, and open symbols depict those from the α parent. Analysis of mitochondrial genotypes from meiotic progeny produced by sexual reproduction reveals uniparental inheritance from the parent. Mitochondria from the α parent either may be left behind if only the nucleus migrates through the conjugation tube or may be actively destroyed, or both. Recombination between mitochondrial genomes has also been observed in some defined genetic crosses.

Citation: Kronstad J, Lodge J, Heitman J. 2010. : Budding Yeast and Dimorphic Filamentous Fungus, p 717-735. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Sexual reproduction of involves both -α opposite-sex mating and α-α unisexual mating. The lower panel depicts the well-established heterothallic sexual cycle involving and α mating partners, which fuse to produce a filamentous dikaryon that forms terminal basidia and undergoes meiosis to produce a 1:1 mixture of basidiospores of and α mating types. However, a central conundrum in the field has been the vast disparity in the distribution and prevalence of the two mating types, with α being significantly more common globally. The upper panel depicts a newly discovered sexual cycle involving only α cells, known as monokaryotic fruiting, same-sex mating, or unisexual reproduction. Similar environmental conditions stimulate opposite-sex and same-sex mating. During same-sex mating, α cells can fuse with other α cells or possibly also undergo other forms of diploidization such as endoreplication. Hyphal growth of the resulting diploid isolates is often enhanced and leads to the formation of monokaryotic hyphae with unfused clamp connections, terminal basidia, meiosis, and chains of only α basidiospores. Diploidization can occur early in the differentiation pathway or in some isolates may occur late, possibly only in the basidium, similar to the heterothallic sexual cycle. This unusual homothallic unisexual cycle may have arisen as a consequence of the largely unisexual population or may have driven the success of the α mating type. Some isolates of mating type have been found to undergo same-sex mating. Recent studies reveal that same-sex mating is a quantitative trait controlled by many segregating polymorphic genetic loci. In particular, the locus is one of the most significant quantitative trait loci influencing unisexual mating, and the α allele promotes fruiting to a greater extent than the allele, again providing insight into why the α allele may be the predominant form found in nature.

Citation: Kronstad J, Lodge J, Heitman J. 2010. : Budding Yeast and Dimorphic Filamentous Fungus, p 717-735. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Barluzzi, R.,, S. Saleppico,, A. Nocentini,, J. R. Boelaert,, R. Neglia,, F. Bistoni, and, E. Blasi. 2002. Iron overload exacerbates experimental meningoencephalitis by Cryptococcus neoformans. J. Neuroimmunol. 132: 140146.
2. Bartlett, K. H.,, S. E. Kidd, and, J. W. Kronstad. 2007. The emergence of Cryptococcus gattii in British Columbia and the Pacific Northwest. Curr. Infect. Dis. Rep. 1: 108115.
3. Biondo, C.,, C. Beninati,, D. Delfino,, M. Oggioni,, G. Mancuso,, A. Midiri,, M. Bombaci,, G. Teti. 2002. Identification and cloning of a cryptococcal deacetylase that produces protective immune responses. Infect. Immun. 70: 23832391.
4. Biondo, C.,, G. Mancuso,, A. Midiri,, M. Bombaci,, L. Messina,, C. Beninati, and, G. Teti. 2006. Identification of major proteins secreted by Cryptococcus neoformans. FEMS Yeast Res. 6: 645651.
5. Boekhout, T., and, A. van Belkum. 1997. Variability of karyotypes and RAPD types in genetically related strains of Cryptococcus neoformans. Curr. Genet. 32: 203208.
6. Boekhout, T.,, A. van Belkum,, A. C. A. P. Leenders,, H. A. Verbrugh,, P. Mukamurangwa,, D. Swinne, and, W. A. Scheffers. 1997. Molecular typing of Cryptococcus neoformans: taxonomic and epidemiological aspects. Int. J. Syst. Bacteriol. 47: 432442.
7. Boekhout, T.,, B. Theelen,, M. Diaz,, J. W. Fell,, W. C. J. Hop,, E. C. A. Abeln,, F. Dromer, and, W. Meyer. 2001. Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. Microbiology 147: 891907.
8. Bok, J. W.,, D. Hoffmeister,, L. A. Maggio-Hall,, R. Murillo,, J. D. Glasner, and, N. P. Keller. 2006. Genomic mining for Aspergillus natural products. Chem. Biol. 13: 3137.
9. Botes, A.,, T. Boekhout,, F. Hagen,, H. Vismer,, J. Swart, and, A. Botha. 2008. Growth and mating of Cryptococcus neofor-mans var. grubii on woody debris. Microb. Ecol. 57: 757765.
10. Botts, M. R.,, S. S. Giles,, M. A. Gates,, T. R. Kozel, and, C. M. Hull. 2009. Isolation and characterization of Cryptococcus neoformans spores reveal a critical role for capsule biosynthesis genes in spore biogenesis. Eukaryot. Cell 8: 595605.
11. Bovers, M.,, F. Hagen,, E. E. Kuramae, and, T. Boekhout. 2008a. Six monophyletic lineages identified within Cryptococcus neoformans and Cryptococcus gattii by multi-locus sequence typing. Fungal Genet. Biol. 45: 400421.
12. Bovers, M.,, F. Hagen, and, T. Boekhout. 2008b. Diversity of the Cryptococcus neoformans-Cryptococcus gattii species complex. Rev. Iberoam. Micol. 25: S4S12.
13. Brandt, M. E.,, S. L. Bragg, and, R. W. Pinner. 1993. Multi-locus enzyme typing of Cryptococcus neoformans. J. Clin. Microbiol. 31: 28192823.
14. Bui, T.,, X. Lin,, R. Malik,, J. Heitman, and, D. Carter. 2008. Isolates of Cryptococcus neoformans from infected animals reveal genetic exchange in unisexual, alpha mating type populations. Eukaryot. Cell 7: 17711780.
15. Byrnes, E. J.,, R. J. Bildfell,, S. A. Frank,, T. G. Mitchell,, K. A. Marr, and, J. Heitman. 2009. Molecular evidence that the range of the Vancouver Island outbreak of Cryptococcus gattii infection has expanded into the Pacific Northwest in the United States. J. Infect. Dis. 199: 10811086.
16. Campbell, L. T., and, D. A. Carter. 2006. Looking for sex in the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii. FEMS Yeast Res. 6: 588598.
17. Campbell, L. T.,, J. A. Fraser,, C. B. Nichols,, F. S. Dietrich,, D. Carter, and, J. Heitman. 2005a. Clinical and environmental isolates of Cryptococcus gattii from Australia that retain sexual fecundity. Eukaryot. Cell 4: 14101419.
18. Campbell, L. T.,, B. J. Currie,, M. Krockenberger,, R. Malik,, W. Meyer,, J. Heitman, and, D. Carter. 2005b. Clonality and recombination in genetically differentiated subgroups of Cryptococcus gattii. Eukaryot. Cell 4: 14031409.
19. Carter, D.,, N. Saul,, L. Campbell,, T. Bui, and, M. Krockenberger. 2007. Sex in natural populations of Cryptococcus gatti, p. 477–488. In J. W. Kronstad, J. Heitman, J. W. Taylor, and L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
20. Casadevall, A., and, J. R. Perfect. 1998. Cryptococcus neofor-mans. ASM Press, Washington, DC.
21. Chang, Y. C.,, G. F. Miller, and, K. J. Kwon-Chung. 2003. Importance of a developmentally regulated pheromone receptor of Cryptococcus neoformans for virulence. Infect. Immun. 71: 49534960.
22. Chang, Y. C.,, C. M. Bien,, H. Lee,, P. J. Espenshade, and, K. J. Kwon-Chung. 2007. Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Mol. Microbiol. 64: 614629.
23. Chang, Y. C.,, B. L. Wickes,, G. F. Miller,, L. A. Penoyer, and, K. J. Kwon-Chung. 2000. Cryptococcus neoformans STE12α regulates virulence but is not essential for mating. J. Exp. Med. 191: 871882.
24. Chen, H.,, M. Fujita,, Q. Feng,, J. Clardy, and, G. R. Fink. 2004. Tyrosol is a quorum-sensing molecule in Candida albi-cans. Proc. Natl. Acad. Sci. USA 101: 50485052.
25. Chen, S. C.,, A. G. Brownlee,, T. C. Sorrell,, P. Ruma, and, G. Nimmo. 1996. Identification by random amplification of polymorphic DNA of a common molecular type of Cryptococcus neoformans var. neoformans in patients with AIDS or other immunosuppressive conditions. J. Infect. Dis. 173: 754758.
26. Chow, E. D.,, O. W. Lui,, S. O’Brien, and, H. D. Madhani. 2007. Exploration of whole-genome responses of the human AIDS-associated yeast pathogen Cryptococcus neoformans var grubii: nitric oxide stress and body temperature. Curr. Genet. 52: 137148.
27. Cogliati, M.,, M. C. Esposto,, D. L. Clarke,, B. L. Wickes, and, M. A. Viviani. 2001. Origin of Cryptococcus neofor-mans var. neoformans diploid strains. J. Clin. Microbiol. 39: 38893894.
28. Covitz, P. A.,, I. Herskowitz, and, A. P. Mitchell. 1991. The yeast RME1 gene encodes a putative zinc finger protein that is directly repressed by a1-α2. Genes Dev. 5: 19821989.
29. Cox, G. M.,, T. S. Harrison,, H. C. McDade,, C. P. Taborda,, G. Heinrich,, A. Casadevall, and, J. R. Perfect. 2003. Super-oxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect. Immun. 71: 173180.
30. Davidson, R. C.,, T. D. Moore,, A. R. Odom, and, J. Heitman. 2000. Characterization of the MFα pheromone of the human fungal pathogen Cryptococcus neoformans. Mol. Micro-biol. 38: 10171026.
31. de Jesús-Berríos, M.,, L. Liu,, J. C. Nussbaum,, G. M. Cox,, J. S. Stamler, and, J. Heitman. 2003. Enzymes that counteract nitrosative stress promote fungal virulence. Curr. Biol. 13: 19631968.
32. Del Poeta, M.,, D. L. Toffaletti,, T. H. Rude,, S. D. Sparks,, J. Heitman, and, J. R. Perfect. 1999. Cryptococcus neoformans differential gene expression detected in vitro and in vivo with green fluorescent protein. Infect. Immun. 67: 18121820.
33. D’Souza, C. A.,, J. A. Alspaugh,, C. Yue,, T. Harashima,, G. M. Cox,, J. R. Perfect, and, J. Heitman. 2001. Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol. Cell Biol. 21: 31793191.
34. Duncan, C.,, H. Schwantje,, C. Stephen,, J. Campbell, and, K. Bartlett. 2006. Cryptococcus gattii in wildlife of Vancouver Island, British Columbia, Canada. J. Wildl. Dis. 42: 175178.
35. Eigenheer, R. A.,, Y. Jin Lee,, E. Blumwald,, B. S. Phinney, and, A. Gelli. 2007. Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans. FEMS Yeast Res. 7: 499510.
36. Ellis, D.,, D. Marriott,, R. A. Hajjeh,, D. Warnock,, W. Meyer, and, R. Barton. 2000. Epidemiology: surveillance of fungal infections. Med. Mycol. 38: 173182.
37. Erke, K. H. 1976. Light microscopy of basidia, basidiospores, and nuclei in spores and hyphae of Filobasidiella neoformans (Cryptococcus neoformans). J. Bacteriol. 128: 445455.
38. Fan, W.,, P. R. Kraus,, M. J. Boily, and, J. Heitman. 2005. Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryot. Cell 4: 14201433.
39. Fraser, J. A.,, S. Diezmann,, R. L. Subaran,, A. Allen,, K. B. Lengeler,, F. S. Dietrich, and, J. Heitman. 2004. Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol. 2: e384.
40. Fraser, J. A.,, S. S. Giles,, E. C. Wenink,, S. G. Geunes-Boyer,, J. R. Wright,, S. Diezmann,, A. Allen,, J. E. Stajich,, F. S. Dietrich,, J. R. Perfect, and, J. Heitman. 2005a. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437: 13601364.
41. Fraser, J. A.,, J. C. Huang,, R. Pukkila-Worley,, J. A. Alspaugh,, T. G. Mitchell, and, J. Heitman. 2005b. Chromosomal translocation and segmental duplication in Cryptococcus neoformans. Eukaryot. Cell 4: 401406.
42. Fraser, J. A., and, J. Heitman. 2005. Chromosomal sex-determining regions in animals, plants and fungi. Curr. Opin. Genet. Dev. 15: 645651.
43. Fraser, J. A.,, R. L. Subaran,, C. B. Nichols, and, J. Heitman. 2003. Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans variety gattii: implications for an outbreak on Vancouver Island. Eukaryot. Cell 2: 10361045.
44. Fries, B. C.,, F. Chen,, B. P. Currie, and, A. Casadevall. 1996. Karyotype instability in Cryptococcus neoformans infection. J. Clin. Microbiol. 34: 15311534.
45. Gardiner, D. M.,, A. J. Cozijnsen,, L. M. Wilson,, M. S. Pedras, and, B. J. Howlett. 2004. The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol. Microbiol. 53: 13071318.
46. Giles, S. S.,, T. R. Dagenais,, M. R. Botts,, N. P. Keller, and, C. M. Hull. 2009. Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect. Immun. 77: 34913500.
47. Guehó, E.,, L. Improvisis,, R. Christen, and, G. S. de Hoog. 1993. Phylogenetic relationships of Cryptococcus neoformans and some related basidiomycetous yeasts determined from partial large subunit rRNA sequences. Antonie van Leeuwenhoek 63: 175189.
48. Heitman, J. 2006. Sexual reproduction and the evolution of microbial pathogens. Curr. Biol. 16: R711R725.
49. Heitman, J.,, A. Casadevall,, J. K. Lodge, and, J. R. Perfect. 1999a The Cryptococcus neoformans genome sequencing project. Mycopathologia 148: 17.
50. Heitman, J.,, B. Allen,, J. A. Alspaugh, and, K. J. Kwon-Chung. 1999b. On the origins of congenic MATα and MAT a strains of the pathogenic yeast Cryptococcus neoformans. Fungal Genet. Biol. 28: 15.
51. Hiremath, S. S.,, A. Chowdhary,, T. Kowshik,, H. S. Rand-hawa,, S. Sun, and, J. Xu. 2008. Long-distance dispersal and recombination in environmental populations of Cryptococcus neoformans var. grubii from India. Microbiology 154: 15131524.
52. Hissen, A. H.,, A. N. Wan,, M. L. Warwas,, L. J. Pinto, and, M. M. Moore. 2005. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence. Infect. Immun. 73: 54935503.
53. Hornby, J. M.,, E. C. Jensen,, A. D. Lisec,, J. J. Tasto,, B. Jahnke,, R. Shoemaker,, P. Dussault, and, K. W. Nickerson. 2001. Quorum sensing in the dimorphic fungus Candida albi-cans is mediated by farnesol. Appl. Environ. Microbiol. 67: 29822992.
54. Hsueh, Y. P.,, J. A. Fraser, and, J. Heitman. 2008. Transitions in sexuality: recapitulation of an ancestral tri- and tetrapolar mating system in Cryptococcus neoformans. Eukaryot. Cell 7: 18471855.
55. Hsueh, Y. P.,, A. Idnurm, and, J. Heitman. 2006. Recombination hotspots flank the Cryptococcus mating-type locus: implications for the evolution of a fungal sex chromosome. PLoS Genet. 2: e184.
56. Hu, G.,, M. Hacham,, S. R. Waterman,, J. Panepinto,, S. Shin,, X. Liu,, J. Gibbons,, T. Valyi-Nagy,, K. Obara,, H. A. Jaffe,, Y. Ohsumi, and, P. R. Williamson. 2008a. PI3K signaling of autophagy is required for starvation tolerance and virulence of Cryptococcus neoformans. J. Clin. Investig. 118: 11861197.
57. Hu, G.,, I. Liu,, A. Sham,, J. E. Stajich,, F. S. Dietrich, and, J. W. Kronstad. 2008b. Comparative hybridization reveals extensive genome variation in the AIDS-associated pathogen Cryptococcus neoformans. Genome Biol. 9: R41.
58. Hu, G.,, B. R. Steen,, T. Lian,, A. P. Sham,, N. Tam,, K. L. Tangen, and, J. W. Kronstad. 2007. Transcriptional regulation by protein kinase A in Cryptococcus neoformans. PLoS Pathog. 3: e42.
59. Hull, C. M.,, M. J. Boily, and, J. Heitman. 2005. Sex-specific homeodomain proteins Sxi1α and Sxi2 a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot. Cell 4: 526535.
60. Hull, C. M.,, R. C. Davidson, and, J. Heitman. 2002. Cell identity and sexual development in Cryptococcus neoformans are controlled by the mating-type-specific homeodomain protein Sxi1α. Genes Dev. 16: 30463060.
61. Hull, C. M., and, J. Heitman. 2002. Genetics of Cryptococcus neoformans. Annu. Rev. Genet. 36: 557615.
62. Idnurm, A.,, S. S. Giles,, J. R. Perfect, and, J. Heitman. 2007. Peroxisome function regulates growth on glucose in the basidiomycete fungus Cryptococcus neoformans. Eukaryot. Cell 6: 6072.
63. Jung, W. H.,, A. P. Sham,, T. S. Lian,, A. Singh,, D. Kosman, and, J. W. Kronstad. 2008. Iron source preference and regulation of iron uptake in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Pathog. 4: e45.
64. Jung, W. H.,, A. Sham,, R. White, and, J. W. Kronstad. 2006. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol. 4: e410.
65. Jung, W. H., and, J. W. Kronstad. 2008. Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cell. Microbiol. 10: 277284.
66. Karos, M.,, Y. C. Chang,, C. M. McClelland,, D. L. Clarke,, J. Fu,, B. L. Wickes, and, K. J. Kwon-Chung. 2000. Mapping of the Cryptococcus neoformans MATα locus: presence of mating type-specific mitogen-activated protein kinase cascade homologs. J. Bacteriol. 182: 62226227.
67. Kavanaugh, L.A.,, J. A. Fraser, and, F. S. Dietrich. 2006. Recent evolution of the human pathogen Cryptococcus neofor-mans by intervarietal transfer of a 14-gene fragment. Mol. Biol. Evol. 23: 18791890.
68. Kawakami, K. 2004. Regulation by innate immune T lymphocytes in the host defense against pulmonary infection with Cryptococcus neoformans. Jpn. J. Infect. Dis. 57: 137145.
69. Keller, N. P.,, G. Turner, and, J. W. Bennett. 2005. Fungal secondary metabolism—from biochemistry to genomics. Nat. Rev. Microbiol. 3: 937947.
70. Kidd, S. E.,, H. Guo,, K. H. Bartlett,, J. Xu, and, J. W. Kronstad. 2005. Comparative gene genealogies indicate that two clonal lineages of Cryptococcus gattii in British Columbia resemble strains from other geographical areas. Eukaryot. Cell 4: 16291638.
71. Kidd, S. E.,, Y. Chow,, S. Mak,, P. J. Bach,, H. Chen,, A. O. Hingston,, J. W. Kronstad, and, K. H. Bartlett. 2007a. Characterization of environmental sources of Cryptococcus gattii in British Columbia, Canada, and the Pacific Northwest. Appl. Environ. Microbiol. 73: 14331443.
72. Kidd, S. E.,, P. J. Bach,, A. O. Hingston,, S. Mak,, Y. Chow,, L. MacDougall,, J. W. Kronstad, and, K. H. Bartlett. 2007b. Cryptococcus gattii dispersal mechanisms, British Columbia, Canada. Emerg. Infect. Dis. 13: 5157.
73. Kidd, S. E.,, F. Hagen,, R. L. Tscharke,, M. Huynh,, K. H. Bartlett,, M. Fyfe,, L. MacDougall,, T. Boekhout,, K. J. Kwon-Chung, and, W. Meyer. 2004. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc. Natl. Acad. Sci. USA 101: 1725817263.
74. Kihara, A.,, T. Noda,, N. Ishihara, and, Y. Ohsumi. 2001. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152: 519530.
75. Kraus, P. R.,, M. J. Boily,, S. S. Giles,, J. E. Stajich,, A. Allen,, G. M. Cox,, F. S. Dietrich,, J. R. Perfect, and, J. Heitman. 2004. Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. Eukaryot. Cell 3: 12491260.
76. Kwok, E. Y.,, S. Severance, and, D. J. Kosman. 2006. Evidence for iron channeling in the Fet3p-Ftr1p high-affinity iron up-take complex in the yeast plasma membrane. Biochemistry 45: 63176327.
77. Kwon-Chung, K. J. 1975. A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67: 11971200.
78. Kwon-Chung, K. J. 1976a. Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68: 821833.
79. Kwon-Chung, K. J. 1976b. A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. Mycologia 68: 943946.
80. Kwon-Chung, K. J. 1980. Nuclear genotypes of spore chains in Filobasidiella neoformans (Cryptococcus neoformans). Mycologia 72: 418422.
81. Kwon-Chung, K. J., and, J. E. Bennett. 1978. Distribution of α and a mating types of Cryptococcus neoformans among natural and clinical isolates. Am. J. Epidemiol. 108: 337340.
82. Kwon-Chung, K. J.,, J. C. Edman, and, B. L. Wickes. 1992. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect. Immun. 60: 602605.
83. Kwon-Chung, K. J., and, J. E. Bennett. 1984. Epidemiologic differences between the two varieties of Cryptococcus neoformans. Am. J. Epidemiol. 120: 123130.
84. Kwon-Chung, K. J.,, T. Boekhout,, J. W. Fell, and, M. Diaz. 2002. Proposal to conserve the name Cryptococcus gattii against C. hondurianus and C. bacillisporus (Basidiomycota, Hymenomycetes, Tremellomycetidae). Taxon 51: 804806.
85. Lengeler, K. B.,, G. M. Cox, and, J. Heitman. 2001. Serotype AD strains of Cryptococcus neoformans are diploid or aneuploid and are heterozygous at the mating-type locus. Infect. Immun. 69: 115122.
86. Lengeler, K. B.,, D. S. Fox,, J. A. Fraser,, A. Allen,, K. Forrester,, F. S. Dietrich, and, J. Heitman. 2002. Mating-type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryot. Cell 1: 704718.
87. Lengeler, K. B.,, P. Wang,, G. M. Cox,, J. R. Perfect, and, J. Heitman. 2000. Identification of the MAT a mating-type locus of Cryptococcus neoformans reveals a serotype A MAT a strain thought to have been extinct. Proc. Natl. Acad. Sci. USA 97: 1445514460.
88. Levitz, S. M., and, C. A. Specht. 2006. The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res. 6: 513524.
89. Lian, T.,, M. I. Simmer,, C. A. D’Souza,, B. R. Steen,, S. D. Zuyderduyn,, S. J. Jones,, M. A. Marra, and, J. W. Kronstad. 2005. Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans. Mol. Microbiol. 55: 14521472.
90. Lin, X.,, J. Huang,, T. Mitchell, and, J. Heitman. 2006. Virulence attributes and hyphal growth of C. neoformans are quantitative traits and the MATα allele enhances filamentation. PLoS Genet. 2: e187.
91. Lin, X.,, C. M. Hull, and, J. Heitman. 2005. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434: 10171021.
92. Lin, X.,, A. P. Litvintseva,, K. Nielsen,, S. Patel,, A. Floyd,, T. G. Mitchell, and, J. Heitman. 2007. αADα hybrids of Cryptococcus neoformans: evidence of same-sex mating in nature and hybrid fitness. PLoS Genet. 3: 19751990.
93. Lin, X.,, S. Patel,, A. P. Litvintseva,, A. Floyd,, T. G. Mitchell, and, J. Heitman. 2009. Diploids in the Cryptococcus neofor-mans serotype A population homozygous for the alpha mating type originate via unisexual mating. PLoS Pathog. 5: e1000283.
94. Litvintseva, A. P.,, R. E. Marra,, K. Nielsen,, J. Heitman,, R. Vilgalys, and, T. G. Mitchell. 2003. Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in sub-Saharan Africa. Eukaryot. Cell 2: 11621168.
95. Litvintseva, A. P.,, R. Thakur,, R. Vilgalys, and, T. G. Mitchell. 2006. Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics 172: 22232238.
96. Litvintseva, A. P.,, X. Lin,, I. Templeton,, J. Heitman, and, T. G. Mitchell. 2007. Many globally isolated AD hybrid strains of Cryptococcus neoformans originated in Africa. PLoS Pathog. 3: e114.
97. Loftus, B. J.,, E. Fung,, P. Roncaglia,, D. Rowley,, P. Amedeo,, D. Bruno,, J. Vamathevan,, M. Miranda,, I. J. Anderson,, J. A. Fraser,, J. E. Allen,, I. E. Bosdet,, M. R. Brent,, R. Chiu,, T. L. Doering,, M. J. Donlin,, C. A. D’Souza,, D. S. Fox,, V. Grinberg,, J. Fu,, M. Fukushima,, B. J. Haas,, J. C. Huang,, G. Janbon,, S. J. Jones,, H. L. Koo,, M. I. Krzywinski,, K. J. Kwon-Chung,, K. B. Lengeler,, R. Maiti,, M. A. Marra,, R. E. Marra,, C. A. Mathewson,, T. G. Mitchell,, M. Pertea,, F. R. Riggs,, S. L. Salzberg,, J. E. Schein,, A. Shvartsbeyn,, H. Shin,, M. Shumway,, C. A. Specht,, B. B. Suh,, A. Tenney,, T. R. Utterback,, B. L. Wickes,, J. R. Wortman,, N. H. Wye,, J. W. Kronstad,, J. K. Lodge,, J. Heitman,, R. W. Davis,, C. M. Fraser, and, R. W. Hyman. 2005. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans Science 307: 13211324.
98. Lorenz, M. C., and, G. R. Fink. 2001. The glyoxylate cycle is required for fungal virulence. Nature 412: 8386.
99. Luberto, C.,, B. Martinez-Mariño,, D. Taraskiewicz,, B. Bolaños,, P. Chitano,, D. L. Toffaletti,, G. M. Cox,, J. R. Perfect,, Y. A. Hannun,, E. Balish, and, M. Del Poeta. 2003. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J. Clin. Investig. 112: 10801094.
100. Ma, H.,, F. Hagen,, D. J. Stekel,, S. A. Johnston,, E. Sionev,, R. Falk,, I. Polachek,, T. Boekhout, and, R. C. May. 2009. The fatal fungal outbreak on Vancouver Island is characterized by enhanced intracellular parasitism driven by mitochondrial regulation. Proc. Natl. Acad. Sci. USA 106: 1298012985.
101. MacDougall, L.,, S. E. Kidd,, E. Galanis,, S. Mak,, M. J. Leslie,, P. R. Cieslak,, J. W. Kronstad,, M. G. Morshed, and, K. H. Bartlett. 2007. Spread of Cryptococcus gattii from Vancouver Island and its detection in the Pacific Northwest, USA. Emerg. Infect. Dis. 13: 4250.
102. McClelland, C. M.,, Y. C. Chang,, A. Varma, and, K. J. Kwon-Chung. 2004. Uniqueness of the mating system in Cryptococcus neoformans. Trends Microbiol. 12: 208212.
103. McClelland, C. M.,, J. Fu,, G. L. Woodlee,, T. S. Seymour, and, B. L. Wickes. 2002. Isolation and characterization of the Cryptococcus neoformans MAT a pheromone gene. Genetics 160: 935947.
104. Meyer, W.,, A. Castañeda,, S. Jackson,, M. Huynh,, E. Castañeda, and the Ibero American Cryptococcal Study Group. 2003. Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg. Infect. Dis. 9: 189195.
105. Meyer, W., and, T. G. Mitchell. 1995. PCR fingerprinting in fungi using single primers specific to minisatellites and simple repetitive DNA sequences: strain variation in Cryptococcus neoformans. Electrophoresis 16: 16481656.
106. Meyer, W.,, K. Marszewska,, M. Amirmostofian,, R. P. Igreja,, C. Hardtke,, K. Methling,, M. A. Viviani,, A. Chindamporn,, S. Sukroongreung,, M. A. John,, D. H. Ellis, and, T. C. Sorrell. 1999. Molecular typing of global isolates of Cryptococcus neoformans var. neoformans by PCR-fingerprinting and RAPD. A pilot study to standardize techniques on which to base a detailed epidemiological survey. Electrophoresis 20: 17901799.
107. Missall, T. A.,, M. E. Pusateri,, M. J. Donlin,, K. T. Chambers,, J. A. Corbett, and, J. K. Lodge. 2006. Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence. Eukaryot. Cell 5: 518529.
108. Mitchell, A. P., and, I. Herskowitz. 1986. Activation of meiosis and sporulation by repression of the RME1 product in yeast. Nature 319: 738742.
109. Mortimer, R. K. 1993a. Ojvind Winge: founder of yeast genetics, p. 3–16. In M. N. Hall and P. Linder (ed.), The Early Days of Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
110. Mortimer, R. K. 1993b. Carl C. Lindegren: iconoclastic father of neurospora and yeast genetics, p. 17–38. In M. N. Hall and P. Linder (ed.), The Early Days of Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
111. Muñoz-Elías, E. J., and, J. D. McKinney. 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 11: 638644.
112. Neilson, J. B.,, R. A. Fromtling, and, G. S. Bulmer. 1977. Cryptococcus neoformans: size range of infectious particles from aerosolized soil. Infect. Immun. 17: 634638.
113. Nicol, A. M.,, C. Hurrell,, W. McDowall,, K. Bartlett, and, N. Elmieh. 2008. Communicating the risks of a new, emerging pathogen: the case of Cryptococcus gattii. Risk Anal. 28: 373386.
114. Nielsen, K.,, G. M. Cox,, A. P. Litvintseva,, E. Mylonakis,, S. D. Malliaris,, D. K. Benjamin, Jr.,, S. S. Giles,, T. G. Mitchell,, A. Casadevall,, J. R. Perfect, and, J. Heitman. 2005a. Cryptococcus neoformans α strains preferentially disseminate to the central nervous system during coinfection. Infect. Immun. 73: 49224933.
115. Nielsen, K.,, G. M. Cox,, P. Wang,, D. L. Toffaletti,, J. R. Perfect, and, J. Heitman. 2003. Sexual cycle of Cryptococcus neoformans var. grubii and virulence of congenic a and α isolates. Infect. Immun. 71: 48314841.
116. Nielsen, K.,, A. L. De Obaldia, and, J. Heitman. 2007. Cryptococcus neoformans mates on pigeon guano: implications for the realized ecological niche and globalization. Eukaryot. Cell 6: 949959.
117. Nielsen, K.,, R. E. Marra,, F. Hagen,, T. Boekhout,, T. G. Mitchell,, G. M. Cox, and, J. Heitman. 2005b. Interaction between genetic background and the mating-type locus in Cryptococcus neoformans virulence potential. Genetics 171: 975983.
118. Panepinto, J.,, L. Liu,, J. Ramos,, X. Zhu,, T. Valyi-Nagy,, S. Eksi,, J. Fu,, H. A. Jaffe,, B. Wickes, and, P. R. Williamson. 2005. The DEAD-box RNA helicase Vad1 regulates multiple virulence-associated genes in Cryptococcus neoformans. J. Clin. Investig. 115: 632641.
119. Perfect, J. R.,, D. L. Toffaletti, and, T. H. Rude. 1993a. The gene encoding phosphoribosylaminoimidazole carboxylase ( ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect. Immun. 61: 44464451.
120. Perfect, J. R.,, N. Ketabuchi,, G. M. Cox,, C. W. Ingram, and, C. L. Beiser. 1993b. Karyotyping of Cryptococcus neoformans as an epidemiological tool. J. Clin. Microbiol. 31: 33053309.
121. Perfect, J. R.,, B. B. Magee, and, P. T. Magee. 1989. Separation of chromosomes of Cryptococcus neoformans by pulsed-field gel electrophoresis. Infect. Immun. 57: 26242627.
122. Pukkila-Worley, R.,, Q. D. Gerrald,, P. R. Kraus,, M. J. Boily,, M. J. Davis,, S. S. Giles,, G. M. Cox,, J. Heitman, and, J. A. Alspaugh. 2005. Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot. Cell 4: 190201.
123. Ren, P.,, P. Roncaglia,, D. J. Springer,, J. Fan, and, V. Chaturvedi. 2005. Genomic organization and expression of 23 new genes from MATα locus of Cryptococcus neoformans var. gattii. Biochem. Biophys. Res. Commun. 326: 233241.
124. Ren, P.,, D. J. Springer,, M. J. Behr,, W. A. Samsonoff,, S. Chaturvedi, and, V. Chaturvedi. 2006. Transcription factor STE12α has distinct roles in morphogenesis, virulence, and ecological fitness of the primary pathogenic yeast Cryptococcus gattii. Eukaryot. Cell 5: 10651080.
125. Rodrigues, M. L.,, E. S. Nakayasu,, D. L. Oliveira,, L. Nim-richter,, J. D. Nosanchuk,, I. C. Almeida, and, A. Casadevall. 2008. Extracellular vesicles produced by Cryptococcus neofor-mans contain protein components associated with virulence. Eukaryot. Cell 7: 5867.
126. Rodrigues, M. L.,, L. Nimrichter,, D. L. Oliverira,, S. Frases,, K. Miranda,, O. Zaragoza,, M. Alvarez,, A. Nakouzi,, M. Feldmesser, and, A. Casadevall. 2007. Vesicular polysaccha-ride export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot. Cell 6: 4859.
127. Rude, T. H.,, D. L. Toffaletti,, G. M. Cox, and, J. R. Perfect. 2002. Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans. Infect. Immun. 70: 56845694.
128. Ruiz, A., and, G. S. Bulmer. 1981. Particle size of airborne Cryptococcus neoformans in a tower. Appl. Environ. Microbiol. 41: 12251229.
129. Saul, N.,, M. Krockenberger, and, D. Carter. 2008. Evidence of recombination in mixed-mating-type and alpha-only populations of Cryptococcus gattii sourced from single eucalyptus tree hollows. Eukaryot. Cell 7: 727734.
130. Schaible, U. E., and, S. H. Kaufmann. 2004. Iron and microbial infection. Nat. Rev. Microbiol. 2: 946953.
131. Schrettl, M.,, E. Bignell,, C. Kragl,, C. Joechl,, T. Rogers,, H. N. Arst, Jr.,, K. Haynes, and, H. Haas. 2004. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J. Exp. Med. 200: 12131219.
132. Shoham, S., and, S. M. Levitz. 2005. The immune response to fungal infections. Br. J. Haematol. 129: 569582.
133. Sia, R. A.,, K. B. Lengeler, and, J. Heitman. 2000. Diploid strains of the pathogenic basidiomycete Cryptococcus neoformans are thermally dimorphic. Fungal Genet. Biol. 29: 153163.
134. Sorrell, T. C. 2001. Cryptococcus neoformans variety gattii. Med. Mycol. 39: 155168.
135. Steen, B. R.,, T. Lian,, S. Zuyderduyn,, W. K. MacDonald,, M. Marra,, S. J. Jones, and, J. W. Kronstad. 2002. Temperature-regulated transcription in the pathogenic fungus Cryptococcus neoformans. Genome Res. 12: 13861400.
136. Steen, B. R.,, S. Zuyderduyn,, D. L. Toffaletti,, M. Marra,, S. J. Jones,, J. R. Perfect, and, J. Kronstad. 2003. Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot. Cell 2: 13361349.
137. Sugita, T.,, R. Ikeda, and, T. Shinoda. 2001. Diversity among strains of Cryptococcus neoformans var. gattii as revealed by a sequence analysis of multiple genes and a chemotype analysis of capsular polysaccharide. Microbiol. Immunol. 45: 757768.
138. Sukroongreung, S.,, K. Kitiniyom,, C. Nilakul, and, S. Tantimavanich. 1998. Pathogenicity of basidiospores of Filobasidiella neoformans var. neoformans. Med. Mycol. 36: 419424.
139. Tangen, K. T.,, W. H. Jung,, A. Sham,, T. S. Lian, and, J. W. Kronstad. 2007. The iron and cAMP regulated gene SIT1 influences siderophore utilization, melanization and cell wall structure in Cryptococcus neoformans. Microbiology 153: 2941.
140. Tscharke, R. L.,, M. Lazera,, Y. C. Chang,, B. L. Wickes, and, K. J. Kwon-Chung. 2003. Haploid fruiting in Cryptococcus neoformans is not mating type α-specific. Fungal Genet. Biol. 39: 230237.
141. Upton, A.,, J. A. Fraser,, S. E. Kidd,, C. Bertz,, K. H. Bartlett,, J. Heitman, and, K. A. Marr. 2007. First contemporary case of human infection with Cryptococcus gattii in Puget Sound: evidence for spread of the Vancouver Island outbreak. J. Clin. Microbiol. 45: 30863088.
142. Vartivarian, S. E.,, E. J. Anaissie,, R. E. Cowart,, H. A. Sprigg,, M. J. Tingler, and, E. S. Jacobson. 1993. Regulation of cryptococcal capsular polysaccharide by iron. J. Infect. Dis. 167: 186190.
143. Velagapudi, R.,, Y.-P. Hsueh,, S. Geunes-Boyer,, J. R. Wright, and, J. Heitman. 2009. Spores as infectious propagules of Cryptococcus neoformans. Infect Immun. 77: 43454355.
144. Velculescu, V. E.,, L. Zhang,, B. Vogelstein, and, K. W. Kinzler. 1995. Serial analysis of gene expression. Science 270: 484487.
145. Wang, P.,, C. B. Nichols,, K. B. Lengeler,, M. E. Cardenas,, G. M. Cox,, J. R. Perfect, and, J. Heitman. 2002. Mating-type-specific and nonspecific PAK kinases play shared and divergent roles in Cryptococcus neoformans. Eukaryot. Cell 1: 257272.
146. Waterman, S. R.,, M. Hacham,, G. Hu,, X. Zhu,, Y. D. Park,, S. Shin,, J. Panepinto,, T. Valyi-Nagy,, C. Beam,, S. Husain,, N. Singh, and, P. R. Williamson. 2007. Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neofor-mans. J. Clin. Investig. 117: 794802.
147. Weinberg, E. D. 1999. Iron loading and disease surveillance. Emerg. Infect. Dis. 5: 346352.
148. Wickes, B. L.,, T. D. E. Moore, and, J. Kwon-Chung. 1994. Comparison of the electrophoretic karyotypes and chromosomal location of ten genes in the two varieties of Cryptococcus neoformans. Microbiology 140: 543550.
149. Wickes, B. L. 2002. The role of mating type and morphology in Cryptococcus neoformans pathogenesis. Int. J. Med. Micro-biol. 292: 313329.
150. Wickes, B. L.,, M. E. Mayorga,, U. Edman, and, J. C. Edman. 1996. Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the α-mating type. Proc. Natl. Acad. Sci. USA 93: 73277331.
151. Wong, S., and, K. H. Wolfe. 2005. Birth of a metabolic gene cluster in yeast by adaptive gene relocation. Nat. Genet. 37: 777782.
152. Woyke, T.,, M. E. Berens,, D. B. Hoelzinger,, G. R. Pettit,, G. Winkelmann, and, R. K. Pettit. 2004. Differential gene expression in auristatin PHE-treated Cryptococcus neoformans. Antimicrob. Agents Chemother. 48: 561567.
153. Xu, J.,, R. Y. Ali,, D. A. Gregory,, D. Amick,, S. E. Lambert,, H. J. Yoell,, R. J. Vilgalys, and, T. G. Mitchell. 2000a. Uni-parental mitochondrial transmission in sexual crosses in Cryptococcus neoformans. Curr. Microbiol. 40: 269273.
154. Xu, J.,, R. Vilgalys, and, T. G. Mitchell. 2000b. Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungus Cryptococcus neoformans. Mol. Ecol. 9: 14711481.
155. Xue, C.,, Y. Tada,, X. Dong, and, J. Heitman. 2007. The human fungal pathogen Cryptococcus can complete its sexual cycle during a pathogenic association with plants. Cell Host Microbe 1: 263273.
156. Yan, Z.,, C. M. Hull,, J. Heitman,, S. Sun, and, J. Xu. 2004. SXI1α controls uniparental mitochondrial inheritance in Cryptococcus neoformans. Curr. Biol. 14: R743R744.
157. Yan, Z.,, C. M. Hull,, S. Sun,, J. Heitman, and, J. P. Xu. 2007. The mating-type specific homeodomain genes SXI1α and SXI2 a coordinately control uniparental mitochondrial inheritance in Cryptococcus neoformans. Curr. Genet. 51: 187195.
158. Yan, Z., and, J. Xu. 2003. Mitochondria are inherited from the MAT a parent in crosses of the basidiomycete fungus Cryptococcus neoformans. Genetics 163: 13151325.
159. Yue, C.,, L. M. Cavallo,, J. A. Alspaugh,, P. Wang,, G. M. Cox,, J. R. Perfect, and, J. Heitman. 1999. The STE12α homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans. Genetics 153: 16011615.
160. Zimmer, B. L.,, H. O. Hempel, and, N. L. Goodman. 1984. Pathogenicity of the basidiospores of Filobasidiella neofor-mans. Mycopathologia 85: 149153.


Generic image for table

Properties of the three varieties of

Citation: Kronstad J, Lodge J, Heitman J. 2010. : Budding Yeast and Dimorphic Filamentous Fungus, p 717-735. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch44
Generic image for table

Genome sequencing projects for and

Citation: Kronstad J, Lodge J, Heitman J. 2010. : Budding Yeast and Dimorphic Filamentous Fungus, p 717-735. In Borkovich K, Ebbole D (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555816636.ch44

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error