Chapter 10 : Interference with Cellular Gene Expression

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Interference with Cellular Gene Expression, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816698/9781555816032_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555816698/9781555816032_Chap10-2.gif


This chapter focuses on new advances in understanding viral inhibition of host gene expression at four levels: transcription, nucleocytoplasmic trafficking, translation initiation, and manipulation of mRNA granules that store or process mRNA. Blockage of host gene expression serves multiple functions of liberating ribonucleotides, charged amino- acyl tRNAs, and ribosomal machinery for viral use and also restricting expression of innate immune response polypeptides that could counter viral replication. Further, blockage of host gene expression can hamper premature cell apoptosis and promote cell lysis after viral assembly. Recently, viral interference with RNA metabolism has been shown to extend to spliceosome assembly. Interestingly, in contrast to enteroviruses, cardioviruses appear to inhibit mRNA export, and this difference may be due to the different mechanisms utilized by these viruses to inhibit nuclear transport. In addition to the cleavages of eIF4G and PABP, which have major functional consequences, picornavirus infection leads to the proteolytic processing of other accessory translation factors that likely contribute to host cell translation shutoff. Mechanistically, various cellular stresses, such as oxidative stress, heat shock, or nutrient deprivation, induce SG formation by driving phosphorylation of eIF2α, which causes generalized translational arrest, and accumulation of mRNPs with stalled 40S ribosome subunits in stress granules (SGs). In the future, a more complete understanding of the mechanisms by which these fascinating viruses manipulate host gene expression and linkage to specific pathologies could lead to the rational design of novel antiviral drugs and therapies to combat these viruses and limit or interrupt disease progression.

Citation: Dougherty J, Park N, Gustin K, Lloyd R. 2010. Interference with Cellular Gene Expression, p 165-180. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

(A) Schematic representation of the NPC in uninfected cells, with the approximate location of a subset of the FG-containing Nups shown. The locations of the cytoplasmic filaments and nuclear basket structures are indicated. (B) Model showing how enterovirus-induced cleavage of Nups may result in the release of FG repeats and cause changes in NPC permeability and function. (C) Model showing how cardiovirus-induced phosphorylation of Nups may lead to changes in NPC permeability and function.

Citation: Dougherty J, Park N, Gustin K, Lloyd R. 2010. Interference with Cellular Gene Expression, p 165-180. In Ehrenfeld E, Domingo E, Roos R (ed), The Picornaviruses. ASM Press, Washington, DC. doi: 10.1128/9781555816698.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Agol, V. I.,, G. A. Belov,, K. Bienz,, D. Egger,, M. S. Kolesnikova,, L. I. Romanova,, L. V. Sladkova, and, E. A. Tolskaya. 2000. Competing death programs in poliovirus-infected cells: commitment switch in the middle of the infectious cycle. J. Virol. 74: 55345541.
2. Ali, I. K.,, L. McKendrick,, S. J. Morley, and, R. J. Jackson. 2001. Truncated initiation factor eIF4G lacking an eIF4E binding site can support capped mRNA translation. EMBO J. 20: 42334242.
3. Almstead, L. L., and, P. Sarnow. 2007. Inhibition of U snRNP assembly by a virus-encoded proteinase. Genes Dev 21: 10861097.
4. Aminev, A. G.,, S. P. Amineva, and, A. C. Palmenberg. 2003. Encephalomyocarditis viral protein 2A localizes to nucleoli and inhibits cap-dependent mRNA translation. Virus Res. 95: 4557.
5. Aminev, A. G.,, S. P. Amineva, and, A. C. Palmenberg. 2003. Encephalomyocarditis virus (EMCV) proteins 2A and 3BCD localize to nuclei and inhibit cellular mRNA transcription but not rRNA transcription. Virus Res. 95: 5973.
6. Amineva, S. P.,, A. G. Aminev,, A. C. Palmenberg, and, J. E. Gern. 2004. Rhinovirus 3C protease precursors 3CD and 3CD′ localize to the nuclei of infected cells. J. Gen. Virol. 85: 29692979.
7. Amrani, N.,, S. Ghosh,, D. A. Mangus, and, A. Jacobson. 2008. Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453: 12761280.
8. Anderson, P., and, N. Kedersha. 2006. RNA granules. J. Cell. Biol. 172: 80388.
9. Anderson, P., and, N. Kedersha. 2008. Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 33: 141150.
10. Apriletti, J. W., and, E. E. Penhoet. 1978. Cellular RNA synthesis in normal and mengovirus-infected L-929 cells. J. Biol. Chem. 253: 603611.
11. Apriletti, J. W., and, E. E. Penhoet. 1974. Recovery of DNA-dependent RNA polymerase activities from L cells after mengovirus infection. Virology 61: 597601.
12. Back, S. H.,, Y. K. Kim,, W. J. Kim,, S. Cho,, H. R. Oh,, J. E. Kim, and, S. K. Jang. 2002. Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3C pro. J. Virol. 76: 25292542.
13. Baltimore, D., and, R. M. Franklin. 1962. The effect of mengovirus infection on the activity of the DNA-dependent RNA polymerase of L-cells. Proc. Natl. Acad. Sci. USA 48: 13831390.
14. Banerjee, R.,, M. K. Weidman,, S. Navarro,, L. Comai, and, A. Dasgupta. 2005. Modifications of both selectivity factor and upstream binding factor contribute to poliovirus-mediated inhibition of RNA polymerase I transcription. J. Gen. Virol. 86: 23152322.
15. Bardina, M. V.,, P. V. Lidsky,, E. V. Sheval,, K. V. Fominykh,, F. J. van Kuppeveld,, V. Y. Polyakov, and, V. I. Agol. 2009. Mengovirus-induced rearrangement of the nuclear pore complex: hijacking cellular phosphorylation machinery. J. Virol. 83: 31503161.
16. Beckham, C. J., and, R. Parker. 2008. P bodies, stress granules, and viral life cycles. Cell Host Microbe 3: 206212.
17. Belov, G. A.,, P. V. Lidsky,, O. V. Mikitas,, D. Egger,, K. A. Lukyanov,, K. Bienz, and, V. I. Agol. 2004. Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores. J. Virol. 78: 1016610177.
18. Bhattacharyya, S. N.,, R. Habermacher,, U. Martine,, E. I. Closs, and, W. Filipowicz. 2006. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125: 11111124.
19. Black, T. L.,, G. N. Barber, and, M. G. Katze. 1993. Degradation of the interferon-induced 68,000 -M r protein kinase by poliovirus requires RNA. J. Virol. 67: 791800.
20. Black, T. L.,, B. Safer,, A. Hovanessian, and, M. G. Katze. 1989. The cellular 68,000 -M r protein kinase is highly autophosphorylated and activated yet significantly degraded during poliovirus infection: implications for translational regulation. J. Virol. 63: 22442251.
21. Blyn, L. B.,, K. M. Swiderek,, O. Richards,, D. C. Stahl,, B. L. Semler, and, E. Ehrenfeld. 1996. Poly(rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5′ noncoding region: identification by automated liquid chromatography-tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 93: 1111511120.
22. Bonderoff, J. M.,, J. L. Larey, and, R. E. Lloyd. 2008. Cleavage of poly(A)-binding protein by poliovirus 3C proteinase inhibits viral internal ribosome entry site-mediated translation. J. Virol. 82: 93899399.
23. Borman, A.,, M. T. Howell,, J. G. Patton, and, R. J. Jackson. 1993. The involvement of a spliceosome component in internal initiation of human rhinovirus RNA translation. J. Gen. Virol. 74: 17751788.
24. Bossart, W., and, K. Bienz. 1979. Virus replication, cytopathology, and lysosomal enzyme response in enucleated HEp-2 cells infected with poliovirus. Virology 92: 331339.
25. Bovee, M. L.,, W. E. Marissen,, M. Zamora, and, R. E. Lloyd. 1998. The predominant eIF4G-specific cleavage activity in poliovirus-infected HeLa cells is distinct from 2A protease. Virology 245: 2292240.
26. Brunner, J. E.,, J. H. Nguyen,, H. H. Roehl,, T. V. Ho,, K. M. Swiderek, and, B. L. Semler. 2005. Functional interaction of heterogeneous nuclear ribonucleoprotein C with poliovirus RNA synthesis initiation complexes. J. Virol. 79: 32543266.
27. Bushell, M.,, W. Wood,, G. Carpenter,, V. M. Pain,, S. J. Morley, and, M. J. Clemens. 2001. Disruption of the interaction of mammalian protein synthesis initiation factor 4B with the poly(A) binding protein by caspase-and viral protease-mediated cleavages. J. Biol. Chem. 276: 2392223928.
28. Byrd, M. P.,, M. Zamora, and, R. E. Lloyd. 2005. Translation of eIF4GI proceeds from multiple mRNAs containing a novel cap-dependent IRES that is active during poliovirus infection. J. Biol. Chem. 280: 1861018622.
29. Casolari, J. M.,, C. R. Brown,, S. Komili,, J. West,, H. Hieronymus, and, P. A. Silver. 2004. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117: 427439.
30. Courchet, J.,, K. Buchet-Poyau,, A. Potemski,, A. Bres,, I. Jariel-Encontre, and, M. Billaud. 2008. Interaction with 14-3-3 adaptors regulates the sorting of hMex-3B RNA-binding protein to distinct classes of RNA granules. J. Biol. Chem. 283: 3213132142.
31. Craig, A. W.,, Y. V. Svitkin,, H. S. Lee,, G. J. Belsham, and, N. Sonenberg. 1997. The La autoantigen contains a dimerization domain that is essential for enhancing translation. Mol. Cell. Biol. 17: 163169.
32. Craig, A. W. B.,, A. Haghighat,, A. T. K. Yu, and, N. Sonenberg. 1998. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 392: 520523.
33. Crawford, N.,, A. Fire,, M. Samuels,, P. A. Sharp, and, D. Baltimore. 1981. Inhibition of transcription factor activity by poliovirus. Cell 27: 555561.
34. Dang, Y.,, N. Kedersha,, W. K. Low,, D. Romo,, M. Gorospe,, R. Kaufman,, P. Anderson, and, J. O. Liu. 2006. Eukaryotic initiation factor 2α-independent pathway of stress granule induction by the natural product pateamine A. J. Biol. Chem. 281: 3287032878.
35. D’Angelo, M. A., and, M. W. Hetzer. 2008. Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol. 18: 456466.
36. Dasgupta, A.,, P. Yalamanchili,, M. Clark, et al. 2002. Effects of picornavirus proteinases on host cell transcription, p. 321–335. In B. L. Semler and, E. Wimmer (ed.), Molecular Biology of Picornaviruses. American Society for Microbiology, Washington, DC.
37. de Breyne, S.,, J. M. Bonderoff,, K. M. Chumakov,, R. E. Lloyd, and, C. U. Hellen. 2008. Cleavage of eukaryotic initiation factor eIF5B by enterovirus 3C proteases. Virology 378: 118122.
38. de Breyne, S.,, Y. Yu,, A. Unbehaun,, T. V. Pestova, and, C. U. Hellen. 2009. Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites. Proc. Natl. Acad. Sci. USA 106: 91979202.
39. De Gregorio, E.,, T. Preiss, and, M. W. Hentze. 1999. Translation driven by an eIF4G core domain in vivo. EMBO J. 18: 48654874.
40. De Leeuw, F.,, T. Zhang,, C. Wauquier,, G. Huez,, V. Kruys, and, C. Gueydan. 2007. The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor. Exp. Cell. Res. 313: 41304144.
41. Delhaye, S.,, V. van Pesch, and, T. Michiels. 2004. The leader protein of Theiler’s virus interferes with nucleocytoplasmic trafficking of cellular proteins. J. Virol. 78: 43574362.
42. Denning, D. P.,, S. S. Patel,, V. Uversky,, A. L. Fink, and, M. Rexach. 2003. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl. Acad. Sci. USA 100: 24502455.
43. Detjen, B. M.,, J. Lucas, and, E. Wimmer. 1978. Poliovirus single-stranded RNA and double-stranded RNA: differential infectivity in enucleate cells. J. Virol. 27: 582586.
44. Devaney, M. A.,, V. N. Vakharia,, R. E. Lloyd,, E. Ehrenfeld, and, M. J. Grubman. 1988. Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J. Virol. 62: 44074409.
45. Enninga, J.,, D. E. Levy,, G. Blobel, and, B. M. Fontoura. 2002. Role of nucleoporin induction in releasing an mRNA nuclear export block. Science 295: 15231525.
46. Eulalio, A.,, I. Behm-Ansmant,, D. Schweizer, and, E. Izaurralde. 2007. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol. Cell. Biol. 27: 39703981.
47. Faria, P. A.,, P. Chakraborty,, A. Levay,, G. N. Barber,, H. J. Ezelle,, J. Enninga,, C. Arana,, J. van Deursen, and, B. M. Fontoura. 2005. VSV disrupts the Rae1/mrnp41 mRNA nuclear export pathway. Mol. Cell 17: 93102.
48. Follett, E. A.,, C. R. Pringle, and, T. H. Pennington. 1975. Virus development in enucleate cells: echovirus, poliovirus, pseudo-rabies virus, reovirus, respiratory syncytial virus and Semliki Forest virus. J. Gen. Virol. 26: 183196.
49. Ghildyal, R.,, B. Jordan,, D. Li,, H. Dagher,, P. G. Bardin,, J. E. Gern, and, D. A. Jans. 2009. Rhinovirus 3C protease can localize in the nucleus and alter active and passive nucleocytoplasmic transport. J. Virol. 83: 73497352.
50. Gingras, A. C.,, Y. Svitkin,, G. J. Belsham,, A. Pause, and, N. Sonenberg. 1996. Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proc. Natl. Acad. Sci. USA 93: 55785583.
51. Glaser, W., and, T. Skern. 2000. Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. FEBS Lett. 480: 151155.
52. Gradi, A.,, N. Foeger,, R. Strong,, Y. V. Svitkin,, N. Sonenberg,, T. Skern, and, G. J. Belsham. 2004. Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J. Virol. 78: 32713278.
53. Gradi, A.,, Y. V. Svitkin,, H. Imataka, and, N. Sonenberg. 1998. Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc. Natl. Acad. Sci. USA 95: 1108911094.
54. Gradi, A.,, Y. V. Svitkin,, W. Sommergruber,, H. Imataka,, S. Morino,, T. Skern, and, N. Sonenberg. 2003. Human rhinovirus 2A proteinase cleavage sites in eukaryotic initiation factors (eIF) 4GI and eIF4GII are different. J. Virol. 77: 50265029.
55. Groppo, R., and, A. C. Palmenberg. 2007. Cardiovirus 2A protein associates with 40S but not 80S ribosome subunits during infection. J. Virol. 81: 1306713074.
56. Gustin, K. E., and, P. Sarnow. 2001. Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition. EMBO J. 20: 240249.
57. Gustin, K. E., and, P. Sarnow. 2002. Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus. J. Virol. 76: 87878796.
58. Hambidge, S. J., and, P. Sarnow. 1992. Translational enhancement of the poliovirus 5′ noncoding region mediated by virus-encoded polypeptide-2A. Proc. Natl. Acad. Sci. USA 89: 1027210276.
59. Hato, S. V.,, C. Ricour,, B. M. Schulte,, K. H. Lanke,, M. de Bruijni,, J. Zoll,, W. J. Melchers,, T. Michiels, and, F. J. van Kuppeveld. 2007. The mengovirus leader protein blocks interferon-alpha/beta gene transcription and inhibits activation of interferon regulatory factor 3. Cell. Microbiol. 9: 29212930.
60. Hellen, C. U. 2007. Bypassing translation initiation. Structure 15: 46.
61. Hellen, C. U.,, G. W. Witherell,, M. Schmid,, S. H. Shin,, T. V. Pestova,, A. Gil, and, E. Wimmer. 1993. A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc. Natl. Acad. Sci. USA 90: 76427646.
62. Henis-Korenblit, S.,, G. Shani,, T. Sines,, L. Marash,, G. Shohat, and, A. Kimchi. 2002. The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins. Proc. Natl. Acad. Sci. USA 99: 54005405.
63. Hinton, T. M.,, N. Ross-Smith,, S. Warner,, G. J. Belsham, and, B. S. Crabb. 2002. Conservation of L and 3C proteinase activities across distantly related aphthoviruses. J. Gen. Virol. 83: 31113121.
64. Hiscott, J. 2007. Triggering the innate antiviral response through IRF-3 activation. J. Biol. Chem. 282: 1532515329.
65. Holland, J. J. 1963. Depression of host-controlled RNA synthesis in human cells during poliovirus infection. Proc. Natl. Acad. Sci. USA 49: 2328.
66. Hunt, S. L.,, T. Skern,, H. D. Liebig,, E. Kuechler, and, R. J. Jackson. 1999. Rhinovirus 2A proteinase mediated stimulation of rhinovirus RNA translation is additive to the stimulation effected by cellular RNA binding proteins. Virus Res. 62: 119128.
67. Ishii, K.,, G. Arib,, C. Lin,, G. Van Houwe, and, U. K. Laemmli. 2002. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109: 551562.
68. Joachims, M.,, P. C. van Breugel, and, R. E. Lloyd. 1999. Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J. Virol. 73: 718727.
69. Johannes, G., and, P. Sarnow. 1998. Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP and eIF4G conferred by internal ribosome entry sites. RNA 4: 15001513.
70. Kahvejian, A.,, G. Roy, and, N. Sonenberg. 2001. The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harbor Symp. Quant. Biol. 66: 293300.
71. Kahvejian, A.,, Y. V. Svitkin,, R. Sukarieh,, M. N. M’Boutchou, and, N. Sonenberg. 2005. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev. 19: 104113.
72. Kedersha, N., and, P. Anderson. 2002. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem. Soc. Trans. 30: 963969.
73. Kedersha, N.,, M. R. Cho,, W. Li,, P. W. Yacono,, S. Chen,, N. Gilks,, D. E. Golan, and, P. Anderson. 2000. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J. Cell. Biol. 151: 12571268.
74. Kedersha, N.,, G. Stoecklin,, M. Ayodele,, P. Yacono,, J. Lykke-Andersen,, M. J. Fitzler,, D. Scheuner,, R. J. Kaufman,, D. E. Golan, and, P. Anderson. 2005. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169: 871884.
75. Kerekatte, V.,, B. D. Keiper,, C. Bradorff,, A. Cai,, K. U. Knowlton, and, R. E. Rhoads. 1999. Cleavage of poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff? J. Virol. 73: 709717.
76. Kirchweger, R.,, E. Ziegler,, B. J. Lamphear,, D. Waters,, H. D. Liebig,, W. Sommergruber,, F. Sobrino,, C. Hohenadl,, D. Blaas,, R. E. Rhoads, and, T. Skern. 1994. Foot-and-mouth disease virus leader proteinase: purification of the lb form and determination of its cleavage site on eIF-4 gamma. J. Virol. 68: 56775684.
77. Kliewer, S., and, A. Dasgupta. 1988. An RNA polymerase II transcription factor inactivated in poliovirus-infected cells copurifies with transcription factor TFIID. Mol. Cell. Biol. 8: 31753182.
78. Kozlov, G.,, G. De Crescenzo,, N. S. Lim,, N. Siddiqui,, D. Fantus,, A. Kahvejian,, J. F. Trempe,, D. Elias,, I. Ekiel,, N. Sonenberg,, M. O’Connor-McCourt, and, K. Gehring. 2004. Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase. EMBO J. 23: 272281.
79. Kundu, P.,, S. Raychaudhuri,, W. Tsai, and, A. Dasgupta. 2005. Shutoff of RNA polymerase II transcription by poliovirus involves 3C protease-mediated cleavage of the TATA-binding protein at an alternative site: incomplete shutoff of transcription interferes with efficient viral replication. J. Virol. 79: 97029713.
80. Kuyumcu-Martinez, M.,, G. Belliot,, S. V. Sosnovtsev,, K. O. Chang,, K. Y. Green, and, R. E. Lloyd. 2004. Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein. J. Virol. 78: 81728182.
81. Kuyumcu-Martinez, N. M.,, M. Joachims, and, R. E. Lloyd. 2002. Efficient cleavage of ribosome-associated poly(A)-binding protein by enterovirus 3C protease. J. Virol. 76: 20622074.
82. Kuyumcu-Martinez, N. M.,, M. E. Van Eden,, P. Younan, and, R. E. Lloyd. 2004. Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Mol. Cell. Biol. 24: 17791790.
83. Lamphear, B. J.,, R. Kirchweger,, T. Skern, and, R. E. Rhoads. 1995. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J. Biol. Chem. 270: 2197521983.
84. Lamphear, B. J.,, R. Q. Yan,, F. Yang,, D. Waters,, H. D. Liebig,, H. Klump,, E. Kuechler,, T. Skern, and, R. E. Rhoads. 1993. Mapping the cleavage site in protein synthesis initiation factor-eIF-4g of the 2A proteases from human coxsackievirus and rhinovirus. J. Biol. Chem. 268: 1920019203.
85. Lewis, S. M.,, S. Cerquozzi,, T. E. Graber,, N. H. Ungureanu,, M. Andrews, and, M. Holcik. 2008. The eIF4G homolog DAP5/p97 supports the translation of select mRNAs during endoplasmic reticulum stress. Nucleic Acids Res. 36: 168178.
86. Li, W.,, Y. Li,, N. Kedersha,, P. Anderson,, M. Emara,, K. M. Swiderek,, G. T. Moreno, and, M. A. Brinton. 2002. Cell proteins TIA-1 and TIAR interact with the 3′ stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication. J. Virol. 76: 1198912000.
87. Li, W.,, N. Ross-Smith,, C. G. Proud, and, G. J. Belsham. 2001. Cleavage of translation initiation factor 4AI (eIF4AI) but not eIF4AII by foot-and-mouth disease virus 3C protease: identification of the eIF4AI cleavage site. FEBS Lett. 507: 15.
88. Liberman, N.,, L. Marash, and, A. Kimchi. 2009. The translation initiation factor DAP5 is a regulator of cell survival during mitosis. Cell Cycle 8: 204209.
89. Lidsky, P. V.,, S. Hato,, M. V. Bardina,, A. G. Aminev,, A. C. Palmenberg,, E. V. Sheval,, V. Y. Polyakov,, F. J. van Kuppeveld, and, V. I. Agol. 2006. Nucleocytoplasmic traffic disorder induced by cardioviruses. J. Virol. 80: 27052717.
90. Lloyd, R. 2006. Translational control by viral proteinases. Virus Res. 119: 7688.
91. Lloyd, R. E.,, M. J. Grubman, and, E. Ehrenfeld. 1988. Relationship of p220 cleavage during picornavirus infection to 2A proteinase sequences. J. Virol. 62: 42164223.
92. Macejak, D. G., and, P. Sarnow. 1991. Internal initiation of translation mediated by the 5′ leader of a cellular messenger RNA. Nature 353: 9094.
93. Marcotrigiano, J.,, I. B. Lomakin,, N. Sonenberg,, T. V. Pestova,, C. U. Hellen, and, S. K. Burley. 2001. A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol. Cell 7: 193203.
94. Martineau, Y.,, M. C. Derry,, X. Wang,, A. Yanagiya,, J. J. Berlanga,, A. B. Shyu,, H. Imataka,, K. Gehring, and, N. Sonenberg. 2008. Poly(A)-binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation. Mol. Cell. Biol. 28: 66586667.
95. Mazroui, R.,, R. Sukarieh,, M. E. Bordeleau,, R. J. Kaufman,, P. Northcote,, J. Tanaka,, I. Gallouzi, and, J. Pelletier. 2006. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2α phosphorylation. Mol. Biol. Cell 17: 42124219.
96. McBride, A. E.,, A. Schlegel, and, K. Kirkegaard. 1996. Human protein sam68 relocalization and interaction with poliovirus RNA polymerase in infected cells. Proc. Natl. Acad. Sci. USA 93: 22962301.
97. McInerney, G. M.,, N. L. Kedersha,, R. J. Kaufman,, P. Anderson, and, P. Liljestrom. 2005. Importance of eIF2α phosphorylation and stress granule assembly in alphavirus translation regulation. Mol. Biol. Cell 16: 37533763.
98. Mokas, S.,, J. R. Mills,, C. Garreau,, M. J. Fournier,, F. Robert,, P. Arya,, R. Kaufman,, J. Pelletier, and, R. Mazroui. 2009. Uncoupling stress granule assembly and translation initiation inhibition. Mol. Biol. Cell 20: 26732683.
99. Nevins, T.,, Z. Harder,, R. Korneluk, and, M. Holcik. 2003. Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. J. Biol. Chem. 278: 35723579.
100. Nousch, M.,, V. Reed,, R. J. Bryson-Richardson,, P. D. Currie, and, T. Preiss. 2007. The eIF4G-homolog p97 can activate translation independent of caspase cleavage. RNA 13: 374384.
101. O’Neill, R. E., and, V. R. Racaniello. 1989. Inhibition of translation in cells infected with a poliovirus 2A pro mutant correlates with phosphorylation of the alpha subunit of eucaryotic initation factor 2. J. Virol. 63: 50695075.
102. Patel, S. S.,, B. J. Belmont,, J. M. Sante, and, M. F. Rexach. 2007. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129: 8396.
103. Paul, S., and, T. Michiels. 2006. Cardiovirus leader proteins are functionally interchangeable and have evolved to adapt to virus replication fitness. J. Gen. Virol. 87: 12371246.
104. Perera, R.,, S. Daijogo,, B. L. Walter,, J. H. Nguyen, and, B. L. Semler. 2007. Cellular protein modification by poliovirus: the two faces of poly(rC)-binding protein. J. Virol. 81: 89198932.
105. Pestova, T. V.,, J. R. Lorsch, and, C. U. Hellen. 2007. The mechanism of translation initiation in eukaryotes, p. 87–128. In M. B. Matthews,, N. Sonenberg, and, J. W. B. Hershey (ed.), Translational Control in Biology and Medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
106. Pillai, R. S.,, S. N. Bhattacharyya,, C. G. Artus,, T. Zoller,, N. Cougot,, E. Basyuk,, E. Bertrand, and, W. Filipowicz. 2005. Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309: 15731576.
107. Piotrowska, J.,, S. J. Hansen,, N. Park,, K. Jamka,, P. Sarnow, and, K. E. Gustin. 2010. Stable formation of compositionally unique stress granules in virus-infected cells. J. Virol. 84: 36543665.
108. Pollack, R., and, R. Goldman. 1973. Synthesis of infective poliovirus in BSC-1 monkey cells enucleated with cytochalasin B. Science 179: 915916.
109. Porter, F. W., and, A. C. Palmenberg. 2009. Leader-induced phosphorylation of nucleoporins correlates with nuclear trafficking inhibition by cardioviruses. J. Virol. 83: 19411951.
110. Rexach, M., and, G. Blobel. 1995. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83: 683692.
111. Ricour, C.,, S. Delhaye,, S. V. Hato,, T. D. Olenyik,, B. Michel,, F. J. van Kuppeveld,, K. E. Gustin, and, T. Michiels. 2009. Inhibition of mRNA export and dimerization of interferon regulatory factor 3 by Theiler’s virus leader protein. J. Gen. Virol. 90: 177186.
112. Rivera, C. I., and, R. E. Lloyd. 2008. Modulation of enteroviral proteinase cleavage of poly(A)-binding protein (PABP) by conformation and PABP-associated factors. Virology 375: 5972.
113. Rodriguez-Navarro, S.,, T. Fischer,, M. J. Luo,, O. Antunez,, S. Brettschneider,, J. Lechner,, J. E. Perez-Ortin,, R. Reed, and, E. Hurt. 2004. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116: 7586.
114. Rodriguez Pulido, M.,, P. Serrano,, M. Saiz, and, E. Martinez-Salas. 2007. Foot-and-mouth disease virus infection induces proteolytic cleavage of PTB, eIF3a, b, and PABP RNA-binding proteins. Virology 364: 466474.
115. Rojas-Eisenring, I. A.,, M. Cajero-Juarez, and, R. M. del Angel. 1995. Cell proteins bind to a linear polypyrimidine-rich sequence within the 5′-untranslated region of rhinovirus 14 RNA. J. Virol. 69: 68196824.
116. Rout, M. P.,, J. D. Aitchison,, A. Suprapto,, K. Hjertaas,, Y. Zhao, and, B. T. Chait. 2000. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148: 635651.
117. Rubinstein, S. J.,, T. Hammerle,, E. Wimmer, and, A. Dasgupta. 1992. Infection of HeLa cells with poliovirus results in modification of a complex that binds to the rRNA promoter. J. Virol. 66: 30623068.
118. Sasaki, J.,, S. Nagashima, and, K. Taniguchi. 2003. Aichi virus leader protein is involved in viral RNA replication and encapsidation. J. Virol. 77: 1079910807.
119. Schmid, M.,, G. Arib,, C. Laemmli,, J. Nishikawa,, T. Durussel, and, U. K. Laemmli. 2006. Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol. Cell 21: 379391.
120. Schwartz, L. B.,, C. Lawrence,, R. E. Thach, and, R. G. Roeder. 1974. Encephalomyocarditis virus infection of mouse plasmacytoma cells. II. Effect on host RNA synthesis and RNA polymerases. J. Virol. 14: 611619.
121. Sharma, R.,, S. Raychaudhuri, and, A. Dasgupta. 2004. Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off. Virology 320: 195205.
122. Shen, Y.,, M. Igo,, P. Yalamanchili,, A. J. Berk, and, A. Dasgupta. 1996. DNA binding domain and subunit interactions of transcription factor IIIC revealed by dissection with poliovirus 3C protease. Mol. Cell. Biol. 16: 41634171.
123. Shiroki, K.,, T. Isoyama,, S. Kuge,, T. Ishii,, S. Ohmi,, S. Hata,, K. Suzuki,, Y. Takasaki, and, A. Nomoto. 1999. Intracellular redistribution of truncated La protein produced by poliovirus 3C pro-mediated cleavage. J. Virol. 73: 21932200.
124. Smith, J. A.,, S. C. Schmechel,, A. Raghavan,, M. Abelson,, C. Reilly,, M. G. Katze,, R. J. Kaufman,, P. R. Bohjanen, and, L. A. Schiff. 2006. Reovirus induces and benefits from an integrated cellular stress response. J. Virol. 80: 20192033.
125. Sommergruber, W.,, H. Ahorn,, H. Klump,, J. Seipelt,, A. Zoephel,, F. Fessl,, E. Krystek,, D. Blaas,, E. Kuechler,, H. D. Liebig, and, T. Skern. 1994. 2A proteinases of coxsackie-and rhinovirus cleave peptides derived from eIF-4 gamma via a common recognition motif. Virology 198: 741745.
126. Stewart, M. 2007. Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell. Biol. 8: 195208.
127. Stoecklin, G.,, T. Stubbs,, N. Kedersha,, S. Wax,, W. F. Rigby,, T. Blackwell, and, P. Anderson. 2004. MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J. 23: 13131324.
128. Svitkin, Y. V.,, A. Gradi,, H. Imataka,, S. Morino, and, N. Sonenberg. 1999. Eukaryotic initiation factor 4GII (eIF4GII), but not eIF4GI, cleavage correlates with inhibition of host cell protein synthesis after human rhinovirus infection. J. Virol. 73: 34673472.
129. Tourriere, H.,, K. Chebli,, L. Zekri,, B. Courselaud,, J. M. Blanchard,, E. Bertrand, and, J. Tazi. 2003. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 160: 823831.
130. Uchida, N.,, S. Hoshino,, H. Imataka,, N. Sonenberg, and, T. Katada. 2002. A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in Cap/poly(A)-dependent translation. J. Biol. Chem. 277: 5028650292.
131. van Pesch, V.,, O. van Eyll, and, T. Michiels. 2001. The leader protein of Theiler’s virus inhibits immediate-early alpha/beta interferon production. J. Virol. 75: 78117817.
132. von Kobbe, C.,, J. M. A. van Deursen,, J. P. Rodrigues,, D. Sitterlin,, A. Bachi,, X. Wu,, M. Wilm,, M. Carno-Fonseca, and, E. Izaurralde. 2000. Vesicular stomatitis virus matrix protein inhibits host cell gene expression by targeting the nucleopoin Nup98. Mol. Cell 6: 12431252.
133. Waggoner, S., and, P. Sarnow. 1998. Viral ribonucleoprotein complex formation and nucleolar-cytoplasmic relocalization of nucleolin in poliovirus-infected cells. J. Virol. 72: 66996709.
134. Weidman, M. K.,, R. Sharma,, S. Raychaudhuri,, P. Kundu,, W. Tsai, and, A. Dasgupta. 2003. The interaction of cytoplasmic RNA viruses with the nucleus. Virus Res. 95: 7585.
135. Weidman, M. K.,, P. Yalamanchili,, B. Ng,, W. Tsai, and, A. Dasgupta. 2001. Poliovirus 3C protease-mediated degradation of transcriptional activator p53 requires a cellular activity. Virology 291: 260271.
136. White, J. P.,, A. M. Cardenas,, W. E. Marissen, and, R. E. Lloyd. 2007. Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase. Cell Host Microbe 2: 295305.
137. Yalamanchili, P.,, R. Banerjee, and, A. Dasgupta. 1997. Poliovirus-encoded protease 2A pro cleaves the TATA-binding protein but does not inhibit host cell RNA polymerase II transcription in vitro. J. Virol. 71: 68816886.
138. Yalamanchili, P.,, U. Datta, and, A. Dasgupta. 1997. Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3C pro. J. Virol. 71: 12201226.
139. Yalamanchili, P.,, K. Harris,, E. Wimmer, and, A. Dasgupta. 1996. Inhibition of basal transcription by poliovirus: a virus-encoded protease (3C pro) inhibits formation of TBP-TATA box complex in vitro. J. Virol. 70: 29222929.
140. Yalamanchili, P.,, K. Weidman, and, A. Dasgupta. 1997. Cleavage of transcriptional activator Oct-1 by poliovirus encoded protease 3Cpro. Virology 239: 176185.
141. Zamora, M.,, W. E. Marissen, and, R. E. Lloyd. 2002. Multiple eIF4GI-specific protease activities present in uninfected and poliovirus-infected cells. J. Virol. 76: 165177.
142. Zheng, D.,, N. Ezzeddine,, C. Y. Chen,, W. Zhu,, X. He, and, A. B. Shyu. 2008. Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. J. Cell Biol. 182: 89101.
143. Zimmerman, E. F.,, M. Heeter, and, J. E. Darnell. 1963. RNA synthesis in poliovirus-infected cells. Virology 19: 400408.
144. Zoll, J.,, W. J. Melchers,, J. M. Galama, and, F. J. van Kuppeveld. 2002. The mengovirus leader protein suppresses alpha/beta interferon production by inhibition of the iron/ferritin-mediated activation of NF-κB. J. Virol. 76: 96649672.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error