Chapter 7 : Genome Replication I: the Players

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Genome Replication I: the Players, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816698/9781555816032_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555816698/9781555816032_Chap07-2.gif


This chapter reviews the viral and host players in the viral RNA replication process and the forms of picornavirus RNA utilized, as well as the RNA/protein complexes that facilitate viral RNA synthesis. Cleavage of poly(rC)-binding protein 2 (PCBP2) by 3CD contributes to a switch from translation to RNA replication for poliovirus, as full-length PCBP2 functions in viral translation but the truncated PCBP2 cleavage product can only function in RNA replication. The - acting replication element (CRE) is an RNA structure required for picornavirus RNA replication and was first discovered in the HRV14 genome by McKnight and Lemon. The picornavirus polymerase will homodimerize, oligomerize, and interact with the viral proteins 3AB, VPg, and 3CD. Although research efforts designed to elucidate the mechanisms of RNA replication utilized by picornaviruses have been comprehensive during the past several decades, there is still much to understand about the protein players and viral RNA sequences involved in replication. It is still unknown how 3D can bind to sequences as disparate as the 3’ NCR/poly(A) tract of picornavirus genomic RNAs and those found at the 3’ ends of negative-strand RNA intermediates. Importantly, additional inhibitors of picornavirus replication that target specific players involved in RNA replication complex assembly, initiation, and chain elongation need to be developed as potential therapeutics against this important class of human and animal viruses.

Citation: Rozovics J, Semler B. 2010. Genome Replication I: the Players, p 107-125. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Cascade of poliovirus protein processing, with an emphasis on nonstructural proteins. The intact initial polyprotein, representing the complete long open reading frame of the viral genomic RNA, is shown below the depiction of the viral genome. This polyprotein is cleaved by viral proteolytic enzymes to generate intermediate precursors (P1, P2, and P3 or precursors that contain both P2 and P3 amino acid sequences). The triangles indicate cleavage sites recognized by viral proteinases 3C/3CD and 2A. Precursor polypeptides are further processed by viral proteinases to yield mature viral proteins. A brief description of the functions of the viral proteins is provided. As shown, precursors and mature protein cleavage products may have distinct roles in the viral replication cycle. The steps in processing the structural protein precursor (P1) are omitted from this figure for simplicity. (Modified from 3rd ed., vol. 4, 2008 [ ], with permission from Elsevier.)

Citation: Rozovics J, Semler B. 2010. Genome Replication I: the Players, p 107-125. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Forms of viral RNA in a picornavirus-infected cell. Following entry and uncoating, the picornavirus genomic RNA is altered by the cleavage of VPg from its 5′ terminus by an unidentified host cellular enzyme termed unlinkase. Genomic picorna-virus RNA molecules lacking VPg are the templates for translation. These templates for translation also serve as the templates for negative-strand RNA synthesis, which results in a duplex of template and newly synthesized product RNA termed the RF. Negative-strand RNA molecules (perhaps derived from the RF) act as template for positive-strand RNA synthesis in RI complexes. The RI complexes have multiple positive-strand RNAs synthesized from a single negative-strand template, resulting in asymmetric levels of positive- versus negative-strand viral RNAs in the infected cell. The positive-strand viral RNA molecules can then serve as templates for additional rounds of translation or negative-strand RNA synthesis, or they are packaged into virions for subsequent infection of other host cells.

Citation: Rozovics J, Semler B. 2010. Genome Replication I: the Players, p 107-125. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Simplified scheme of ribonucleoprotein complexes formed on genomic RNAs and that have been demonstrated to play a role in enterovirus RNA replication. In this example, viral (i.e., 3CD, 3AB, 3D, and VPg) or host cell (PCBP and PABP) proteins are shown interacting with stem-loop I (also known as the cloverleaf), the CRE, or the 3′ poly(A) tract. The a, b, c, and d subelements for stem-loop I are shown, as are RNA secondary structures representing the CRE and the 3′ NCR of enterovirus genomic RNA. The IRES and protein-coding region are also indicated (not drawn to scale).

Citation: Rozovics J, Semler B. 2010. Genome Replication I: the Players, p 107-125. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Proposed closed loop model of poliovirus negative-strand RNA synthesis. Host cell protein PCBP2 and viral protein 3CD form a ternary complex with stem-loop I at the 5′ end of poliovirus genomic RNA. This complex interacts with the host cell protein PABP, which has been demonstrated to interact with the 3′ poly(A) tract of positive-strand viral RNAs. This interaction has been proposed to facilitate communication between the termini of the viral genome as a prerequisite for 3D polymerase binding and negative-strand RNA synthesis. Although several features of the model have been verified by using recombinant proteins and partial reactions, a fully functional cyclized complex has not yet been detected in virus-infected cells or in vitro. (Adapted from references and .)

Citation: Rozovics J, Semler B. 2010. Genome Replication I: the Players, p 107-125. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, P.,, E. Kandiah,, G. Effantin,, A. C. Steven, and, E. Ehrenfeld. 2009. Poliovirus 2C protein forms homo-oligomeric structures required for ATPase activity. J. Biol. Chem. 284: 2201222021.
2. Agol, V. I.,, A. V. Paul, and, E. Wimmer. 1999. Paradoxes of the replication of picornaviral genomes. Virus Res. 62: 129147.
3. Al-Sunaidi, M.,, C. H. Williams,, P. J. Hughes,, D. P. Schnurr, and, G. Stanway. 2007. Analysis of a new human parechovirus allows the definition of parechovirus types and the identification of RNA structural domains. J. Virol. 81: 10131021.
4. Ambros, V., and, D. Baltimore. 1978. Protein is linked to the 5′ end of poliovirus RNA by a phosphodiester linkage to tyrosine. J. Biol. Chem. 253: 52635266.
5. Ambros, V., and, D. Baltimore. 1980. Purification and properties of a HeLa cell enzyme able to remove the 5′-terminal protein from poliovirus RNA. J. Biol. Chem. 255: 67396744.
6. Ambros, V.,, R. F. Pettersson, and, D. Baltimore. 1978. An enzymatic activity in uninfected cells that cleaves the linkage between poliovirion RNA and the 5′ terminal protein. Cell 15: 14391446.
7. Andino, R.,, G. E. Rieckhof,, P. L. Achacoso, and, D. Baltimore. 1993. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′-end of viral RNA. EMBO J. 12: 35873598.
8. Andino, R.,, G. E. Rieckhof, and, D. Baltimore. 1990. A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell 63: 369380.
9. Arnold, J. J.,, S. K. Ghosh, and, C. E. Cameron. 1999. Polio-virus RNA-dependent RNA polymerase (3D pol). Divalent cation modulation of primer, template, and nucleotide selection. J. Biol. Chem. 274: 3706037069.
10. Back, S. H.,, Y. K. Kim,, W. J. Kim,, S. Cho,, H. R. Oh,, J. E. Kim, and, S. K. Jang. 2002. Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3C pro. J. Virol. 76: 25292542.
11. Banerjee, R.,, A. Echeverri, and, A. Dasgupta. 1997. Poliovirus-encoded 2C polypeptide specifically binds to the 3′-terminal sequences of viral negative-strand RNA. J. Virol. 71: 95709578.
12. Barton, D. J.,, B. J. Morasco,, L. Eisner-Smerage,, P. S. Collis,, S. E. Diamond,, M. J. Hewlett,, M. A. Merchant,, B. J. O’Donnell, and, J. B. Flanegan. 1996. Poliovirus RNA polymerase mutation 3D-M394T results in a temperature-sensitive defect in RNA synthesis. Virology 217: 459469.
13. Barton, D. J.,, B. J. O’Donnell, and, J. B. Flanegan. 2001. 5′ cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. EMBO J. 20: 14391448.
14. Bedard, K. M.,, B. L. Walter, and, B. L. Semler. 2004. Multimerization of poly(rC) binding protein 2 is required for translation initiation mediated by a viral IRES. RNA 10: 12661276.
15. Belov, G. A.,, A. G. Evstafieva,, Y. P. Rubtsov,, O. V. Mikitas,, A. B. Vartapetian, and, V. I. Agol. 2000. Early alteration of nucleocytoplasmic traffic induced by some RNA viruses. Virology 275: 244248.
16. Belov, G. A.,, Q. Feng,, K. Nikovics,, C. L. Jackson, and, E. Ehrenfeld. 2008. A critical role of a cellular membrane traffic protein in poliovirus RNA replication. PLoS Pathog. 4: e1000216.
17. Belov, G. A.,, C. Habbersett,, D. Franco, and, E. Ehrenfeld. 2007. Activation of cellular Arf GTPases by poliovirus protein 3CD correlates with virus replication. J. Virol. 81: 92599267.
18. Bernstein, H. D. 1988. Poliovirus mutant that contains a cold-sensitive defect in viral RNA synthesis. J. Virol. 62: 29222928.
19. Bhattacharyya, S., and, S. Das. 2006. An apical GAGA loop within 5′ UTR of the coxsackievirus B3 RNA maintains structural organization of the IRES element required for efficient ribosome entry. RNA Biol. 3: 6068.
20. Blyn, L. B.,, K. M. Swiderek,, O. Richards,, D. C. Stahl,, B. L. Semler, and, E. Ehrenfeld. 1996. Poly(rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5′ noncoding region: identification by automated liquid chromatography-tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 93: 1111511120.
21. Blyn, L. B.,, J. S. Towner,, B. L. Semler, and, E. Ehrenfeld. 1997. Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J. Virol. 71: 62436246.
22. Boerner, J. E.,, J. M. Lyle,, S. Daijogo,, B. L. Semler,, S. C. Schultz,, K. Kirkegaard, and, O. C. Richards. 2005. Allosteric effects of ligands and mutations on poliovirus RNA-dependent RNA polymerase. J. Virol. 79: 78037811.
23. Brown, D. M.,, C. T. Cornell,, G. P. Tran,, J. H. Nguyen, and, B. L. Semler. 2005. An authentic 3′ noncoding region is necessary for efficient poliovirus replication. J. Virol. 79: 1196211973.
24. Brown, D. M.,, S. E. Kauder,, C. T. Cornell,, G. M. Jang,, V. R. Racaniello, and, B. L. Semler. 2004. Cell-dependent role for the poliovirus 3′ noncoding region in positive-strand RNA synthesis. J. Virol. 78: 13441351.
25. Brunner, J. E.,, K. J. Ertel,, J. M. Rozovics, and, B. L. Semler. 2010. Delayed kinetics of poliovirus RNA synthesis in a human cell line with reduced levels of hnRNP C proteins. Virology 400: 240247.
26. Brunner, J. E.,, J. H. Nguyen,, H. H. Roehl,, T. V. Ho,, K. M. Swiderek, and, B. L. Semler. 2005. Functional interaction of heterogeneous nuclear ribonucleoprotein C with polio-virus RNA synthesis initiation complexes. J. Virol. 79: 32543266.
27. Cao, X.,, R. J. Kuhn, and, E. Wimmer. 1993. Replication of poliovirus RNA containing two VPg coding sequences leads to a specific deletion event. J. Virol. 67: 55725578.
28. Chapman, N. M.,, K. S. Kim,, K. M. Drescher,, K. Oka, and, S. Tracy. 2008. 5′ terminal deletions in the genome of a coxsackievirus B2 strain occurred naturally in human heart. Virology 375: 480491.
29. Cheung, P.,, T. Lim,, J. Yuan,, M. Zhang,, D. Chau,, B. McManus, and, D. Yang. 2007. Specific interaction of HeLa cell proteins with coxsackievirus B3 3′ UTR: La autoantigen binds the 3′ and 5′ UTR independently of the poly(A) tail. Cell. Microbiol. 9: 17051715.
30. Cheung, P.,, M. Zhang,, J. Yuan,, D. Chau,, B. Yanagawa,, B. McManus, and, D. Yang. 2002. Specific interactions of HeLa cell proteins with coxsackievirus B3 RNA: La autoantigen binds differentially to multiple sites within the 5′ untranslated region. Virus Res. 90: 2336.
31. Cho, M. W.,, O. C. Richards,, T. M. Dmitrieva,, V. Agol, and, E. Ehrenfeld. 1993. RNA duplex unwinding activity of poliovirus RNA-dependent RNA polymerase 3D pol. J. Virol. 67: 30103018.
32. Choe, S. S.,, D. A. Dodd, and, K. Kirkegaard. 2005. Inhibition of cellular protein secretion by picornaviral 3A proteins. Virology 337: 1829.
33. Cole, C. N., and, D. Baltimore. 1973. Defective interfering particles of poliovirus. III. Interference and enrichment. J. Mol. Biol. 76: 345361.
34. Cole, C. N., and, D. Baltimore. 1973. Defective interfering particles of poliovirus. II. Nature of the defect. J. Mol. Biol. 76: 325343.
35. Cole, C. N.,, D. Smoler,, E. Wimmer, and, D. Baltimore. 1971. Defective interfering particles of poliovirus. I. Isolation and physical properties. J. Virol. 7: 478485.
36. Collis, P. S.,, B. J. O’Donnell,, D. J. Barton,, J. A. Rogers, and, J. B. Flanegan. 1992. Replication of poliovirus RNA and subgenomic RNA transcripts in transfected cells. J. Virol. 66: 64806488.
37. Cordes, S.,, Y. Kusov,, T. Heise, and, V. Gauss-Muller. 2008. La autoantigen suppresses IRES-dependent translation of the hepatitis A virus. Biochem. Biophys. Res. Commun. 368: 10141019.
38. Cordey, S.,, D. Gerlach,, T. Junier,, E. M. Zdobnov,, L. Kaiser, and, C. Tapparel. 2008. The cis-acting replication elements define human enterovirus and rhinovirus species. RNA 14: 15681578.
39. Craig, A. W.,, Y. V. Svitkin,, H. S. Lee,, G. J. Belsham, and, N. Sonenberg. 1997. The La autoantigen contains a dimerization domain that is essential for enhancing translation. Mol. Cell. Biol. 17: 163169.
40. Crowther, D., and, J. L. Melnick. 1961. Studies of the inhibitory action of guanidine on poliovirus multiplication in cell cultures. Virology 15: 6574.
41. Cui, T., and, A. G. Porter. 1995. Localization of binding site for encephalomyocarditis virus RNA polymerase in the 3′ -noncoding region of the viral RNA. Nucleic Acids Res. 23: 377382.
42. Cui, T.,, S. Sankar, and, A. G. Porter. 1993. Binding of encephalomyocarditis virus RNA polymerase to the 3′ -noncoding region of the viral RNA is specific and requires the 3′-poly(A) tail. J. Biol. Chem. 268: 2609326098.
43. Das, S.,, P. Coward, and, A. Dasgupta. 1994. A small yeast RNA selectively inhibits internal initiation of translation programmed by poliovirus RNA: specific interaction with cellular proteins that bind to the viral 5′-untranslated region. J. Virol. 68: 72007211.
44. Datta, U., and, A. Dasgupta. 1994. Expression and subcellular localization of poliovirus VPg precursor protein 3AB in eukaryotic cells: evidence for glycosylation in vitro. J. Virol. 68: 44684477.
45. Deitz, S. B.,, D. A. Dodd,, S. Cooper,, P. Parham, and, K. Kirkegaard. 2000. MHC I-dependent antigen presentation is inhibited by poliovirus protein 3A. Proc. Natl. Acad. Sci. USA 97: 1379013795.
46. Dodd, D. A.,, T. H. Giddings, Jr., and, K. Kirkegaard. 2001. Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and beta interferon secretion during viral infection. J. Virol. 75: 81588165.
47. Doedens, J.,, L. A. Maynell,, M. W. Klymkowsky, and, K. Kirkegaard. 1994. Secretory pathway function, but not cytoskeletal integrity, is required in poliovirus infection. Arch. Virol. Suppl. 9: 159172.
48. Doedens, J. R.,, T. H. Giddings, and, K. Kirkegaard. 1997. Inhibition of endoplasmic reticulum-to-Golgi traffic by poliovirus protein 3A: genetic and ultrastructural analysis. J. Virol. 71: 90549064.
49. Dreyfuss, G.,, M. J. Matunis,, S. Pinol-Roma, and, C. G. Burd. 1993. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62: 289321.
50. Duque, H., and, A. C. Palmenberg. 2001. Phenotypic characterization of three phylogenetically conserved stem-loop motifs in the mengovirus 3′ untranslated region. J. Virol. 75: 31113120.
51. Egger, D.,, N. Teterina,, E. Ehrenfeld, and, K. Bienz. 2000. Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J. Virol. 74: 65706580.
52. Ertel, K. J.,, J. E. Brunner, and, B. L. Semler. 2010. Mechanistic consequences of hnRNP C binding to both RNA termini of poliovirus negative-strand RNA intermediates. J. Virol. 84: 42294242.
53. Fernandez-Munoz, R., and, J. E. Darnell. 1976. Structural difference between the 5′ termini of viral and cellular mRNA in poliovirus-infected cells: possible basis for the inhibition of host protein synthesis. J. Virol. 18: 719726.
54. Fernandez-Munoz, R., and, U. Lavi. 1977. 5′ termini of poliovirus RNA: difference between virion and nonencapsidated 35S RNA. J. Virol. 21: 820824.
55. Ferrer-Orta, C.,, A. Arias,, R. Perez-Luque,, C. Escarmis,, E. Domingo, and, N. Verdaguer. 2004. Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J. Biol. Chem. 279: 4721247221.
56. Flanegan, J. B.,, R. F. Pettersson,, V. Ambros,, N. J. Hewlett, and, D. Baltimore. 1977. Covalent linkage of a protein to a defined nucleotide sequence at the 5′-terminus of virion and replicative intermediate RNAs of poliovirus. Proc. Natl. Acad. Sci. USA 74: 961965.
57. Flanegan, J. B., and, T. A. Van Dyke. 1979. Isolation of a soluble and template-dependent poliovirus RNA polymerase that copies virion RNA in vitro. J. Virol. 32: 155161.
58. Forss, S., and, H. Schaller. 1982. A tandem repeat gene in a picornavirus. Nucleic Acids Res. 10: 64416450.
59. Gamarnik, A. V., and, R. Andino. 1997. Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. RNA 3: 882892.
60. Gerber, K.,, E. Wimmer, and, A. V. Paul. 2001. Biochemical and genetic studies of the initiation of human rhinovirus 2 RNA replication: identification of a cis-replicating element in the coding sequence of 2A pro. J. Virol. 75: 1097910990.
61. Gerber, K.,, E. Wimmer, and, A. V. Paul. 2001. Biochemical and genetic studies of the initiation of human rhinovirus 2 RNA replication: purification and enzymatic analysis of the RNA-dependent RNA polymerase 3D pol. J. Virol. 75: 1096910978.
62. Giachetti, C.,, S. S. Hwang, and, B. L. Semler. 1992. cis-acting lesions targeted to the hydrophobic domain of a poliovirus membrane protein involved in RNA replication. J. Virol. 66: 60456057.
63. Giachetti, C., and, B. L. Semler. 1991. Role of a viral membrane polypeptide in strand-specific initiation of poliovirus RNA synthesis. J. Virol. 65: 26472654.
64. Goldstein, N. O.,, I. U. Pardoe, and, A. T. Burness. 1976. Requirement of an adenylic acid-rich segment for the infectivity of encephalomyocarditis virus RNA. J. Gen. Virol. 31: 271276.
65. Goodfellow, I.,, Y. Chaudhry,, A. Richardson,, J. Meredith,, J. W. Almond,, W. Barclay, and, D. J. Evans. 2000. Identification of a cis-acting replication element within the poliovirus coding region. J. Virol. 74: 45904600.
66. Goodfellow, I. G.,, D. Kerrigan, and, D. J. Evans. 2003. Structure and function analysis of the poliovirus cis-acting replication element (CRE). RNA 9: 124137.
67. Goodfellow, I. G.,, C. Polacek,, R. Andino, and, D. J. Evans. 2003. The poliovirus 2C cis-acting replication element-mediated uridylylation of VPg is not required for synthesis of negative-sense genomes. J. Gen. Virol. 84: 23592363.
68. Gorbalenya, A. E.,, E. V. Koonin, and, Y. I. Wolf. 1990. A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett. 262: 145148.
69. Gruez, A.,, B. Selisko,, M. Roberts,, G. Bricogne,, C. Bussetta,, I. Jabafi,, B. Coutard,, A. M. De Palma,, J. Neyts, and, B. Canard. 2008. The crystal structure of coxsackievirus B3 RNA-dependent RNA polymerase in complex with its protein primer VPg confirms the existence of a second VPg binding site on Picornaviridae polymerases. J. Virol. 82: 95779590.
70. Gustin, K. E., and, P. Sarnow. 2001. Effects of poliovirus infection on nucleocytoplasmic trafficking and nuclear pore complex composition. EMBO J. 20: 240249.
71. Gutierrez-Escolano, L., and, R. M. del Angel. 1996. Nuclear proteins bind to poliovirus 5′ untranslated region. Arch. Med. Res. 27: 413419.
72. Hagino-Yamagishi, K., and, A. Nomoto. 1989. In vitro construction of poliovirus defective interfering particles. J. Virol. 63: 53865392.
73. Hall, D. J., and, A. C. Palmenberg. 1996. Cleavage site mutations in the encephalomyocarditis virus P3 region lethally abrogate the normal processing cascade. J. Virol. 70: 59545961.
74. Hansen, J. L.,, A. M. Long, and, S. C. Schultz. 1997. Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5: 11091122.
75. Harris, K. S.,, W. Xiang,, L. Alexander,, W. S. Lane,, A. V. Paul, and, E. Wimmer. 1994. Interaction of poliovirus polypeptide 3CD pro with the 5′ and 3′ termini of the poliovirus genome. Identification of viral and cellular cofactors needed for efficient binding. J. Biol. Chem. 269: 2700427014.
76. Harris, K. S.,, W. Xiang,, L. Alexander,, W. S. Lane,, A. V. Paul, and, E. Wimmer. 1990. Proteolytic processing in the replication of picornaviruses. Semin. Virol. 1: 323333.
77. Herold, J., and, R. Andino. 2001. Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol. Cell 7: 581591.
78. Hewlett, M. J.,, J. K. Rose, and, D. Baltimore. 1976. 5′-terminal structure of poliovirus polyribosomal RNA is pUp. Proc. Natl. Acad. Sci. USA 73: 327330.
79. Hobson, S. D.,, E. S. Rosenblum,, O. C. Richards,, K. Richmond,, K. Kirkegaard, and, S. C. Schultz. 2001. Oligomeric structures of poliovirus polymerase are important for function. EMBO J. 20: 11531163.
80. Holcik, M., and, S. A. Liebhaber. 1997. Four highly stable eukaryotic mRNAs assemble 3′ untranslated region RNA-protein complexes sharing cis and trans components. Proc. Natl. Acad. Sci. USA 94: 24102414.
81. Hope, D. A.,, S. E. Diamond, and, K. Kirkegaard. 1997. Genetic dissection of interaction between poliovirus 3D polymerase and viral protein 3AB. J. Virol. 71: 94909498.
82. Hughes, P. J., and, G. Stanway. 2000. The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev107 family of proteins involved in the control of cell proliferation. J. Gen. Virol. 81: 201207.
83. Izumi, R. E.,, S. Das,, B. Barat,, S. Raychaudhuri, and, A. Das-gupta. 2004. A peptide from autoantigen La blocks poliovirus and hepatitis C virus cap-independent translation and reveals a single tyrosine critical for La RNA binding and translation stimulation. J. Virol. 78: 37633776.
84. Jacobson, S. J.,, D. A. Konings, and, P. Sarnow. 1993. Biochemical and genetic evidence for a pseudoknot structure at the 3′ terminus of the poliovirus RNA genome and its role in viral RNA amplification. J. Virol. 67: 29612971.
85. Johnson, V. H., and, B. L. Semler. 1988. Defined recombinants of poliovirus and coxsackievirus: sequence-specific deletions and functional substitutions in the 5′-noncoding regions of viral RNAs. Virology 162: 4757.
86. Kaplan, G., and, V. R. Racaniello. 1988. Construction and characterization of poliovirus subgenomic replicons. J. Virol. 62: 16871696.
87. Kim, J. H.,, B. Hahm,, Y. K. Kim,, M. Choi, and, S. K. Jang. 2000. Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm. J. Mol. Biol. 298: 395405.
88. Kim, K. S.,, S. Tracy,, W. Tapprich,, J. Bailey,, C. K. Lee,, K. Kim,, W. H. Barry, and, N. M. Chapman. 2005. 5′-terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J. Virol. 79: 70247041.
89. Kim, Y. K., and, S. K. Jang. 1999. La protein is required for efficient translation driven by encephalomyocarditis virus internal ribosomal entry site. J. Gen. Virol. 80: 31593166.
90. King, A. M.,, D. V. Sangar,, T. J. Harris, and, F. Brown. 1980. Heterogeneity of the genome-linked protein of foot-and-mouth disease virus. J. Virol. 34: 627634.
91. Kitamura, N.,, B. L. Semler,, P. G. Rothberg,, G. R. Larsen,, C. J. Adler,, A. J. Dorner,, E. A. Emini,, R. Hanecak,, J. J. Lee,, S. van der Werf,, C. W. Anderson, and, E. Wimmer. 1981. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291: 547553.
92. Kusov, I.,, L. B. El’bert,, A. Kazachkov Iu,, N. M. Val’iano,, I. V. Nel’ga,, G. K. Grishina,, G. L. Krutianskaia,, E. A. Lisitsyna,, V. F. Poleshchuk,, A. V. Sobol, et al. 1991. The immunogenicity of a cultured inactivated hepatitis A vaccine. Vopr. Virusol. 36: 206209. (In Russian.)
93. Kusov, Y.,, M. Weitz,, G. Dollenmeier,, V. Gauss-Muller, and, G. Siegl. 1996. RNA-protein interactions at the 3′ end of the hepatitis A virus RNA. J. Virol. 70: 18901897.
94. Kusov, Y. Y., and, V. Gauss-Muller. 1997. In vitro RNA binding of the hepatitis A virus proteinase 3C (HAV 3C pro) to secondary structure elements within the 5′ terminus of the HAV genome. RNA 3: 291302.
95. Kusov, Y. Y.,, G. Morace,, C. Probst, and, V. Gauss-Muller. 1997. Interaction of hepatitis A virus (HAV) precursor proteins 3AB and 3ABC with the 5′ and 3′ termini of the HAV RNA. Virus Res. 51: 151157.
96. Lama, J.,, A. V. Paul,, K. S. Harris, and, E. Wimmer. 1994. Properties of purified recombinant poliovirus protein 3AB as substrate for viral proteinases and as co-factor for RNA polymerase 3D pol. J. Biol. Chem. 269: 6670.
97. Lanke, K. H.,, H. M. van der Schaar,, G. A. Belov,, Q. Feng,, D. Duijsings,, C. L. Jackson,, E. Ehrenfeld, and, F. J. van Kuppeveld. 2009. GBF1, a guanine nucleotide exchange factor for Arf, is crucial for coxsackievirus B3 RNA replication. J. Virol. 83: 1194011949.
98. Lawson, M. A., and, B. L. Semler. 1992. Alternate poliovirus nonstructural protein processing cascades generated by primary sites of 3C proteinase cleavage. Virology 191: 309320.
99. Lee, Y. F.,, A. Nomoto,, B. M. Detjen, and, E. Wimmer. 1977. A protein covalently linked to poliovirus genome RNA. Proc. Natl. Acad. Sci. USA 74: 5963.
100. Li, X.,, H. H. Lu,, S. Mueller, and, E. Wimmer. 2001. The C-terminal residues of poliovirus proteinase 2A pro are critical for viral RNA replication but not for cis- or trans-proteolytic cleavage. J. Gen. Virol. 82: 397408.
101. Lin, J. Y.,, M. L. Li,, P. N. Huang,, K. Y. Chien,, J. T. Horng, and, S. R. Shih. 2008. Heterogeneous nuclear ribonuclear protein K interacts with the enterovirus 71 5′ untranslated region and participates in virus replication. J. Gen. Virol. 89: 25402549.
102. Liu, Y.,, D. Franco,, A. V. Paul, and, E. Wimmer. 2007. Tyrosine 3 of poliovirus terminal peptide VPg (3B) has an essential function in RNA replication in the context of its precursor protein, 3AB. J. Virol. 81: 56695684.
103. Lobert, P. E.,, N. Escriou,, J. Ruelle, and, T. Michiels. 1999. A coding RNA sequence acts as a replication signal in cardioviruses. Proc. Natl. Acad. Sci. USA 96: 1156011565.
104. Losick, V. P.,, P. E. Schlax,, R. A. Emmons, and, T. G. Lawson. 2003. Signals in hepatitis A virus P3 region proteins recognized by the ubiquitin-mediated proteolytic system. Virology 309: 306319.
105. Love, R. A.,, K. A. Maegley,, X. Yu,, R. A. Ferre,, L. K. Lingardo,, W. Diehl,, H. E. Parge,, P. S. Dragovich, and, S. A. Fuhrman. 2004. The crystal structure of the RNA-dependent RNA polymerase from human rhinovirus: a dual function target for common cold antiviral therapy. Structure 12: 15331544.
106. Maida, Y.,, M. Yasukawa,, M. Furuuchi,, T. Lassmann,, R. Possemato,, N. Okamoto,, V. Kasim,, Y. Hayashizaki,, W. C. Hahn, and, K. Masutomi. 2009. An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461: 230235.
107. Makeyev, A. V.,, A. N. Chkheidze, and, S. A. Liebhaber. 1999. A set of highly conserved RNA-binding proteins, αCP-1 and αCP-2, implicated in mRNA stabilization, are coexpressed from an intronless gene and its intron-containing paralog. J. Biol. Chem. 274: 2484924857.
108. Mason, P. W.,, S. V. Bezborodova, and, T. M. Henry. 2002. Identification and characterization of a cis-acting replication element (CRE) adjacent to the internal ribosome entry site of foot-and-mouth disease virus. J. Virol. 76: 96869694.
109. Maynell, L. A.,, K. Kirkegaard, and, M. W. Klymkowsky. 1992. Inhibition of poliovirus RNA synthesis by brefeldin A. J. Virol. 66: 19851994.
110. McBride, A. E.,, A. Schlegel, and, K. Kirkegaard. 1996. Human protein Sam68 relocalization and interaction with poliovirus RNA polymerase in infected cells. Proc. Natl. Acad. Sci. USA 93: 22962301.
111. McKnight, K. L., and, S. M. Lemon. 1996. Capsid coding sequence is required for efficient replication of human rhinovirus 14 RNA. J. Virol. 70: 19411952.
112. McKnight, K. L., and, S. M. Lemon. 1998. The rhinovirus type 14 genome contains an internally located RNA structure that is required for viral replication. RNA 4: 15691584.
113. Meerovitch, K.,, Y. V. Svitkin,, H. S. Lee,, F. Lejbkowicz,, D. J. Kenan,, E. K. Chan,, V. I. Agol,, J. D. Keene, and, N. Sonenberg. 1993. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J. Virol. 67: 37983807.
114. Melchers, W. J.,, J. G. Hoenderop,, H. J. Bruins Slot,, C. W. Pleij,, E. V. Pilipenko,, V. I. Agol, and, J. M. Galama. 1997. Kissing of the two predominant hairpin loops in the coxsackie B virus 3′ untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis. J. Virol. 71: 686696.
115. Mellits, K. H.,, J. M. Meredith,, J. B. Rohll,, D. J. Evans, and, J. W. Almond. 1998. Binding of a cellular factor to the 3′ untranslated region of the RNA genomes of entero- and rhinoviruses plays a role in virus replication. J. Gen. Virol. 79: 17151723.
116. Molla, A.,, K. S. Harris,, A. V. Paul,, S. H. Shin,, J. Mugavero, and, E. Wimmer. 1994. Stimulation of poliovirus proteinase 3C pro-related proteolysis by the genome-linked protein VPg and its precursor 3AB. J. Biol. Chem. 269: 2701527020.
117. Morasco, B. J.,, N. Sharma,, J. Parilla, and, J. B. Flanegan. 2003. Poliovirus cre(2C)-dependent synthesis of VPgpUpU is required for positive- but not negative-strand RNA synthesis. J. Virol. 77: 51365144.
118. Morrison, J. M., and, V. R. Racaniello. 2009. Proteinase 2A pro is essential for enterovirus replication in type I interferon-treated cells. J. Virol. 83: 44124422.
119. Murray, K. E., and, D. J. Barton. 2003. Poliovirus CRE-dependent VPg uridylylation is required for positive-strand RNA synthesis but not for negative-strand RNA synthesis. J. Virol. 77: 47394750.
120. Murray, K. E.,, A. W. Roberts, and, D. J. Barton. 2001. Poly(rC) binding proteins mediate poliovirus mRNA stability. RNA 7: 11261141.
121. Nagashima, S.,, J. Sasaki, and, K. Taniguchi. 2008. Interaction between polypeptide 3ABC and the 5′-terminal structural elements of the genome of Aichi virus: implication for negative-strand RNA synthesis. J. Virol. 82: 61616171.
122. Nayak, A.,, I. G. Goodfellow, and, G. J. Belsham. 2005. Factors required for the uridylylation of the foot-and-mouth disease virus 3B1, 3B2, and 3B3 peptides by the RNA-dependent RNA polymerase (3D pol) in vitro. J. Virol. 79: 76987706.
123. Neufeld, K. L.,, J. M. Galarza,, O. C. Richards,, D. F. Summers, and, E. Ehrenfeld. 1994. Identification of terminal adenylyl transferase activity of the poliovirus polymerase 3D pol. J. Virol. 68: 58115818.
124. Neznanov, N.,, A. Kondratova,, K. M. Chumakov,, B. Angres,, B. Zhumabayeva,, V. I. Agol, and, A. V. Gudkov. 2001. Poliovirus protein 3A inhibits tumor necrosis factor (TNF)-induced apoptosis by eliminating the TNF receptor from the cell surface. J. Virol. 75: 1040910420.
125. Nomoto, A.,, B. Detjen,, R. Pozzatti, and, E. Wimmer. 1977. The location of the polio genome protein in viral RNAs and its implication for RNA synthesis. Nature 268: 208213.
126. Nomoto, A.,, A. Jacobson,, Y. F. Lee,, J. Dunn, and, E. Wimmer. 1979. Defective interfering particles of poliovirus: mapping of the deletion and evidence that the deletions in the genomes of DI(1), (2) and (3) are located in the same region. J. Mol. Biol. 128: 179196.
127. Nomoto, A.,, N. Kitamura,, F. Golini, and, E. Wimmer. 1977. The 5′-terminal structures of poliovirion RNA and polio-virus mRNA differ only in the genome-linked protein VPg. Proc. Natl. Acad. Sci. USA 74: 53455349.
128. Nomoto, A.,, Y. F. Lee, and, E. Wimmer. 1976. The 5′ end of poliovirus mRNA is not capped with m7G(5′)ppp(5′)Np. Proc. Natl. Acad. Sci. USA 73: 375380.
129. Novak, J. E., and, K. Kirkegaard. 1991. Improved method for detecting poliovirus negative strands used to demonstrate specificity of positive-strand encapsidation and the ratio of positive to negative strands in infected cells. J. Virol. 65: 33843387.
130. Oh, H. S.,, H. B. Pathak,, I. G. Goodfellow,, J. J. Arnold, and, C. E. Cameron. 2009. Insight into poliovirus genome replication and encapsidation obtained from studies of 3B-3C cleavage site mutants. J. Virol. 83: 93709387.
131. Palmenberg, A. C. 1990. Proteolytic processing of picornaviral polyprotein. Annu. Rev. Microbiol. 44: 603623.
132. Parks, G. D.,, J. C. Baker, and, A. C. Palmenberg. 1989. Proteolytic cleavage of encephalomyocarditis virus capsid region substrates by precursors to the 3C enzyme. J. Virol. 63: 10541058.
133. Parsley, T. B.,, J. S. Towner,, L. B. Blyn,, E. Ehrenfeld, and, B. L. Semler. 1997. Poly(rC) binding protein 2 forms a ternary complex with the 5′-terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 3: 11241134.
134. Pata, J. D.,, S. C. Schultz, and, K. Kirkegaard. 1995. Functional oligomerization of poliovirus RNA-dependent RNA polymerase. RNA 1: 466477.
135. Pathak, H. B.,, J. J. Arnold,, P. N. Wiegand,, M. R. Hargittai, and, C. E. Cameron. 2007. Picornavirus genome replication: assembly and organization of the VPg uridylylation ribonucleoprotein (initiation) complex. J. Biol. Chem. 282: 1620216213.
136. Pathak, H. B.,, S. K. Ghosh,, A. W. Roberts,, S. D. Sharma,, J. D. Yoder,, J. J. Arnold,, D. W. Gohara,, D. J. Barton,, A. V. Paul, and, C. E. Cameron. 2002. Structure-function relationships of the RNA-dependent RNA polymerase from poliovirus (3D pol). A surface of the primary oligomerization domain functions in capsid precursor processing and VPg uridylylation. J. Biol. Chem. 277: 3155131562.
137. Pathak, H. B.,, H. S. Oh,, I. G. Goodfellow,, J. J. Arnold, and, C. E. Cameron. 2008. Picornavirus genome replication: roles of precursor proteins and rate-limiting steps in oriI-dependent VPg uridylylation. J. Biol. Chem. 283: 3067730688.
138. Paul, A. V.,, X. Cao,, K. S. Harris,, J. Lama, and, E. Wimmer. 1994. Studies with poliovirus polymerase 3D pol. Stimulation of poly(U) synthesis in vitro by purified poliovirus protein 3AB. J. Biol. Chem. 269: 2917329181.
139. Paul, A. V.,, J. Mugavero,, A. Molla, and, E. Wimmer. 1998. Internal ribosomal entry site scanning of the poliovirus polyprotein: implications for proteolytic processing. Virology 250: 241253.
140. Paul, A. V.,, J. Peters,, J. Mugavero,, J. Yin,, J. H. van Boom, and, E. Wimmer. 2003. Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J. Virol. 77: 891904.
141. Paul, A. V.,, E. Rieder,, D. W. Kim,, J. H. van Boom, and, E. Wimmer. 2000. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J. Virol. 74: 1035910370.
142. Paul, A. V.,, J. H. van Boom,, D. Filippov, and, E. Wimmer. 1998. Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393: 280284.
143. Perera, R.,, S. Daijogo,, B. L. Walter,, J. H. Nguyen, and, B. L. Semler. 2007. Cellular protein modification by poliovirus: the two faces of poly(rC)-binding protein. J. Virol. 81: 89198932.
144. Pettersson, R. F.,, V. Ambros, and, D. Baltimore. 1978. Identification of a protein linked to nascent poliovirus RNA and to the polyuridylic acid of negative-strand RNA. J. Virol. 27: 357365.
145. Pettersson, R. F.,, J. B. Flanegan,, J. K. Rose, and, D. Baltimore. 1977. 5′-terminal nucleotide sequences of poliovirus polyribosomal RNA and virion RNA are identical. Nature 268: 270272.
146. Pfister, T., and, E. Wimmer. 1999. Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J. Biol. Chem. 274: 69927001.
147. Pilipenko, E. V.,, S. V. Maslova,, A. N. Sinyakov, and, V. I. Agol. 1992. Towards identification of cis-acting elements involved in the replication of enterovirus and rhinovirus RNAs: a proposal for the existence of tRNA-like terminal structures. Nucleic Acids Res. 20: 17391745.
148. Pilipenko, E. V.,, K. Poperechny,, S. V. Maslova,, W. J. G. Melchers,, H. J. Bruins Slot, and, V. I. Agol. 1996. cis-element, oriR, involved in the initiation of (—) strand poliovirus RNA: a quasi-globular multi-domain RNA structure maintained by tertiary (‘kissing’) interactions. EMBO J. 15: 54285436.
149. Plotch, S. J., and, O. Palant. 1995. Poliovirus protein 3AB forms a complex with and stimulates the activity of the viral RNA polymerase, 3D pol. J. Virol. 69: 71697179.
150. Ray, P. S., and, S. Das. 2002. La autoantigen is required for the internal ribosome entry site-mediated translation of coxsackievirus B3 RNA. Nucleic Acids Res. 30: 45004508.
151. Reuer, Q.,, R. J. Kuhn, and, E. Wimmer. 1990. Characterization of poliovirus clones containing lethal and nonlethal mutations in the genome-linked protein VPg. J. Virol. 64: 29672975.
152. Richards, O. C., and, E. Ehrenfeld. 1998. Effects of poliovirus 3AB protein on 3D polymerase-catalyzed reaction. J. Biol. Chem. 273: 1283212840.
153. Richards, O. C.,, J. F. Spagnolo,, J. M. Lyle,, S. E. Vleck,, R. D. Kuchta, and, K. Kirkegaard. 2006. Intramolecular and inter-molecular uridylylation by poliovirus RNA-dependent RNA polymerase. J. Virol. 80: 74057415.
154. Rodriguez, P. L., and, L. Carrasco. 1995. Poliovirus protein 2C contains two regions involved in RNA binding activity. J. Biol. Chem. 270: 1010510112.
155. Rodriguez, P. L., and, L. Carrasco. 1993. Poliovirus protein 2C has ATPase and GTPase activities. J. Biol. Chem. 268: 81058110.
156. Rodriguez Pulido, M.,, F. Sobrino,, B. Borrego, and, M. Saiz. 2009. Attenuated foot-and-mouth disease virus RNA carrying a deletion in the 3′ noncoding region can elicit immunity in swine. J. Virol. 83: 34753485.
157. Roehl, H. H., and, B. L. Semler. 1995. Poliovirus infection enhances the formation of two ribonucleoprotein complexes at the 3′ end of viral negative- strand RNA. J. Virol. 69: 29542961.
158. Rohll, J. B.,, D. H. Moon,, D. J. Evans, and, J. W. Almond. 1995. The 3′ untranslated region of picornavirus RNA: features required for efficient genome replication. J. Virol. 69: 78357844.
159. Rothberg, P. G.,, T. J. Harris,, A. Nomoto, and, E. Wimmer. 1978. O4-(5′-uridylyl)tyrosine is the bond between the genome-linked protein and the RNA of poliovirus. Proc. Natl. Acad. Sci. USA 75: 48684872.
160. Rozovics, J. M.,, M. Li, and, B. L. Semler. 2006. Identification of host factors that interact with the genome-linked protein of picornaviruses, abstr. B7. Abstr. XIV Meet. Eur. Study Group Mol. Biol. Picornavir.
161. Saiz, M.,, S. Gomez,, E. Martinez-Salas, and, F. Sobrino. 2001. Deletion or substitution of the aphthovirus 3′ NCR abrogates infectivity and virus replication. J. Gen. Virol. 82: 93101.
162. Sangar, D. V.,, D. J. Rowlands,, T. J. Harris, and, F. Brown. 1977. Protein covalently linked to foot-and-mouth disease virus RNA. Nature 268: 648650.
163. Sarnow, P. 1989. Role of 3′-end sequences in infectivity of poliovirus transcripts made in vitro. J. Virol. 63: 467470.
164. Sasaki, J., and, K. Taniguchi. 2008. Aichi virus 2A protein is involved in viral RNA replication. J. Virol. 82: 97659769.
165. Sean, P.,, J. H. Nguyen, and, B. L. Semler. 2008. The linker domain of poly(rC) binding protein 2 is a major determinant in poliovirus cap-independent translation. Virology 378: 243253.
166. Seipelt, J.,, A. Guarne,, E. Bergmann,, M. James,, W. Sommergruber,, I. Fita, and, T. Skern. 1999. The structures of picornaviral proteinases. Virus Res. 62: 159168.
167. Semler, B. L., and, K. J. Ertel. 2008. Picornaviridae: molecular biology, p. 129–140. In B. W. Mahy and, M. Van Regenmortel (ed.), Encyclopedia of Virology, 3rd ed., vol. 4. Elsevier, Boston, MA.
168. Semler, B. L.,, C. W. Anderson,, R. Hanecak,, L. F. Dorner, and, E. Wimmer. 1982. A membrane-associated precursor to poliovirus VPg identified by immunoprecipitation with antibodies directed against a synthetic heptapeptide. Cell 28: 405412.
169. Serrano, P.,, M. R. Pulido,, M. Saiz, and, E. Martinez-Salas. 2006. The 3′ end of the foot-and-mouth disease virus genome establishes two distinct long-range RNA-RNA interactions with the 5′ end region. J. Gen. Virol. 87: 30133022.
170. Sharma, N.,, B. J. O’Donnell, and, J. B. Flanegan. 2005. 3′-terminal sequence in poliovirus negative-strand templates is the primary cis-acting element required for VPgpUpU-primed positive-strand initiation. J. Virol. 79: 35653577.
171. Sharma, N.,, S. A. Ogram,, B. J. Morasco,, A. Spear,, N. M. Chapman, and, J. B. Flanegan. 2009. Functional role of the 5′ terminal cloverleaf in coxsackievirus RNA replication. Virology 393: 238249.
172. Si, X.,, G. Gao,, J. Wong,, Y. Wang,, J. Zhang, and, H. Luo. 2008. Ubiquitination is required for effective replication of coxsackievirus B3. PLoS One 3: e2585.
173. Si, X.,, Y. Wang,, J. Wong,, J. Zhang,, B. M. McManus, and, H. Luo. 2007. Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication. J. Virol. 81: 31423150.
174. Silvestri, L. S.,, J. M. Parilla,, B. J. Morasco,, S. A. Ogram, and, J. B. Flanegan. 2006. Relationship between poliovirus negative-strand RNA synthesis and the length of the 3′ poly(A) tail. Virology 345: 509519.
175. Siomi, H.,, M. J. Matunis,, W. M. Michael, and, G. Dreyfuss. 1993. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res. 21: 11931198.
176. Spector, D. H., and, D. Baltimore. 1974. Requirement of 3′-terminal poly(adenylic acid) for the infectivity of poliovirus RNA. Proc. Natl. Acad. Sci. USA 71: 29832987.
177. Spector, D. H.,, L. Villa-Komaroff, and, D. Baltimore. 1975. Studies on the function of polyadenylic acid on poliovirus RNA. Cell 6: 414.
178. Stefanovic, B.,, C. Hellerbrand,, M. Holcik,, M. Briendl,, S. Aliebhaber, and, D. A. Brenner. 1997. Posttranscriptional regulation of collagen α1(I) mRNA in hepatic stellate cells. Mol. Cell. Biol. 17: 52015209.
179. Steil, B. P., and, D. J. Barton. 2009. cis-active RNA elements (CREs) and picornavirus RNA replication. Virus Res. 139: 240252.
180. Steil, B. P., and, D. J. Barton. 2008. Poliovirus cis-acting replication element-dependent VPg uridylylation lowers the K m of the initiating nucleoside triphosphate for viral RNA replication. J. Virol. 82: 94009408.
181. Storck, S.,, M. Shukla,, S. Dimitrov, and, P. Bouvet. 2007. Functions of the histone chaperone nucleolin in diseases. Subcell. Biochem. 41: 125144.
182. Svitkin, Y. V.,, M. Costa-Mattioli,, B. Herdy,, S. Perreault, and, N. Sonenberg. 2007. Stimulation of picornavirus replication by the poly(A) tail in a cell-free extract is largely independent of the poly(A) binding protein (PABP). RNA 13: 23302340.
183. Svitkin, Y. V.,, K. Meerovitch,, H. S. Lee,, J. N. Dholakia,, D. J. Kenan,, V. I. Agol, and, N. Sonenberg. 1994. Internal translation initiation on poliovirus RNA: further characterization of La function in poliovirus translation in vitro. J. Virol. 68: 15441550.
184. Tang, W. F.,, S. Y. Yang,, B. W. Wu,, J. R. Jheng,, Y. L. Chen,, C. H. Shih,, K. H. Lin,, H. C. Lai,, P. Tang, and, J. T. Horng. 2007. Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication. J. Biol. Chem. 282: 58885898.
185. Taylor, M. P., and, K. Kirkegaard. 2008. Potential subversion of autophagosomal pathway by picornaviruses. Autophagy 4: 286289.
186. Teterina, N. L.,, A. E. Gorbalenya,, D. Egger,, K. Bienz, and, E. Ehrenfeld. 1997. Poliovirus 2C protein determinants of membrane binding and rearrangements in mammalian cells. J. Virol. 71: 89628972.
187. Teterina, N. L.,, E. Levenson,, M. S. Rinaudo,, D. Egger,, K. Bienz,, A. E. Gorbalenya, and, E. Ehrenfeld. 2006. Evidence for functional protein interactions required for poliovirus RNA replication. J. Virol. 80: 53275337.
188. Thompson, A. A., and, O. B. Peersen. 2004. Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J. 23: 34623471.
189. Todd, S.,, J. H. Nguyen, and, B. L. Semler. 1995. RNA-protein interactions directed by the 3′ end of human rhinovirus genomic RNA. J. Virol. 69: 36053614.
190. Todd, S., and, B. L. Semler. 1996. Structure-infectivity analysis of the human rhinovirus genomic RNA 3′ non-coding region. Nucleic Acids Res. 24: 21332142.
191. Todd, S.,, J. S. Towner,, D. M. Brown, and, B. L. Semler. 1997. Replication-competent picornaviruses with complete genomic RNA 3′ noncoding region deletions. J. Virol. 71: 88688874.
192. Todd, S.,, J. S. Towner, and, B. L. Semler. 1997. Translation and replication properties of the human rhinovirus genome in vivo and in vitro. Virology 229: 9097.
193. Towner, J. S.,, D. M. Brown,, J. H. Nguyen, and, B. L. Semler. 2003. Functional conservation of the hydrophobic domain of polypeptide 3AB between human rhinovirus and poliovirus. Virology 314: 432442.
194. Towner, J. S.,, T. V. Ho, and, B. L. Semler. 1996. Determinants of membrane association for poliovirus protein 3AB. J. Biol. Chem. 271: 2681026818.
195. Towner, J. S.,, M. M. Mazanet, and, B. L. Semler. 1998. Rescue of defective poliovirus RNA replication by 3AB-containing precursor polyproteins. J. Virol. 72: 71917200.
196. Toyoda, H.,, D. Franco,, K. Fujita,, A. V. Paul, and, E. Wimmer. 2007. Replication of poliovirus requires binding of the poly(rC) binding protein to the cloverleaf as well as to the adjacent C-rich spacer sequence between the cloverleaf and the internal ribosomal entry site. J. Virol. 81: 1001710028.
197. Toyoda, H.,, C. F. Yang,, N. Takeda,, A. Nomoto, and, E. Wimmer. 1987. Analysis of RNA synthesis of type 1 poliovirus by using an in vitro molecular genetic approach. J. Virol. 61: 28162822.
198. Van Dyke, T. A., and, J. B. Flanegan. 1980. Identification of poliovirus polypeptide P63 as a soluble RNA-dependent RNA polymerase. J. Virol. 35: 732740.
199. van Ooij, M. J.,, D. H. Glaudemans,, H. A. Heus,, F. J. van Kuppeveld, and, W. J. Melchers. 2006. Structural and functional integrity of the coxsackievirus B3 oriR: spacing between coaxial RNA helices. J. Gen. Virol. 87: 689695.
200. van Ooij, M. J.,, C. Polacek,, D. H. Glaudemans,, J. Kuijpers,, F. J. van Kuppeveld,, R. Andino,, V. I. Agol, and, W. J. Melchers. 2006. Polyadenylation of genomic RNA and initiation of antigenomic RNA in a positive-strand RNA virus are controlled by the same cis-element. Nucleic Acids Res. 34: 29532965.
201. van Ooij, M. J.,, D. A. Vogt,, A. Paul,, C. Castro,, J. Kuijpers,, F. J. van Kuppeveld,, C. E. Cameron,, E. Wimmer,, R. Andino, and, W. J. Melchers. 2006. Structural and functional characterization of the coxsackievirus B3 CRE(2C): role of CRE(2C) in negative- and positive-strand RNA synthesis. J. Gen. Virol. 87: 103113.
202. Waggoner, S., and, P. Sarnow. 1998. Viral ribonucleoprotein complex formation and nucleolar-cytoplasmic relocalization of nucleolin in poliovirus-infected cells. J. Virol. 72: 66996709.
203. Walter, B. L.,, J. H. Nguyen,, E. Ehrenfeld, and, B. L. Semler. 1999. Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements. RNA 5: 15701585.
204. Walter, B. L.,, T. B. Parsley,, E. Ehrenfeld, and, B. L. Semler. 2002. Distinct poly(rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication. J. Virol. 76: 1200812022.
205. Wang, Z.,, N. Day,, P. Trifillis, and, M. Kiledjian. 1999. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol. Cell. Biol. 19: 45524560.
206. Weiss, I. M., and, S. A. Liebhaber. 1994. Erythroid cell-specific determinants of alpha-globin mRNA stability. Mol. Cell. Biol. 14: 81238132.
207. Weiss, I. M., and, S. A. Liebhaber. 1995. Erythroid cell-specific mRNA stability elements in the alpha 2-globin 3′ nontranslated region. Mol. Cell. Biol. 15: 24572465.
208. Wessels, E.,, D. Duijsings,, K. H. Lanke,, S. H. van Dooren,, C. L. Jackson,, W. J. Melchers, and, F. J. van Kuppeveld. 2006. Effects of picornavirus 3A proteins on protein transport and GBF1-dependent COP-I recruitment. J. Virol. 80: 1185211860.
209. Wessels, E.,, D. Duijsings,, R. A. Notebaart,, W. J. Melchers, and, F. J. van Kuppeveld. 2005. A proline-rich region in the coxsackievirus 3A protein is required for the protein to inhibit endoplasmic reticulum-to-Golgi transport. J. Virol. 79: 51635173.
210. Wimmer, E.,, C. U. Hellen, and, X. Cao. 1993. Genetics of poliovirus. Annu. Rev. Genet. 27: 353436.
211. Xiang, W.,, A. Cuconati,, D. Hope,, K. Kirkegaard, and, E. Wimmer. 1998. Complete protein linkage map of poliovirus P3 proteins: interaction of polymerase 3D pol with VPg and with genetic variants of 3AB. J. Virol. 72: 67326741.
212. Xiang, W.,, A. Cuconati,, A. V. Paul,, X. Cao, and, E. Wimmer. 1995. Molecular dissection of the multifunctional poliovirus RNA-binding protein 3AB. RNA 1: 892904.
213. Xiang, W.,, K. S. Harris,, L. Alexander, and, E. Wimmer. 1995. Interaction between the 5′-terminal cloverleaf and 3AB/3CD pro of poliovirus is essential for RNA replication. J. Virol. 69: 36583667.
214. Yang, Y.,, R. Rijnbrand,, S. Watowich, and, S. M. Lemon. 2004. Genetic evidence for an interaction between a picornaviral cis-acting RNA replication element and 3CD protein. J. Biol. Chem. 279: 1265912667.
215. Yang, Y.,, M. Yi,, D. J. Evans,, P. Simmonds, and, S. M. Lemon. 2008. Identification of a conserved RNA replication element (CRE) within the 3D pol-coding sequence of hepatoviruses. J. Virol. 82: 1011810128.
216. Yin, J.,, Y. Liu,, E. Wimmer, and, A. V. Paul. 2007. Complete protein linkage map between the P2 and P3 non-structural proteins of poliovirus. J. Gen. Virol. 88: 22592267.
217. Yin, J.,, A. V. Paul,, E. Wimmer, and, E. Rieder. 2003. Functional dissection of a poliovirus cis-acting replication element [PV-cre(2C)]: analysis of single- and dual-cre viral genomes and proteins that bind specifically to PV-cre RNA. J. Virol. 77: 51525166.
218. Zell, R.,, K. Klingel,, M. Sauter,, U. Fortmuller, and, R. Kandolf. 1995. Coxsackieviral proteins functionally recognize the polioviral cloverleaf structure of the 5′-NTR of a chimeric enterovirus RNA: influence of species-specific host cell factors on virus growth. Virus Res. 39: 87103.
219. Zell, R.,, S. Seitz,, A. Henke,, T. Munder, and, P. Wutzler. 2005. Linkage map of protein-protein interactions of porcine teschovirus. J. Gen. Virol. 86: 27632768.
220. Zell, R.,, K. Sidigi,, E. Bucci,, A. Stelzner, and, M. Gorlach. 2002. Determinants of the recognition of enteroviral cloverleaf RNA by coxsackievirus B3 proteinase 3C. RNA 8: 188201.
221. Zell, R.,, K. Sidigi,, A. Henke,, J. Schmidt-Brauns,, E. Hoey,, S. Martin, and, A. Stelzner. 1999. Functional features of the bovine enterovirus 5′-non-translated region. J. Gen. Virol. 80: 22992309.
222. Zhang, B.,, G. Morace,, V. Gauss-Muller, and, Y. Kusov. 2007. Poly(A) binding protein, C-terminally truncated by the hepatitis A virus proteinase 3C, inhibits viral translation. Nucleic Acids Res. 35: 59755984.
223. Zhang, B.,, S. Seitz,, Y. Kusov,, R. Zell, and, V. Gauss-Muller. 2007. RNA interaction and cleavage of poly(C)-binding protein 2 by hepatitis A virus protease. Biochem. Biophys. Res. Commun. 364: 725730.
224. Zoll, J.,, H. A. Heus,, F. J. van Kuppeveld, and, W. J. Melchers. 2009. The structure-function relationship of the enterovirus 3′-UTR. Virus Res. 139: 209216.


Generic image for table
Table 1.

Examples of RNA and protein complexes involved in picornavirus replication

Citation: Rozovics J, Semler B. 2010. Genome Replication I: the Players, p 107-125. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error