Chapter 28 : Interaction of with Phagocytes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Interaction of with Phagocytes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816650/9781555814014_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555816650/9781555814014_Chap28-2.gif


One of the central players in antifungal immunity is phagocytic cells. Recognition by these cells leads to fungal uptake and killing and the induction of an inflammatory response. The increased risk of fungal infection resulting from perturbations in the levels of the number of phagocytes emphasizes the importance of these cells in the control of mycoses. This chapter covers the mechanisms that phagocytic cells use to recognize, ingest, and kill this pathogen, as well as those mechanisms involved in the induction of inflammatory and adaptive response to these organisms. Although involving multiple interactions with multiple receptors, different phagocytes appear to utilize different combinations of receptors to recognize . Recognition of leads to ingestion of the fungus through the actin-dependent process of phagocytosis. The uptake of involves several different phagocytic mechanisms which depend on the cell type, presence of opsonins, and the morphological form of the fungus. Phagocytes play essential roles in killing extracellular and internalized , and defects in their antimicrobial functions lead to an increased risk of fungal infection. has a number of mechanisms to defend against the antimicrobial activities of phagocytes. The induction of a correct adaptive response to can be influenced by the morphological form of the fungus and the phagocyte receptors with which it interacts.

Citation: Faro-Trindade I, Brown G. 2009. Interaction of with Phagocytes, p 437-451. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch28
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Cartoon representation of the various morphologies (yeast, hyphae, and pseudohyphae) of . Reprinted with permission from .

Citation: Faro-Trindade I, Brown G. 2009. Interaction of with Phagocytes, p 437-451. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

DC phagocytosis of yeast and hyphae of . (a) Phagocytosis of yeasts occurs through coiling phagocytosis, whereas (b) phagocytosis of hyphae occurs through a “zipper-like” mechanism. Reprinted with permission from .

Citation: Faro-Trindade I, Brown G. 2009. Interaction of with Phagocytes, p 437-451. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Transmission electron microscopy image demonstrating undergoing yeast-to-hyphal transition following phagocytosis in macrophages. Reprinted with permission from .

Citation: Faro-Trindade I, Brown G. 2009. Interaction of with Phagocytes, p 437-451. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Exposure of β-glucans, detected by soluble recombinant Dectin-1 (sDectin), on selected regions of yeast, but not hyphae. Reprinted with permission from .

Citation: Faro-Trindade I, Brown G. 2009. Interaction of with Phagocytes, p 437-451. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Photomicrograph showing the presence of invasive candidiasis in the kidney of a Dectin-1-deficient mouse. Reprinted with permission from .

Citation: Faro-Trindade I, Brown G. 2009. Interaction of with Phagocytes, p 437-451. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Acosta-Rodriguez, E. V.,, L. Rivino,, J. Geginat,, D. Jarrossay,, M. Gattorno,, A. Lanzavecchia,, F. Sallusto, and, G. Napolitani. 2007. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8: 639646.
2. Akira, S.,, and K. Takeda. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499511.
3. Akira, S.,, S. Uematsu, and, O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124: 783801.
4. Allen, L. H.,, and A. Aderem. 1995. A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J. Exp. Med. 182: 829840.
5. Allen, L. A.,, and A. Aderem. 1996. Molecular definition of distinct cytoskeletal structures involved in complement-and Fc receptor-mediated phagocytosis in macrophages. J. Exp. Med. 184: 627637.
6. Antachopoulos, C.,, T. J. Walsh, and, E. Roilides. 2007. Fungal infections in primary immunodeficiencies. Eur. J. Pediatr. 166: 10991117.
7. Aratani, Y.,, H. Koyama,, S. Nyui,, K. Suzuki,, F. Kura, and, N. Maeda. 1999. Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect. Immun. 67: 18281836.
8. Aratani, Y.,, F. Kura,, H. Watanabe,, H. Akagawa,, Y. Takano,, K. Suzuki,, M. C. Dinauer,, N. Maeda, and, H. Koyama. 2002. Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. J. Infect. Dis. 185: 18331837.
9. Ariizumi, K.,, G. L. Shen,, S. Shikano,, R. Ritter, 3rd,, P. Zukas,, D. Edelbaum,, A. Morita, and, A. Takashima. 2000. Cloning of a second dendritic cell-associated C-type lectin (dectin-2) and its alternatively spliced isoforms. J. Biol. Chem. 275: 1195711963.
10. Ashman, R. B.,, C. S. Farah,, S. Wanasaengsakul,, Y. Hu,, G. Pang, and, R. L. Clancy. 2004. Innate versus adaptive immunity in Candida albicans infection. Immunol. Cell Biol. 82: 196204.
11. Balish, E.,, T. F. Warner,, P. J. Nicholas,, E. E. Paulling,, C. Westwater, and, D. A. Schofield. 2005. Susceptibility of germfree phagocyte oxidase-and nitric oxide synthase 2-deficient mice, defective in the production of reactive metabolites of both oxygen and nitrogen, to mucosal and systemic candidiasis of endogenous origin. Infect. Immun. 73: 13131320.
12. Barelle, C. J.,, C. L. Priest,, D. M. Maccallum,, N. A. Gow,, F. C. Odds, and, A. J. Brown. 2006. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell. Microbiol. 8: 961971.
13. Behnsen, J.,, P. Narang,, M. Hasenberg,, F. Gunzer,, U. Bilitewski,, N. Klippel,, M. Rohde,, M. Brock,, A. A. Brakhage, and, M. Gunzer. 2007. Environmental dimensionality controls the interaction of phagocytes with the pathogenic fungi Aspergillus fumigatus and Candida albicans. PLoS Pathog. 3: e13.
14. Bellocchio, S.,, C. Montagnoli,, S. Bozza,, R. Gaziano,, G. Rossi,, S. S. Mambula,, A. Vecchi,, A. Mantovani,, S. M. Levitz, and, L. Romani. 2004. The contribution of the toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 172: 30593069.
15. Blander, J. M.,, and R. Medzhitov. 2004. Regulation of phagosome maturation by signals from toll-like receptors. Science 304: 10141018.
16. Borg-von Zepelin, M.,, S. Beggah,, K. Boggian,, D. Sanglard, and, M. Monod. 1998. The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol. Microbiol. 28: 543554.
17. Brinkmann, V.,, U. Reichard,, C. Goosmann,, B. Fauler,, Y. Uhlemann,, D. S. Weiss,, Y. Weinrauch, and, A. Zychlinsky. 2004. Neutrophil extracellular traps kill bacteria. Science 303: 15321535.
18. Brown, G. D. 2006. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6: 3343.
19. Brown, G. D.,, and S. Gordon. 2005. Immune recognition of fungal beta-glucans. Cell. Microbiol. 7: 471479.
20. Brown, G. D.,, J. Herre,, D. L. Williams,, J. A. Willment,, A. S. J. Marshall, and, S. Gordon. 2003. Dectin-1 mediates the biological effects of beta-glucan. J. Exp. Med. 197: 11191124.
21. Cambi, A.,, K. Gijzen,, J. M. de Vries,, R. Torensma,, B. Joosten,, G. J. Adema,, M. G. Netea,, B. J. Kullberg,, L. Romani, and, C. G. Figdor. 2003. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol. 33: 532538.
22. Chauhan, N.,, J. P. Latge, and, R. Calderone. 2006. Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat. Rev. Microbiol. 4: 435444.
23. Clark, R. A. 1999. Activation of the neutrophil respiratory burst oxidase. J. Infect. Dis. 179 (Suppl. 2) : S309S317.
24. Diamond, R. D.,, R. A. Clark, and, C. C. Haudenschild. 1980. Damage to Candida albicans hyphae and pseudohyphae by the myeloperoxidase system and oxidative products of neutrophil metabolism in vitro. J. Clin. Investig. 66: 908917.
25. Dillon, S.,, A. Agrawal,, T. Van Dyke,, G. Landreth,, L. McCauley,, A. Koh,, C. Maliszewski,, S. Akira, and, B. Pulendran. 2004. A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J. Immunol. 172: 47334743.
26. Dillon, S.,, S. Agrawal,, K. Banerjee,, J. Letterio,, T. L. Denning,, K. Oswald-Richter,, D. J. Kasprowicz,, K. Kellar,, J. Pare,, T. van Dyke,, S. Ziegler,, D. Unutmaz, and, B. Pulendran. 2006. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Investig. 116: 916928.
27. Diniz, S. N.,, R. Nomizo,, P. S. Cisalpino,, M. M. Teixeira,, G. D. Brown,, A. Mantovani,, S. Gordon,, L. F. Reis, and, A. A. Dias. 2004. PTX3 function as an opsonin for the dectin-1-dependent internalization of zymosan by macrophages. J. Leukoc. Biol. 75: 649656.
28. Donini, M.,, E. Zenaro,, N. Tamassia, and, S. Dusi. 2007. NADPH oxidase of human dendritic cells: role in Candida albicans killing and regulation by interferons, dectin-1 and CD206. Eur. J. Immunol. 37: 11941203.
29. d’Ostiani, C. F.,, G. Del Sero,, A. Bacci,, C. Montagnoli,, A. Spreca,, A. Mencacci,, P. Ricciardi-Castagnoli, and, L. Romani. 2000. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191: 16611674.
30. Edgerton, M.,, S. E. Koshlukova,, M. W. Araujo,, R. C. Patel,, J. Dong, and, J. A. Bruenn. 2000. Salivary histatin 5 and human neutrophil defensin 1 kill Candida albicans via shared pathways. Antimicrob. Agents Chemother. 44: 33103316.
31. Eisenhauer, P. B.,, and R. I. Lehrer. 1992. Mouse neutrophils lack defensins. Infect. Immun. 60: 34463447.
32. Engering, A.,, T. B. Geijtenbeek,, S. J. van Vliet,, M. Wijers,, E. van Liempt,, N. Demaurex,, A. Lanzavecchia,, J. Fransen,, C. G. Figdor,, V. Piguet, and, Y. van Kooyk. 2002. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J. Immunol. 168: 21182126.
33. Ezekowitz, R. A.,, K. Sastry,, P. Bailly, and, A. Warner. 1990. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J. Exp. Med. 172: 17851794.
34. Fradin, C.,, P. De Groot,, D. MacCallum,, M. Schaller,, F. Klis,, F. C. Odds, and, B. Hube. 2005. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol. Microbiol. 56: 397415.
35. Fraser, I. P.,, K. Takahashi,, H. Koziel,, B. Fardin,, A. Harmsen, and, R. A. Ezekowitz. 2000. Pneumocystis carinii enhances soluble mannose receptor production by macrophages. Microbes Infect. 2: 13051310.
36. Fuchs, T. A.,, U. Abed,, C. Goosmann,, R. Hurwitz,, I. Schulze,, V. Wahn,, Y. Weinrauch,, V. Brinkmann, and, A. Zychlinsky. 2007. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176: 231241.
37. Gantner, B. N.,, R. M. Simmons,, S. J. Canavera,, S. Akira, and, D. M. Underhill. 2003. Collaborative induction of inflammatory responses by Dectin-1 and Toll-like receptor 2. J. Exp. Med. 197: 11071117.
38. Gantner, B. N.,, R. M. Simmons, and, D. M. Underhill. 2005. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24: 12771286.
39. Gil, M. L.,, and D. Gozalbo. 2006. TLR2, but not TLR4, triggers cytokine production by murine cells in response to Candida albicans yeasts and hyphae. Microbes Infect. 8: 22992304.
40. Gringhuis, S. I.,, J. den Dunnen,, M. Litjens,, B. van Het Hof,, Y. van Kooyk, and, T. B. Geijtenbeek. 2007. C-Type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 26: 605616.
41. Gross, O.,, A. Gewies,, K. Finger,, M. Schafer,, T. Sparwasser,, C. Peschel,, I. Forster, and, J. Ruland. 2006. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442: 651656.
42. Gudlaugsson, O.,, S. Gillespie,, K. Lee,, J. Vande Berg,, J. Hu,, S. Messer,, L. Herwaldt,, M. Pfaller, and, D. Diekema. 2003. Attributable mortality of nosocomial candidemia, revisited. Clin. Infect. Dis. 37: 11721177.
43. Heinsbroek, S. E.,, G. D. Brown, and, S. Gordon. 2005. Dectin-1 escape by fungal dimorphism. Trends Immunol. 26: 352354.
44. Heinsbroek, S. E.,, P. R. Taylor,, M. Rosas,, J. A. Willment,, D. L. Williams,, S. Gordon, and, G. D. Brown. 2006. Expression of functionally different Dectin-1 isoforms by murine macrophages. J. Immunol. 176: 55135518.
45. Herre, J.,, A. J. Marshall,, E. Caron,, A. D. Edwards,, D. L. Williams,, E. Schweighoffer,, V. L. Tybulewicz,, C. Reis e Sousa,, S. Gordon, and, G. D. Brown. 2004. Dectin-1 utilizes novel mechanisms for yeast phagocytosis in macrophages. Blood 104: 40384045.
46. Heyworth, P. G.,, A. R. Cross, and, J. T. Curnutte. 2003. Chronic granulomatous disease. Curr. Opin. Immunol. 15: 578584.
47. Huang, W.,, L. Na,, P. L. Fidel, and, P. Schwarzenberger. 2004. Requirement of interleukin-17A for systemic anti- Candida albicans host defense in mice. J. Infect. Dis. 190: 624631.
48. Ibata-Ombetta, S.,, T. Idziorek,, P. A. Trinel,, D. Poulain, and, T. Jouault. 2003. Candida albicans phospholipomannan promotes survival of phagocytozed yeasts through modulation of Bad phosphorylation and macrophage apoptosis. J. Biol. Chem. 278: 1308613093.
49. Jones-Carson, J.,, A. Vazquez-Torres,, T. Warner, and, E. Balish. 2000. Disparate requirement for T cells in resistance to mucosal and acute systemic candidiasis. Infect. Immun. 68: 23632365.
50. Jouault, T.,, M. El Abed-El Behi,, M. Martinez-Esparza,, L. Breuilh,, P. A. Trinel,, M. Chamaillard,, F. Trottein, and, D. Poulain. 2006. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J. Immunol. 177: 46794687.
51. Jouault, T.,, S. Ibata-Ombetta,, O. Takeuchi,, P. A. Trinel,, P. Sacchetti,, P. Lefebvre,, S. Akira, and, D. Poulain. 2003. Candida albicans phospholipomannan is sensed through toll-like receptors. J. Infect. Dis. 188: 165172.
52. Kaposzta, R.,, L. Marodi,, M. Hollinshead,, S. Gordon, and, R. P. da Silva. 1999. Rapid recruitment of late endosomes and lysosomes in mouse macrophages ingesting Candida albicans. J. Cell Sci. 112 (Pt 19) : 32373248.
53. Karlsson, A.,, and C. Dahlgren. 2002. Assembly and activation of the neutrophil NADPH oxidase in granule membranes. Antioxid. Redox Signal. 4: 4960.
54. Karlsson, A.,, P. Follin,, H. Leffler, and, C. Dahlgren. 1998. Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood 91: 34303438.
55. Kauffman, C. A. 2006. Fungal infections. Proc. Am. Thorac. Soc. 3: 3540.
56. Kennedy, A. D.,, J. A. Willment,, D. W. Dorward,, D. L. Williams,, G. D. Brown, and, F. R. DeLeo. 2007. Dectin-1 promotes fungicidal activity of human neutrophils. Eur. J. Immunol. 37: 467478.
57. Kilpatrick, D. 2002. Mannan-binding lectin: clinical significance and applications. Biochim. Biophys. Acta 1572: 401.
58. Kishore, U.,, T. J. Greenhough,, P. Waters,, A. K. Shrive,, R. Ghai,, M. F. Kamran,, A. L. Bernal,, K. B. Reid,, T. Madan, and, T. Chakraborty. 2006. Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol. Immunol. 43: 12931315.
59. Kitahara, M.,, H. J. Eyre,, Y. Simonian,, C. L. Atkin, and, S. J. Hasstedt. 1981. Hereditary myeloperoxidase deficiency. Blood 57: 888893.
60. Klis, F. M.,, P. de Groot, and, K. Hellingwerf. 2001. Molecular organization of the cell wall of Candida albicans. Med. Mycol. 39 (Suppl 1) : 18.
61. Kohatsu, L.,, D. K. Hsu,, A. G. Jegalian,, F. T. Liu, and, L. G. Baum. 2006. Galectin-3 induces death of Candida species expressing specific beta-1,2-linked mannans. J. Immunol. 177: 47184726.
62. Koppel, E. A.,, K. P. van Gisbergen,, T. B. Geijtenbeek, and, Y. van Kooyk. 2005. Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation. Cell. Microbiol. 7: 157165.
63. Kuipers, M. E.,, H. G. de Vries,, M. C. Eikelboom,, D. K. Meijer, and, P. J. Swart. 1999. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob. Agents Chemother. 43: 26352641.
64. Lai, W. K.,, P. J. Sun,, J. Zhang,, A. Jennings,, P. F. Lalor,, S. Hubscher,, J. A. McKeating, and, D. H. Adams. 2006. Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium: a role for capturing hepatitis C virus particles. Am. J. Pathol. 169: 200208.
65. Latz, E.,, A. Schoenemeyer,, A. Visintin,, K. A. Fitzgerald,, B. G. Monks,, C. F. Knetter,, E. Lien,, N. J. Nilsen,, T. Espevik, and, D. T. Golenbock. 2004. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5: 190198.
66. Le Cabec, V.,, L. J. Emorine,, I. Toesca,, C. Cougoule, and, I. Maridonneau-Parini. 2005. The human macrophage mannose receptor is not a professional phagocytic receptor. J. Leukoc. Biol. 77: 934943.
67. Lee, S. J.,, N. Y. Zheng,, M. Clavijo, and, M. C. Nussenzweig. 2003. Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect. Immun. 71: 437445.
68. Lefkowitz, S. S.,, M. P. Gelderman,, D. L. Lefkowitz,, N. Moguilevsky, and, A. Bollen. 1996. Phagocytosis and intracellular killing of Candida albicans by macrophages exposed to myeloperoxidase. J. Infect. Dis. 173: 12021207.
69. Leibundgut-Landmann, S.,, O. Gross,, M. J. Robinson,, F. Osorio,, E. C. Slack,, S. V. Tsoni,, E. Schweighoffer,, V. Tybulewicz,, G. D. Brown,, J. Ruland, and, C. Reis e Sousa. 2007. Syk-and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8: 630638.
70. Lemaitre, B.,, E. Nicolas,, L. Michaut,, J. M. Reichhart, and, J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973983.
71. Levy, O. 2004. Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes. J. Leukoc. Biol. 76: 909925.
72. Lo, H. J.,, J. R. Kohler,, B. DiDomenico,, D. Loebenberg,, A. Cacciapuoti, and, G. R. Fink. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939949.
73. Lopez-Garcia, B.,, P. H. Lee,, K. Yamasaki, and, R. L. Gallo. 2005. Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J. Invest. Dermatol. 125: 108115.
74. Lorenz, M. C.,, J. A. Bender, and, G. R. Fink. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell. 3: 10761087.
75. Lorenz, M. C.,, and G. R. Fink. 2001. The glyoxylate cycle is required for fungal virulence. Nature 412: 8386.
76. Lu, Q.,, J. A. Jayatilake,, L. P. Samaranayake, and, L. Jin. 2006. Hyphal invasion of Candida albicans inhibits the expression of human beta-defensins in experimental oral candidiasis. J. Invest. Dermatol. 126: 20492056.
77. Lulloff, S. J.,, B. L. Hahn, and, P. G. Sohnle. 2004. Fungal susceptibility to zinc deprivation. J. Lab. Clin. Med. 144: 208214.
78. MacMicking, J.,, Q. W. Xie, and, C. Nathan. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323350.
79. Mahanty, S.,, R. A. Greenfield,, W. A. Joyce, and, P. W. Kincade. 1988. Inoculation candidiasis in a murine model of severe combined immunodeficiency syndrome. Infect. Immun. 56: 31623166.
80. Mantegazza, A. R.,, M. M. Barrio,, S. Moutel,, L. Bover,, M. Weck,, P. Brossart,, J. L. Teillaud, and, J. Mordoh. 2004. CD63 Tetraspanin slows down cell migration and translocates to the endosomal/lysosomal/MIICs route after extracellular stimuli in human immature dendritic cells. Blood 104: 11831190.
81. Marodi, L.,, J. R. Forehand, and, R. B. Johnston, Jr. 1991a. Mechanisms of host defense against Candida species. II. Biochemical basis for the killing of Candida by mononuclear phagocytes. J. Immunol. 146: 27902794.
82. Marodi, L.,, H. M. Korchak, and, R. B. Johnston, Jr. 1991b. Mechanisms of host defense against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages. J. Immunol. 146: 27832789.
83. Marquis, G.,, S. Montplaisir,, S. Garzon,, H. Strykowski, and, P. Auger. 1982. Fungitoxicity of muramidase. Ultrastructural damage to Candida albicans. Lab. Invest. 46: 627636.
84. Marr, K. A.,, S. A. Balajee,, T. R. Hawn,, A. Ozinsky,, U. Pham,, S. Akira,, A. Aderem, and, W. C. Liles. 2003. Differential role of MyD88 in macrophage-mediated responses to opportunistic fungal pathogens. Infect. Immun. 71: 52805286.
85. Martinez-Pomares, L.,, J. A. Mahoney,, R. Kaposzta,, S. A. Linehan,, P. D. Stahl, and, S. Gordon. 1998. A functional soluble form of the murine mannose receptor is produced by macrophages in vitro and is present in mouse serum. J. Biol. Chem. 273: 2337623380.
86. McCabe, D.,, T. Cukierman, and, J. E. Gabay. 2002. Basic residues in azurocidin/HBP contribute to both heparin binding and antimicrobial activity. J. Biol. Chem. 277: 2747727488.
87. McGreal, E. P.,, M. Rosas,, G. D. Brown,, S. Zamze,, S. Y. Wong,, S. Gordon,, L. Martinez-Pomares, and, P. R. Taylor. 2006. The carbohydrate recognition domain of Dectin-2 is a C-type lectin with specificity for high-mannose. Glycobiology 16: 422430.
88. McKenzie, E. J.,, P. R. Taylor,, R. J. Stillion,, A. D. Lucas,, J. Harris,, S. Gordon, and, L. Martinez-Pomares. 2007. Mannose receptor expression and function define a new population of murine dendritic cells. J. Immunol. 178: 49754983.
89. Mencacci, A.,, E. Cenci,, F. Bistoni,, A. Bacci,, G. Del Sero,, C. Montagnoli,, C. Fe d’Ostiani, and, L. Romani. 1998. Specific and non-specific immunity to Candida albicans: a lesson from genetically modified animals. Res. Immunol. 149: 352361; discussion 517–519.
90. Murakami, M.,, B. Lopez-Garcia,, M. Braff,, R. A. Dorschner, and, R. L. Gallo. 2004. Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J. Immunol. 172: 30703077.
91. Murciano, C.,, E. Villamon,, D. Gozalbo,, P. Roig,, J. E. O’Connor, and, M. L. Gil. 2006. Tolllike receptor 4 defective mice carrying point or null mutations do not show increased susceptibility to Candida albicans in a model of hematogenously disseminated infection. Med. Mycol. 44: 149157.
92. Netea, M. G.,, K. Gijzen,, N. Coolen,, I. Verschueren,, C. Figdor,, J. W. Van der Meer,, R. Torensma, and, B. J. Kullberg. 2004a. Human dendritic cells are less potent at killing Candida albicans than both monocytes and macrophages. Microbes Infect. 6: 985989.
93. Netea, M. G.,, N. A. Gow,, C. A. Munro,, S. Bates,, C. Collins,, G. Ferwerda,, R. P. Hobson,, G. Bertram,, H. B. Hughes,, T. Jansen,, L. Jacobs,, E. T. Buurman,, K. Gijzen,, D. L. Williams,, R. Torensma,, A. McKinnon,, D. M. MacCallum,, F. C. Odds,, J. W. Van der Meer,, A. J. Brown, and, B. J. Kullberg. 2006. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J. Clin. Investig. 116: 16421650.
94. Netea, M. G.,, R. Sutmuller,, C. Hermann,, C. A. Van der Graaf,, J. W. Van der Meer,, J. H. van Krieken,, T. Hartung,, G. Adema, and, B. J. Kullberg. 2004b. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J. Immunol. 172: 37123718.
95. Netea, M. G.,, C. Van der Graaf,, J. W. Van der Meer, and, B. J. Kullberg. 2004c. Recognition of fungal pathogens by Toll-like receptors. Eur. J. Clin. Microbiol. Infect. Dis. 23: 672676.
96. Netea, M. G.,, C. A. Van Der Graaf,, A. G. Vonk,, I. Verschueren,, J. W. Van Der Meer, and, B. J. Kullberg. 2002. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J. Infect. Dis. 185: 14831489.
97. Obayashi, T.,, M. Yoshida,, T. Mori,, H. Goto,, A. Yasuoka,, H. Iwasaki,, H. Teshima,, S. Kohno,, A. Horiuchi,, A. Ito, et al. 1995. Plasma (1→3)-beta-D-glucan measurement in diagnosis of invasive deep mycosis and fungal febrile episodes. Lancet 345: 1720.
98. Owen, C. A.,, and E. J. Campbell. 1999. The cell biology of leukocyte-mediated proteolysis. J. Leukoc. Biol. 65: 137150.
99. Ozinsky, A.,, D. M. Underhill,, J. D. Fontenot,, A. M. Hajjar,, K. D. Smith,, C. B. Wilson,, L. Schroeder, and, A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 97: 1376613771.
100. Ozment-Skelton, T. R.,, M. P. Goldman,, S. Gordon,, G. D. Brown, and, D. L. Williams. 2006. Prolonged reduction of leukocyte membrane-associated Dectin-1 levels following beta-glucan administration. J. Pharmacol. Exp. Ther. 318: 540546.
101. Palma, A. S.,, T. Feizi,, Y. Zhang,, M. S. Stoll,, A. M. Lawson,, E. Diaz-Rodriguez,, M. A. Campanero-Rhodes,, J. Costa,, S. Gordon,, G. D. Brown, and, W. Chai. 2006. Ligands for the beta-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J. Biol. Chem. 281: 57715779.
102. Powlesland, A. S.,, E. M. Ward,, S. K. Sadhu,, Y. Guo,, M. E. Taylor, and, K. Drickamer. 2006. Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins. J. Biol. Chem. 281: 2044020449.
103. Puliti, M.,, D. Radzioch,, R. Mazzolla,, R. Barluzzi,, F. Bistoni, and, E. Blasi. 1995. Influence of the Bcg locus on macrophage response to the dimorphic fungus Candida albicans. Infect. Immun. 63: 41704173.
104. Qian, Q.,, and J. E. Cutler. 1997. Gamma interferon is not essential in host defense against disseminated candidiasis in mice. Infect. Immun. 65: 17481753.
105. Quinn, M. T.,, and K. A. Gauss. 2004. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J. Leukoc. Biol. 76: 760781.
106. Rabinovich, G. A.,, and A. Gruppi. 2005. Galectins as immunoregulators during infectious processes: from microbial invasion to the resolution of the disease. Parasite Immunol. 27: 103114.
107. Ramanan, N.,, and Y. Wang. 2000. A high-affinity iron permease essential for Candida albicans virulence. Science 288: 10621064.
108. Rappleye, C. A.,, L. G. Eissenberg, and, W. E. Goldman. 2007. Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proc. Natl. Acad. Sci. USA 104: 13661370.
109. Reese, T. A.,, H. E. Liang,, A. M. Tager,, A. D. Luster,, N. Van Rooijen,, D. Voehringer, and, R. M. Locksley. 2007. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447: 9296.
110. Reeves, E. P.,, H. Lu,, H. L. Jacobs,, C. G. Messina,, S. Bolsover,, G. Gabella,, E. O. Potma,, A. Warley,, J. Roes, and, A. W. Segal. 2002. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416: 291297.
111. Rogers, N. C.,, E. C. Slack,, A. D. Edwards,, M. A. Nolte,, O. Schulz,, E. Schweighoffer,, D. L. Williams,, S. Gordon,, V. L. Tybulewicz,, G. D. Brown, and, C. Reis e Sousa. 2005. Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C-type lectins. Immunity 22: 507517.
112. Romagnoli, G.,, R. Nisini,, P. Chiani,, S. Mariotti,, R. Teloni,, A. Cassone, and, A. Torosantucci. 2004. The interaction of human dendritic cells with yeast and germ-tube forms of Candida albicans leads to efficient fungal processing, dendritic cell maturation, and acquisition of a Th1 response-promoting function. J. Leukoc. Biol. 75: 117126.
113. Romani, L. 1999. Immunity to Candida albicans: Th1, Th2 cells and beyond. Curr. Opin. Microbiol. 2: 363367.
114. Romani, L. 2004. Immunity to fungal infections. Nat. Rev. Immunol. 4: 123.
115. Romani, L.,, C. Montagnoli,, S. Bozza,, K. Perruccio,, A. Spreca,, P. Allavena,, S. Verbeek,, R. A. Calderone,, F. Bistoni, and, P. Puccetti. 2004. The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. Int. Immunol. 16: 149161.
116. Sabroe, I.,, L. R. Prince,, E. C. Jones,, M. J. Horsburgh,, S. J Foster,, S. N. Vogel,, S. K. Dower, and, M. K. Whyte. 2003. Selective roles for Toll-like receptor (TLR)2 and TLR4 in the regulation of neutrophil activation and life span. J. Immunol. 170: 52685275.
117. Saijo, S.,, N. Fujikado,, T. Furuta,, S. H. Chung,, H. Kotaki,, K. Seki,, K. Sudo,, S. Akira,, Y. Adachi,, N. Ohno,, T. Kinjo,, K. Nakamura,, K. Kawakami, and, Y. Iwakura. 2007. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat. Immunol. 8: 3946.
118. Sano, H.,, D. K. Hsu,, J. R. Apgar,, L. Yu,, B. B. Sharma,, I. Kuwabara,, S. Izui, and, F. T. Liu. 2003. Critical role of galectin-3 in phagocytosis by macrophages. J. Clin. Investig. 112: 389397.
119. Sato, K.,, X. L. Yang,, T. Yudate,, J. S. Chung,, J. Wu,, K. Luby-Phelps,, R. P. Kimberly,, D. Underhill,, P. D. Cruz, Jr., and, K. Ariizumi. 2006. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J. Biol. Chem. 281: 3885438866.
120. Schroppel, K.,, M. Kryk,, M. Herrmann,, E. Leberer,, M. Rollinghoff, and, C. Bogdan. 2001. Suppression of type 2 NO-synthase activity in macrophages by Candida albicans. Int. J. Med. Microbiol. 290: 659668.
121. Selsted, M. E.,, and A. J. Ouellette. 2005. Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6: 551557.
122. Serrano-Gomez, D.,, A. Dominguez-Soto,, J. Ancochea,, J. A. Jimenez-Heffernan,, J. A. Leal, and, A. L. Corbi. 2004. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J. Immunol. 173: 56355643.
123. Shepherd, V. L.,, and J. R. Hoidal. 1990. Clearance of neutrophil-derived myeloperoxidase by the macrophage mannose receptor. Am. J. Respir. Cell. Mol. Biol. 2: 335340.
124. Shin, Y. K.,, K. Y. Kim, and, Y. K. Paik. 2005. Alterations of protein expression in macrophages in response to Candida albicans infection. Mol. Cells 20: 271279.
125. Slack, E. C.,, M. J. Robinson,, P. Hernanz-Falcon,, G. D. Brown,, D. L. Williams,, E. Schweighoffer,, V. L. Tybulewicz, and, C. Reis e Sousa. 2007. Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur. J. Immunol. 37: 16001612.
126. Sohnle, P. G.,, B. L. Hahn, and, R. Karmarkar. 2001. Effect of metals on Candida albicans growth in the presence of chemical chelators and human abscess fluid. J. Lab. Clin. Med. 137: 284289.
127. Sorensen, O.,, T. Bratt,, A. H. Johnsen,, M. T. Madsen, and, N. Borregaard. 1999. The human antibacterial cathelicidin, hCAP-18, is bound to lipoproteins in plasma. J. Biol. Chem. 274: 2244522451.
128. Suram, S.,, G. D. Brown,, M. Ghosh,, S. Gordon,, R. Loper,, P. R. Taylor,, S. Akira,, S. Uematsu,, D. L. Williams, and, C. C. Leslie. 2006. Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the beta-glucan receptor. J. Biol. Chem. 281: 55065514.
129. Swanson, J. A.,, and A. D. Hoppe. 2004. The coordination of signaling during Fc receptor-mediated phagocytosis. J. Leukoc. Biol. 76: 10931103.
130. Tada, H.,, E. Nemoto,, H. Shimauchi,, T. Watanabe,, T. Mikami,, T. Matsumoto,, N. Ohno,, H. Tamura,, K. Shibata,, S. Akashi,, K. Miyake,, S. Sugawara, and, H. Takada. 2002. Saccharomyces cerevisiae -and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14-and Toll-like receptor 4-dependent manner. Microbiol. Immunol. 46: 503512.
131. Tailleux, L.,, N. Pham-Thi,, A. Bergeron-Lafaurie,, J. L. Herrmann,, P. Charles,, O. Schwartz,, P. Scheinmann,, P. H. Lagrange,, J. de Blic,, A. Tazi,, B. Gicquel, and, O. Neyrolles. 2005. DC-SIGN induction in alveolar macrophages defines privileged target host cells for mycobacteria in patients with tuberculosis. PLoS Med. 2: e381.
132. Takahara, K.,, Y. Yashima,, Y. Omatsu,, H. Yoshida,, Y. Kimura,, Y. S. Kang,, R. M. Steinman,, C. G. Park, and, K. Inaba. 2004. Functional comparison of the mouse DC-SIGN, SIGNR1, SIGNR3 and Langerin, C-type lectins. Int. Immunol. 16: 819829.
133. Tanida, T.,, F. Rao,, T. Hamada,, E. Ueta, and, T. Osaki. 2001. Lactoferrin peptide increases the survival of Candida albicans-inoculated mice by upregulating neutrophil and macrophage functions, especially in combination with amphotericin B and granulocyte-macrophage colony-stimulating factor. Infect. Immun. 69: 38833890.
134. Taylor, P. R.,, G. D. Brown,, J. Herre,, D. L. Williams,, J. A. Willment, and, S. Gordon. 2004. The role of SIGNR1 and the beta-glucan receptor (Dectin-1) in the nonopsonic recognition of yeast by specific macrophages. J. Immunol. 172: 11571162.
135. Taylor, P. R.,, S. Gordon, and, L. Martinez-Pomares. 2005a. The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol. 26: 104110.
136. Taylor, P. R.,, D. M. Reid,, S. E. Heinsbroek,, G. D. Brown,, S. Gordon, and, S. Y. Wong. 2005b. Dectin-2 is predominantly myeloid restricted and exhibits unique activation-dependent expression on maturing inflammatory monocytes elicited in vivo. Eur. J. Immunol. 35: 21632174.
137. Taylor, P. R.,, S. V. Tsoni,, J. A. Willment,, K. M. Dennehy,, M. Rosas,, H. Findon,, K. Haynes,, C. Steele,, M. Botto,, S. Gordon, and, G. D. Brown. 2007. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat. Immunol. 8: 3138.
138. Torosantucci, A.,, G. Romagnoli,, P. Chiani,, A. Stringaro,, P. Crateri,, S. Mariotti,, R. Teloni,, G. Arancia,, A. Cassone, and, R. Nisini. 2004. Candida albicans yeast and germ tube forms interfere differently with human monocyte differentiation into dendritic cells: a novel dimorphism-dependent mechanism to escape the host’s immune response. Infect. Immun. 72: 833843.
139. Trinchieri, G.,, and A. Sher. 2007. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7: 179190.
140. Underhill, D. M.,, A. Ozinsky,, A. M. Hajjar,, A. Stevens,, C. B. Wilson,, M. Bassetti, and, A. Aderem. 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811815.
141. Underhill, D. M.,, E. Rossnagle,, C. A. Lowell, and, R. M. Simmons. 2005. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106: 25432550.
142. Urban, C. F.,, U. Reichard,, V. Brinkmann, and, A. Zychlinsky. 2006. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol. 8: 668676.
143. Van der Graaf, C. A.,, M. G. Netea,, S. A. Morre,, M. Den Heijer,, P. E. Verweij,, J. W. Van der Meer, and, B. J. Kullberg. 2006. Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur. Cytokine Netw. 17: 2934.
144. van der Graaf, C. A.,, M. G. Netea,, I. Verschueren,, J. W. van der Meer, and, B. J. Kullberg. 2005. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect. Immun. 73: 74587464.
145. Vazquez-Torres, A.,, and E. Balish. 1997. Macrophages in resistance to candidiasis. Microbiol. Mol. Biol. Rev. 61: 170192.
146. Vazquez-Torres, A.,, J. Jones-Carson, and, E. Balish. 1996. Peroxynitrite contributes to the candidacidal activity of nitric oxide-producing macrophages. Infect. Immun. 64: 31273133.
147. Vazquez-Torres, A.,, J. Jones-Carson,, T. Warner, and, E. Balish. 1995. Nitric oxide enhances resistance of SCID mice to mucosal candidiasis. J. Infect. Dis. 172: 192198.
148. Villamon, E.,, D. Gozalbo,, P. Roig,, C. Murciano,, J. E. O’Connor,, D. Fradelizi, and, M. L. Gil. 2004a. Myeloid differentiation factor 88 (MyD88) is required for murine resistance to Candida albicans and is critically involved in Candida-induced production of cytokines. Eur. Cytokine Netw. 15: 263271.
149. Villamon, E.,, D. Gozalbo,, P. Roig,, J. E. O’Connor,, D. Fradelizi, and, M. L. Gil. 2004b. Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect. 6: 17.
150. Voganatsi, A.,, A. Panyutich,, K. T. Miyasaki, and, R. K. Murthy. 2001. Mechanism of extracellular release of human neutrophil calprotectin complex. J. Leukoc. Biol. 70: 130134.
151. Vonk, A. G.,, C. W. Wieland,, M. G. Netea, and, B. J. Kullberg. 2002. Phagocytosis and intracellular killing of Candida albicans blastoconidia by neutrophils and macrophages: a comparison of different microbiological test systems. J. Microbiol. Methods 49: 5562.
152. Wheeler, R. T.,, and G. R. Fink. 2006. A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog. 2: e35.
153. Wisplinghoff, H.,, T. Bischoff,, S. M. Tallent,, H. Seifert,, R. P. Wenzel, and, M. B. Edmond. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39: 309317.
154. Yamamoto, Y.,, T. W. Klein, and, H. Friedman. 1997. Involvement of mannose receptor in cytokine interleukin-1beta (IL-1beta), IL-6, and granulocyte-macrophage colony-stimulating factor responses, but not in chemokine macrophage inflammatory protein 1beta (MIP-1beta), MIP-2, and KC responses, caused by attachment of Candida albicans to macrophages. Infect. Immun. 65: 10771082.
155. Yang, D.,, Q. Chen,, O. Chertov, and, J. J. Oppenheim. 2000. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J. Leukoc. Biol. 68: 914.
156. Yates, R. M.,, and D. G. Russell. 2005. Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4. Immunity 23: 409417.
157. Yoshitomi, H.,, N. Sakaguchi,, K. Kobayashi,, G. D. Brown,, T. Tagami,, T. Sakihama,, K. Hirota,, S. Tanaka,, T. Nomura,, I. Miki,, S. Gordon,, S. Akira,, T. Nakamura, and, S. Sakaguchi. 2005. A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201: 949960.
158. Zanetti, M. 2004. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol. 75: 3948.
159. Zhang, J.,, J. Zhu,, X. Bu,, M. Cushion,, T. B. Kinane,, H. Avraham, and, H. Koziel. 2005. Cdc42 and RhoB activation are required for mannose receptor-mediated phagocytosis by human alveolar macrophages. Mol. Biol. Cell 16: 824834.


Generic image for table

Selected nonopsonic PRRs that recognize C.

Citation: Faro-Trindade I, Brown G. 2009. Interaction of with Phagocytes, p 437-451. In Russell D, Gordon S (ed), Phagocyte-Pathogen Interactions. ASM Press, Washington, DC. doi: 10.1128/9781555816650.ch28

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error