Chapter 6 : Infection Control Epidemiology and Clinical Microbiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Infection Control Epidemiology and Clinical Microbiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816728/9781555814632_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555816728/9781555814632_Chap06-2.gif


This chapter discusses the impact of nosocomial infections, outlines the organization of the hospital infection control program, and describes the important role of the clinical microbiology laboratory in the prevention and control of health care-associated infections. The indicated that the presence of an active surveillance and infection control program was associated with a 32% decrease in nosocomial infection rates while the absence of such a program was associated with an 18% increase in nosocomial infection rate. The hospital infection control program should include surveillance and prevention of nosocomial infections. The chapter focuses on the most important specific roles played by a microbiology laboratory in the day-to-day practice of infection control. Commercial identification and susceptibility testing systems allow most laboratories to identify microorganisms to species level and perform antimicrobial susceptibility testing (AST). However, the expanding spectrum of organisms that colonize and infect seriously ill patients challenges the ability of a clinical microbiology laboratory to identify and characterize nosocomial pathogens accurately. When the infection control team detects a cluster or outbreak of nosocomial infection, they must act promptly to identify the etiologic agent if it is not known, define the extent of the outbreak, learn the mode of transmission for the pathogen, and institute appropriate control measures. Development and application of new technologies in the clinical laboratory can greatly enhance infection control efforts.

Citation: Diekema D, Pfaller M. 2011. Infection Control Epidemiology and Clinical Microbiology, p 73-84. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Sample chart format for reporting nosocomial infection rates in an ICU compared with CDC NHSN benchmarks. MICU, medical ICU; CVC, central venous catheter.

Citation: Diekema D, Pfaller M. 2011. Infection Control Epidemiology and Clinical Microbiology, p 73-84. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Anderson, K. F.,, D. R. Lonsway,, J. K. Rasheed,, J. Biddle,, B. Jensen,, L. K. McDougal,, R. B. Carey,, A. Thompson,, S. Stocker,, B. Limbago,, and J. B. Patel. 2007. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J. Clin. Microbiol. 45: 2723 2725.
2. Andrews, J. I.,, D. K. Fleener,, S. A. Messer,, J. S. Kroeger,, and D. J. Diekema. 2009. Screening for Staphylococcus aureus carriage in pregnancy: usefulness of novel sampling and culture strategies. Am. J. Obstet. Gynecol. 201: 396.e1 e5.
3. Ashford, D. A.,, S. Kellerman,, M. Yakrus,, S. Brim,, R. C. Good,, L. Finelli,, W. R. Jarvis,, and M. M. McNeil. 1997. Pseudo-outbreak of septicemia due to rapidly growing mycobacteria associated with extrinsic contamination of culture supplement. J. Clin. Microbiol. 35: 2040 2042.
4. Beekmann, S. E.,, D. J. Diekema,, and G. V. Doern. 2005. Determining the clinical significance of coagulase-negative staphylococci isolated from blood cultures. Infect. Control Hosp. Epidemiol. 26: 559 566.
5. Berenholtz, S. M.,, P. J. Pronovost,, P. A. Lipsett,, D. Hobson,, K. Earsing,, J. E. Farley, et al. 2004. Eliminating catheter-related bloodstream infections in the intensive care unit. Crit. Care Med. 32: 2014 2020.
6. Biedenbach, D. J.,, and R. N. Jones. 1995. Interpretive errors using an automated system for the susceptibility testing of imipenem and aztreonam. Diagn. Microbiol. Infect. Dis. 21: 57 60.
7. Boyce, J. M.,, N. L. Havill,, and B. Maria. 2005. Frequency and possible infection control implications of gastrointestinal colonization with methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 43: 5992 5995.
8. Broderick, A.,, M. Mori,, M. D. Nettleman,, S. A. Streed,, and R. P. Wenzel. 1990. Nosocomial infections: validation of surveillance and computer modeling to identify patients at risk. Am. J. Epidemiol. 131: 734 742.
9. Brossette, S. E.,, D. M. Hacek,, P. J. Gavin,, M. A. Kamdar,, K. D. Gadbois,, A. G. Fisher,, and L. R. Peterson. 2006. A laboratory-based, hospital-wide, electronic marker for nosocomial infection. Am. J. Clin. Pathol. 125: 34 39.
10. Burke, J. P. 2003. Infection control—a problem for patient safety. N. Engl. J. Med. 348: 651 656.
11. Carroll, K. C.,, R. B. Leonard,, P. L. Newdomb-Gayman,, and D. R. Hillyard. 1996. Rapid detection of the staphylococcal mecA gene from BACTEC blood culture bottles by PCR. Am. J. Clin. Pathol. 106: 600 605.
12. Centers for Disease Control and Prevention. 1999. National Nosocomial Infections Surveillance (NNIS) report, data summary from January 1990-May 1999, issued June 1999. Am. J. Infect. Control 27: 520532.
13. Centers for Disease Control and Prevention. 2000. Monitoring hospital-acquired infections to promote patient safety—United States, 1990-1999. MMWR Morb. Mortal. Wkly. Rep. 49: 149153.
14. Centers for Disease Control and Prevention. 1992. Public health focus: surveillance, prevention and control of nosocomial infections. MMWR Morb. Mortal. Wkly. Rep. 41: 783787.
15. Centers for Disease Control and Prevention. 1997. Update: Staphylococcus aureus with reduced susceptibility to vancomycin— United States, 1997. MMWR Morb. Mortal. Wkly. Rep. 46: 813815.
16. Centers for Disease Control and Prevention. 2002. Guidelines for the prevention of intravascular catheter-related infections. MMWR Recommend. Rep. 51( RR-10): 132.
17. Centers for Disease Control and Prevention. 2002. Public health dispatch: vancomycin-resistant Staphylococcus aureus— Pennsylvania, 2002. MMWR Morb. Mortal. Wkly. Rep. 51: 902.
18. Centers for Disease Control and Prevention. 2002. Staphylococcus aureus resistant to vancomycin. MMWR Morb. Mortal. Wkly. Rep. 51: 565567.
19. Centers for Disease Control and Prevention. 2003. Guidelines for the environmental infection control in healthcare facilities. MMWR Morb. Mortal. Wkly. Rep. 52: 142.
20. Centers for Disease Control and Prevention. 2004. Brief report: vancomycin-resistant Staphylococcus aureus—New York, 2004. MMWR Morb. Mortal. Wkly. Rep. 53: 322323.
21. Centers for Disease Control and Prevention. 2004. Guidelines for preventing health-care associated pneumonia, 2003. MMWR Recommend. Rep. 53( RR-03): 136.
22. Centers for Disease Control and Prevention. 28 February 2005, posting date. Guidance on Public Reporting of Healthcare- Associated Infections: Recommendations of the Healthcare Infection Control Practices Advisory Committee. www.cdc.gov/ncidod/hip/PublicReportingGuide.pdf. Accessed 17 July 2005.
23. Centers for Disease Control and Prevention. 2006. Management of Multidrug Resistant Organisms in Healthcare Settings, 2006. http://www.cdc.gov/ncidod/dhqp/pdf/ar/mdroguideline2006. pdf. Accessed 25 July 2009.
24. Chang, S.,, D. M. Sievert,, J. C. Hageman, et al. 2003. Brief report: infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 348: 1342 1347.
25. Clinical and Laboratory Standards Institute. 2002. Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data. Document M39-A. Clinical and Laboratory Standards Institute, Wayne, PA.
26. Cormican, M. G.,, and R. N. Jones. 1996. Emerging resistance to antimicrobial agents in gram-positive bacteria: enterococci, staphylococci, and non-pneumococcal streptococci. Drugs 51( Suppl. 1): 6 12.
27. Cruse, P. J. E. 1970. Surgical wound sepsis. Can. Med. Assoc. J. 102: 251 258.
28. Diekema, D. J.,, and M. A. Pfaller,. 2001. Role of the clinical microbiology laboratory in hospital epidemiology and infection control, p. 1247 1255. In K. McClatchey (ed.), Clinical Laboratory Medicine, 2nd ed. Lippincott Williams & Wilkins, Philadelphia, PA.
29. Diekema, D. J.,, K. J. Dodgson,, B. Sigurdardottir,, and M. A. Pfaller. 2004. Rapid detection of antimicrobial-resistant organism carriage: an unmet clinical need. J. Clin. Microbiol. 42: 2879 2883.
30. Diekema, D. J.,, M. A. Pfaller,, F. J. Schmitz,, J. Smayevsky,, J. Bell,, R. N. Jones,, M. L. Beach, and the SENTRY Participants Group. 2001. Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the US, Canada and Latin America for the SENTRY program, 1997-1999. Clin. Infect. Dis. 32( Suppl. 2): S114 S132.
31. Ducel, G.,, J. Fabry,, and L. Nicolle (ed.). 2002. Prevention of Hospital Acquired Infections: A Practical Guide, 2nd ed. http://www.who.int/csr/resources/publications/whocdscsreph200212.pdf. World Health Organization, Geneva, Switzerland.
32. Edmond, M. B.,, J. F. Ober,, J. D. Dawson,, D. L. Weinbaum,, and R. P. Wenzel. 1996. Vancomycin-resistant enterococcal bacteremia: natural history and attributable mortality. Clin. Infect. Dis. 23: 1234 1239.
33. Edwards, J. R.,, K. D. Peterson,, M. L. Andrus,, M. A. Dudeck,, D. A. Pollock,, T. C. Horan, and the National Healthcare Safety Network. 2008. National Healthcare Safety Network Report, data summary for 2006 through 2007. Am. J. Infect. Control 36: 609 626.
34. Emori, T. G.,, R. W. Haley,, and J. S. Garner. 1981. Technique and use of nosocomial infection surveillance in U.S. hospitals. Am. J. Med. 70: 933 940.
35. Ender, P. T.,, S. J. Durning,, W. K. Woelk,, R. M. Brockett,, A. Astorga,, R. Reddy,, and P. A. Meier. 1999. Pseudooutbreak of methicillin-resistant Staphylococcus aureus. Mayo Clin. Proc. 74: 885 889.
36. Ferraro, M. J.,, and J. H. Jorgensen,. 1995. Instrument-based antibacterial susceptibility testing, p. 1379 1384. In P. R. Murray,, E. J. Baron,, M. A. Pfaller,, F. C. Tenover,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 6th ed. American Society for Microbiology, Washington, DC.
37. Gross, P. A.,, A. Beaugard,, and C. Van Antwerpen. 1980. Surveillance for nosocomial infections: can the sources of data be reduced? Infect. Control 1: 233 236.
38. Gudlaugsson, O.,, S. Gillespie,, K. Lee,, J. Vande Berg,, J. Hu,, S. Messer,, L. Herwaldt,, M. Pfaller,, and D. Diekema. 2003. Attributable mortality of nosocomial candidemia, revisited. Clin. Infect. Dis. 37: 1172 1177.
39. Hacek, D. M.,, T. Suriano,, G. A. Noskin,, J. Kruszynsky,, B. Reisberg,, and L. R. Peterson. 1999. Medical and economic benefit of a comprehensive infection control program that includes routine determination of microbial clonality. Am. J. Clin. Pathol. 111: 647 654.
40. Haley, R. W.,, D. H. Culver,, J. W. White,, W. M. Morgan,, and T. G. Emori. 1985. The nationwide nosocomial infection rate. A new need for vital statistics. Am. J. Epidemiol. 121: 159 167.
41. Haley, R. W.,, D. H. Culver,, J. W. White,, W. M. Morgan,, T. G. Emori,, V. P. Munn,, and T. M. Hooten. 1985. The efficacy of infection control surveillance and control programs in preventing nosocomial infections in U.S. hospitals. Am. J. Epidemiol. 121: 182 205.
42. Hazbon, M. H. 2004. Recent advances in molecular methods for early diagnosis of tuberculosis and drug-resistant tuberculosis. Biomedica 24: 163 164.
43. Heisterkamp, S. H.,, A. L. Dekkers,, and J. C. Heijne. 2006. Automated detection of infectious disease outbreaks: hierarchical time series models. Stat. Med. 25: 4179 4196.
44. Hidron, A. I.,, J. R. Edwards,, J. Patel,, T. C. Horan,, D. M. Sievert,, D. A. Pollock,, S. K. Fridkin, and the National Healthcare Safety Network. 2008. Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the NHSN at the CDC, 2006-2007. Infect. Control Hosp. Epidemiol. 29: 996 1011.
45. Hopfer, R. L.,, R. L. Katz,, and V. Fainstein. 1982. Pseudo- outbreak of cryptococcal meningitis. J. Clin. Microbiol. 15: 1141 1143.
46. Jarvis, W. R. 2001. Infection control and changing healthcare delivery systems. Emerg. Infect. Dis. 7: 170 173.
47. Jodra, V. M.,, L. S. T. Soler,, C. D. Perez,, C. M. Requejo,, and N. P. Farras. 2006. Excess length of stay attributable to surgical site infection following hip replacement: a nested casecontrol study. Infect. Control Hosp. Epidemiol. 27: 1299 1303.
48. Kearns, A. M.,, R. Freeman,, M. Steward,, and J. G. Magee. 1998. A rapid PCR technique for detecting M. tuberculosis in a variety of clinical specimens. J. Clin. Pathol. 51: 922 924.
49. Keita-Perse, O.,, and R. P. Gaynes. 1996. Severity of illness scoring systems to adjust nosocomial infection rates: a review and commentary. Am. J. Infect. Control 24: 429 434.
50. Kirkland, K. B.,, J. P. Briggs,, S. L. Trivette,, W. E. Wilkinson,, and D. J. Sexton. 1999. The impact of surgical-site infections in the 1990’s: attributable mortality, excess length of hospitalization, and extra costs. Infect. Control Hosp. Epidemiol. 20: 725 730.
51. Kluytmans, J.,, A. van Belkum,, and H. Verbrugh. 1997. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 10: 505 520.
52. Kohn, L. T.,, J. M. Corrigan,, and M. S. Donaldson (ed.). 2000. To Err Is Human: Building a Safer Health System. National Academy Press, Washington, DC.
53. Lai, K. K.,, B. A. Brown,, J. A. Westerling,, S. A. Fontecchio,, Y. Zhang,, and R. J. Wallace. 1998. Long-term laboratory contamination by Mycobacterium abscessus resulting in two pseudo-outbreaks: recognition with use of RAPD PCR. Clin. Infect. Dis. 27: 169 175.
54. Landry, S. L.,, D. L. Kaiser,, and R. P. Wenzel. 1989. Hospital stay and mortality attributed to nosocomial enterococcal bacteremia: a controlled study. Am. J. Infect. Control 17: 323 329.
55. Laurel, V. L.,, P. A. Meier,, A. Astorga,, D. Dolan,, R. Brockett,, and M. G. Rinaldi. 1999. Pseudoepidemic of Aspergillus niger infections traced to specimen contamination in the microbiology laboratory. J. Clin. Microbiol. 37: 1612 1615.
56. Laussucq, S.,, D. Schuster,, W. J. Alexander,, W. L. Thacker,, H. W. Wilkinson,, and J. S. Spika. 1988. False-positive DNA probe test for Legionella species associated with a cluster of respiratory illnesses. J. Clin. Microbiol. 26: 1442 1444.
57. Mahony, J. B. 2008. Detection of respiratory viruses by molecular methods. Clin. Microbiol. Rev. 21: 716 747.
58. Maki, D. G.,, C. J. Alvarado,, C. A. Hassemer,, and M. A. Zilz. 1982. Relation of the inanimate hospital environment to endemic nosocomial infection. N. Engl. J. Med. 25: 1562 1566.
59. Marra, A. R.,, R. G. R. Cal,, C. V. Silva,, R. A. Caserta,, A. T. Paes,, D. F. Moura,, O. F. Pavao de Santos,, M. B. Edmond,, and M. S. Durao. 2009. Successful prevention of ventilator-associated pneumonia in an intensive care setting. Am. J. Infect. Control 37: 619 625.
60. Martin, M. A.,, M. A. Pfaller,, and R. P. Wenzel. 1989. Mortality and hospital stay attributable to coagulase-negative staphylococcal bacteremia. Ann. Intern. Med. 110: 9 16.
61. Mayon-White, R. T.,, G. Ducel,, T. Kereselidze,, and E. Tikomirov. 1988. An international survey of the prevalence of hospital-acquired infection. J. Hosp. Infect. 11( Suppl. A): 43 48.
62. McGowan, J. E.,, and B. G. Metchock,. 1999. Infection control epidemiology and clinical microbiology, p. 107 115. In P. R. Murray,, E. J. Baron,, M. A. Pfaller,, F. C. Tenover,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 7th ed. ASM Press, Washington, DC.
63. McGowan, J. E. 2006. Resistance in nonfermenting gramnegative bacteria: multidrug resistance to the maximum. Am. J. Infect. Control 34: S29 S37.
64. McKibben,, L. G. Fowler,, T. Horan,, and P. J. Brennan. 2006. Ensuring rational public reporting systems for healthcare- associated infections: systematic literature review and evaluation recommendations. Am. J. Infect. Control 34: 142 149.
65. Mertz, D.,, R. Frei,, N. Periat,, M. Zimmerli,, M. Battegay,, U. Fluckiger,, and A. F. Widmer. 2009. Exclusive Staphylococcus aureus throat carriage: at-risk populations. Arch. Intern. Med. 169: 172 178.
66. Michigan Department of Community Health. 2005. Bureau of Laboratory Broadcast Fax: Second Michigan VRSA case. http://www.michigan.gov/documents/VRSA_Feb05_ HAN_118391_7.pdf. Accessed 31 May 2005.
67. Olive, D. M.,, and P. Bean. 1999. Principles and applications of methods for DNA-based typing of microbial organisms. J. Clin. Microbiol. 37: 1661 1669.
68. O’Neill, E.,, and H. Humphreys. 2005. Surveillance of hospital water and primary prevention of nosocomial legionellosis: what is the evidence? J. Hosp. Infect. 59: 273 279.
69. Peterson, L. R.,, and S. E. Brossette. 2002. Hunting health care-associated infections from the clinical microbiology laboratory: passive, active, and virtual surveillance. J. Clin. Microbiol. 40: 1 4.
70. Pfaller, M. A. 1996. Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission. Clin. Infect. Dis. 22( S-2): S89 S94.
71. Pfaller, M. A.,, and L. A. Herwaldt. 1997. The clinical microbiology laboratory and infection control: emerging pathogens, antimicrobial resistance, and new technology. Clin. Infect. Dis. 25: 858 870.
72. Pfaller, M. A.,, and M. G. Cormican,. 1997. Microbiology: the role of the clinical laboratory, p. 95 118. In R. P. Wenzel (ed.), Prevention and Control of Nosocomial Infections. Williams & Wilkins, Baltimore, MD.
73. Pfaller, M. A.,, and D. J. Diekema. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20: 133 163.
74. Philippon, A.,, G. Arlet,, and P. H. Lagrange. 1994. Origin and impact of plasmid-mediated extended spectrum beta- lactamases. Eur. J. Clin. Microbiol. Infect. Dis. 13( S1): 17 29.
75. Pittet, D. 2005. Infection control and quality health care in the new millennium. Am. J. Infect. Control 33: 258 267.
76. Pittet, D.,, D. Tarara,, and R. P. Wenzel. 1994. Nosocomial bloodstream infection in critically ill patients: excess length of stay, extra costs, and attributable mortality. JAMA 271: 1598 1601.
77. Pittet, D.,, S. Hugonnet,, S. Harbarth, et al. 2000. Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Lancet 356: 1307 1312.
78. Plouffe, J. F.,, T. M. File, Jr.,, R. F. Breiman,, B. A. Hackman,, S. J. Salstrom,, B. J. Marston,, B. S. Fields, et al. 1995. Re- evaluation of the definition of Legionnaires’ disease: use of the urinary antigen assay. Clin. Infect. Dis. 20: 1286 1291.
79. Pronovost, P.,, D. Needham,, S. Berenholtz,, D. Sinopoli,, H. Chu,, S. Cosgrove,, B. Sexton,, R. Hyzy,, R. Welsh,, G. Roth,, J. Bander,, J. Kepros,, and C. Goeschel. 2006. An intervention to decrease catheter-related bloodstream infections in the ICU. N. Engl. J. Med. 26: 2725 2732.
80. Sader, H. S.,, R. J. Hollis,, and M. A. Pfaller. 1995. The use of molecular techniques in the epidemiology and control of infectious diseases. Clin. Lab. Med. 15: 407 431.
81. Sanders, C. C.,, and W. E. Sanders. 1992. Beta-lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin. Infect. Dis. 15: 824 839.
82. Schwalbe, R. S.,, J. T. Stapleton,, and P. H. Gilligan. 1987. Emergence of vancomycin resistance in coagulase-negative staphylococci. N. Engl. J. Med. 316: 927 931.
83. Segal-Maurer, S.,, B. N. Kreiswirth,, J. M. Burns,, S. Lavie,, M. Lim,, C. Urban,, and J. J. Rahal. 1998. Mycobacterium tuberculosis specimen contamination revisited: the role of laboratory environmental control in a pseudo-outbreak. Infect. Control Hosp. Epidemiol. 19: 101 105.
84. Singh, A.,, R. V. Goering,, S. Simjee,, S. L. Foley,, and M. J. Zervos. 2006. Application of molecular techniques to the study of hospital infection. Clin. Microbiol. Rev. 19: 512 530.
85. Tenover, F. C.,, and L. C. McDonald. 2005. Vancomycinresistant staphylococci and enterococci: epidemiology and control. Curr. Opin. Infect. Dis. 18: 300 305.
86. Tenover, F. C.,, J. M. Swenson,, C. M. O’Hara,, and S. A. Stocker. 1995. Ability of commercial and reference antimicrobial susceptibility testing methods to detect vancomycin resistance in enterococci. J. Clin. Microbiol. 33: 1524 1527.
87. Tenover, F. C.,, R. D. Arbeit,, R. V. Goering, and the Molecular Working Group of the Society for Healthcare Epidemiology of America. 1997. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Infect. Control Hosp. Epidemiol. 18: 426 439.
88. Tenover, F. C.,, R. K. Kalsi,, P. P. Williams,, R. B. Carey,, S. Stocker,, D. Lonsway,, J. K. Rasheed,, J. W. Biddle,, J. E. McGowan, Jr.,, and B. Hanna. 2006. Carbapenem resistance in Klebsiella pneumoniae not detected by automated susceptibility testing. Emerg. Infect. Dis. 12: 1209 1213.
89. Thompson, K. S.,, and C. C. Sanders. 1992. Detection of extended- spectrum beta-lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three-dimensional tests. Antimicrob. Agents Chemother. 36: 1877 1882.
90. Ticehurst, J. R.,, D. Z. Aird,, L. M. Dam,, A. P. Borek,, J. T. Hargrove,, and K. C. Carroll. 2006. Effective detection of toxigenic Clostridium difficile by a two-step algorithm including tests for antigen and cytotoxin. J. Clin. Microbiol. 44: 1145 1149.
91. Tikhomirov, E. 1897. World Health Organization programme for the control of hospital infections. Chemiotherapia 3: 148 151.
92. Tokars, J. I. 2004. Predictive value of blood cultures positive for coagulase-negative staphylococci: implications for patient care and health care quality assurance. Clin. Infect. Dis. 39: 333 341.
93. Trick, W. E.,, B. M. Zagorski,, J. I. Tokars, et al. 2004. Computer algorithms to detect bloodstream infections. Emerg. Infect. Dis. 10: 1612 1620.
94. Tsakris, A.,, A. Pantazi,, S. Pournaras,, A. Maniatis,, A. Polyzou,, and D. Sofianou. 2000. Pseudo-outbreak of imipenem-resistant Acinetobacter baumannii resulting from false susceptibility testing by a rapid automated system. J. Clin. Microbiol. 38: 3505 3507.
95. Warren, D. K.,, R. S. Liao,, L. R. Merz,, M. Eveland,, and W. M. Dunne, Jr. 2004. Detection of methicillin-resistant Staphylococcus aureus directly from nasal swab specimens by a real-time PCR assay. J. Clin. Microbiol. 42: 5578 5581.
96. Weber, S.,, M. A. Pfaller,, and L. A. Herwaldt. 1997. Role of molecular epidemiology in infection control. Infect. Dis. Clin. N. Am. 11: 257 278.
97. Weinstein, R. A.,, J. D. Siegel,, and P. J. Brennan. 2005. Infection control report cards—securing patient safety. N. Engl. J. Med. 353: 225 227.
98. Wenzel, R. P.,, and M. B. Edmond. 2001. The impact of hospital-acquired bloodstream infections. Emerg. Infect. Dis. 7: 174 177.
99. Wenzel, R. P.,, C. A. Osterman,, K. J. Hunting,, and J. M. Gwaltney, Jr. 1976. Hospital-acquired infections. I. Surveillance in a university hospital. Am. J. Epidemiol. 103: 251 260.
100. Wey, S. B.,, M. Mori,, M. A. Pfaller,, R. F. Woolson,, and R. P. Wenzel. 1988. Hospital acquired candidemia: attributable mortality and excess length of stay. Arch. Intern. Med. 148: 2642 2645.
101. Widmer, A. F.,, R. P. Wenzel,, A. Trilla,, M. J. Bale,, R. N. Jones,, and B. N. Doebbeling. 1993. Outbreak of Pseudomonas aeruginosa infections in a surgical intensive care unit: probable transmission via hands of a healthcare worker. Clin. Infect. Dis. 16: 372 376.
102. Wisplinghoff, H.,, T. Bischoff,, S. M. Tallent,, H. Seifert,, R. P. Wenzel,, and M. B. Edmond. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39: 309 317.
103. Wolk, D. M.,, E. Picton,, D. Johnson,, T. Davis,, P. Pancholi,, C. C. Ginocchio,, S. Finegold,, D. F. Welch,, M. de Boer,, D. Fuller,, M. C. Solomon,, B. Rogers,, M. S. Mehta,, and L. R. Peterson. 2009. Multicenter evaluation of the Cepheid Xpert methicillin-resistant Staphylococcus aureus (MRSA) test as a rapid screening method for detection of MRSA in nares. J. Clin. Microbiol. 47: 758 764.
104. Wong, E. S.,, M. E. Rupp,, L. Mermel, et al. 2005. Public disclosure of healthcare-associated infections. Infect. Control Hosp. Epidemiol. 26: 210 212.
105. Woods, G. L.,, D. LaTemple,, and C. Cruz. 1994. Evaluation of Microscan rapid gram-positive panels for detection of oxacillin-resistant staphylococci. J. Clin. Microbiol. 32: 1058 1059.
106. Wurtz, R.,, P. Demarais,, W. Trainor,, J. McAuley,, F. Kocka,, L. Mosher,, and S. Dietrich. 1996. Specimen contamination in mycobacteriology laboratory detected by pseudo-outbreak of multidrug-resistant tuberculosis: analysis by routine epidemiology and confirmation by molecular technique. J. Clin. Microbiol. 34: 1017 1019.
107. Yamazumi, T.,, S. A. Marshall,, W. W. Wilke,, D. J. Diekema,, M. A. Pfaller,, and R. N. Jones. 2001. Comparison of the Vitek GPS 106 card and the MRSA-Screen latex agglutination test for determining oxacillin resistance in clinical bloodstream isolates of Staphylococcus aureus. J. Clin. Microbiol. 39: 53 56.
108. Yokoe, D. S.,, J. Anderson,, R. Chambers,, M. Connor,, R. Finberg,, C. Hopkins,, D. Lichtenberg,, S. Marino,, D. McGlaughlin,, E. O’Rourke,, M. Samore,, K. Sands,, J. Strymish,, E. Yamplin,, N. Vallonde,, and R. Platt. 1998. Simplified surveillance for nosocomial bloodstream infections. Infect. Control Hosp. Epidemiol. 19: 657 660.
109. Zack, J. E.,, T. Garrison,, E. Trovillion,, D. Clinkscale,, C. M. Coopersmith,, V. J. Fraser,, and M. H. Kollef. 2002. Effect of an education program aimed at reducing the occurrence of ventilator-associated pneumonia. Crit. Care Med. 30: 2407 2412.
110. Zheng, X.,, C. P. Kolbert,, P. Varga-Delmore,, J. Arruda,, M. Lewis,, J. Kolberg,, F. R. Cockerill,, and D. H. Persing. 1999. Direct mecA detection from blood culture bottles by branched-DNA signal amplification. J. Clin. Microbiol. 37: 4192 4193.


Generic image for table

Commonly used terms in health care epidemiology

Adapted from reference .

Citation: Diekema D, Pfaller M. 2011. Infection Control Epidemiology and Clinical Microbiology, p 73-84. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch6
Generic image for table

Distribution of the five most common nosocomial pathogens isolated from major infection sites, reported to the NHSN from January 2006 to October 2007

From reference .

CoNS, coagulase-negative staphylococci.

Citation: Diekema D, Pfaller M. 2011. Infection Control Epidemiology and Clinical Microbiology, p 73-84. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch6
Generic image for table

Attributable mortality of nosocomial bloodstream infection due to selected pathogens

Adapted from reference .

bCoNS, coagulase-negative staphylococci.

Citation: Diekema D, Pfaller M. 2011. Infection Control Epidemiology and Clinical Microbiology, p 73-84. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch6
Generic image for table

Steps in nosocomial outbreak investigation, and role of the laboratory at each step

Adapted from reference .

Citation: Diekema D, Pfaller M. 2011. Infection Control Epidemiology and Clinical Microbiology, p 73-84. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch6
Generic image for table

Screening patients and health care workers for asymptomatic carriage of organisms of epidemiologic significance

Such cultures should only be done for the following reasons: (i) as part of an outbreak investigation, to seek carriage of an organism among patients or health care workers who are epidemiologically linked to cases; (ii) to seek carriers of MDROs as part of enhanced MDRO control strategies; (iii) to identify carriers in order to proceed with a decolonization strategy to decrease risk for acquisition of infection during a period of vulnerability (e.g., perioperative).

The “gold standard” method includes overnight broth enrichment and confirmation of species identification and antimicrobial susceptibility, which can increase turnaraound time to 96 hours. Most conventional agar-based screens (e.g., mannitol salt agar with or without oxacillin), without broth enrichment, provide a turnaround time of approximately 48 hours.

The nares provides the best sensitivity and specificity of any single site for detection of (including MRSA) detection ( ). However, several studies have demonstrated that sampling of additional sites, including oropharynx and perirectal sites, may increase yield by 10 to 40% ( ).

Positive results for chromogenic agar medium can be reported at 18 to 24 hours, but negative results are reported at 48 hours.

Currently available real-time PCR assays are FDA approved only for nares samples but have been used in some studies for oropharyngeal, skin, and perirectal samples.

No real-time PCR assay for VRE detection is FDA approved at the time of this writing, but numerous “home brew” assays are in use, and commercially available assays are likely to become available soon.

Several modifications of culture methods may enhance recovery by increasing medium selectivity for MDROs (e.g., addition of ceftazidime for ESBL-producing , levofloxacin for fluoroquinolone-resistant , etc.).

Sample site choice should be guided by likely reservoirs, gastrointestinal (e.g., ) and respiratory (e.g., ) being most common.

Citation: Diekema D, Pfaller M. 2011. Infection Control Epidemiology and Clinical Microbiology, p 73-84. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch6
Generic image for table

Screening environmental sources (air, water, and surfaces) for organisms of epidemiologic significance

With the exception of water and dialysate cultures for monitoring of hemodialysis, and potable water cultures for spp., environmental cultures should be performed only when an epidemiologic investigation suggests the environment may be involved in pathogen transmission.

Large-volume air samplers are preferred for air sampling for mould spores: settle plates should not be used for this purpose.

There are no standards for acceptable levels of bacteria in air samples, nor is there any evidence correlating bacterial burden to infection risk. Air sampling for bacteria should be performed only rarely, either as part of an outbreak investigation or a research protocol.

spp. will not grow on routine aerobic culture media. Buffered charcoal yeast extract agar is the most common medium used for isolation.

The larger volume (1 liter) is preferred. If the water source is chlorinated, 0.5 ml of 0.1 N sodium thiosulfate should be added to each liter sample to neutralize the chlorine. Water samples are filter concentrated. Swabs should be immersed in 3 to 5 ml of water taken during sampling of the same site, to prevent drying.

The role of waterborne fungi in infection transmission in the hospital environment remains poorly described, but cultures may be indicated as part of a search for environmental sources during an outbreak of invasive fungal infections in an immunocompromised patient population.

AAMI, Association for the Advancement of Medical Instrumentation, whose standards govern microbiological monitoring of hemodialysis.

The sterile swab or sponge should be moistened (e.g., with nutrient broth, sterile saline, etc.) before sample collection.

For , the contact agar plate should be optimized for anaerobic recovery (selective, prereduced media, promptly placed in anaerobic environment).

Citation: Diekema D, Pfaller M. 2011. Infection Control Epidemiology and Clinical Microbiology, p 73-84. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error