1887

Chapter 67 : Susceptibility Test Methods: General Considerations

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Susceptibility Test Methods: General Considerations, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816728/9781555814632_Chap67-1.gif /docserver/preview/fulltext/10.1128/9781555816728/9781555814632_Chap67-2.gif

Abstract:

Determination of the antimicrobial susceptibilities of significant bacterial isolates is one of the principal functions of the clinical microbiology laboratory. Currently, routine susceptibility testing methods are best standardized for the common aerobic and facultative bacteria and systemic antibacterial agents. The inherent flexibility in drug selection that is provided by the disk diffusion test is an undeniable asset of the susceptibility testing method. There is general agreement that the minimum inhibitory concentration (MICs) is the most basic laboratory measurement of the activity of an antimicrobial agent against an organism. Response rates of at least 80% may be expected for organisms classified as susceptible, although the rates can be lower depending on the site and type of infection. The newest CLSI approach focuses on the rate of interpretive errors near the proposed breakpoint versus rates of errors with MICs more than a single log dilution from the MIC breakpoints. For some key resistances, e.g., carbapenem resistance in Enterobacteriaceae, the most effective confirmatory method is resistance gene detection. Cascade reporting is considered to be an essential part of hospital antimicrobial stewardship programs, as is the production of annual reports that summarize overall susceptibility and resistance patterns (antibiograms).

Citation: Turnidge J, Ferraro M, Jorgensen J. 2011. Susceptibility Test Methods: General Considerations, p 1115-1121. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch67
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Comparison of zone diameters with MICs of a hypothetical antimicrobial agent.

Citation: Turnidge J, Ferraro M, Jorgensen J. 2011. Susceptibility Test Methods: General Considerations, p 1115-1121. In Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D (ed), Manual of Clinical Microbiology, 10th Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816728.ch67
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816728.chap67
1. Allaouchiche, B.,, H. Jaumain,, G. Zambardi,, D. Chassard,, and J. Freney. 1999. Clinical impact of rapid oxacillin susceptibility testing using a PCR assay in Staphylococcus aureus bacteraemia. J. Infect. 39: 198 204.
2. Barenfanger, J.,, C. Drake,, and G. Kacich. 1999. Clinical and financial benefits of rapid identification and antimicrobial susceptibility testing. J. Clin. Microbiol. 37: 1415 1418.
3. Bell, S. M. 1988. Additions and modifications to the range of antibiotics tested by the CDS method of antibiotic sensitivity testing. Pathology 20: 303 304.
4. Bruins, M.,, H. Oord,, P. Bloembergen,, M. Wolfhagen,, A. Casparie,, J. Degener,, and G. Ruijs. 2005. Lack of effect of shorter turnaround time of microbiological procedures on clinical outcomes: a randomised controlled trial among hospitalised patients in the Netherlands. Eur. J. Clin. Microbiol. Infect. Dis. 24: 305 313.
5. Brunden, M. N.,, G. E. Zurenko,, and B. Kapik. 1992. Modification of the error-rate bounded classification scheme for use with two MIC break points. Diagn. Microbiol. Infect. Dis. 15: 135 140.
6. Cantón, R. 2009. Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin. Microbiol. Infect. 15 (Supp. 1): 20 25.
7. Citron, D. M.,, M. I. Ostoravi,, A. Karlsson,, and E. J. C. Goldstein. 1991. Evaluation of the E test for susceptibility testing of anaerobic bacteria. J. Clin. Microbiol. 29: 2197 2203.
8. Clinical and Laboratory Standards Institute. 2008. Development of in vitro susceptibility testing criteria and quality control parameters. Approved guideline M23-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
9. Clinical and Laboratory Standards Institute. 2007. Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard M11-A7. Clinical and Laboratory Standards Institute, Wayne, PA.
10. Clinical and Laboratory Standards Institute. 2009. Analysis and presentation of cumulative antimicrobial susceptibility test data. Approved guideline M39-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
11. Clinical and Laboratory Standards Institute. 2010. Methods for antimicrobial dilution and disk susceptibility testing of infrequently-isolated or fastidious bacteria. Approved guideline M45-A2. Clinical and Laboratory Standards Institute, Wayne, PA.
12. Clinical and Laboratory Standards Institute. 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A8. Clinical and Laboratory Standards Institute, Wayne, PA.
13. Clinical and Laboratory Standards Institute. 2009. Performance standards for antimicrobial disk susceptibility tests. Approved standard M2-A10. Clinical and Laboratory Standards Institute, Wayne, PA.
14. Clinical and Laboratory Standards Institute. 2010. Performance standards for antimicrobial susceptibility testing. Supplement M100-S20. Clinical and Laboratory Standards Institute, Wayne, PA.
15. Courvalin, P. 1992. Interpretive reading of antimicrobial susceptibility tests. ASM News 58: 368 375.
16. Craig, B. A. 2000. Modeling approach to diameter breakpoint determination. Diagn. Microbiol. Infect. Dis. 36: 193 202.
17. Craig, W. A., 2002. Pharmacodynamics of antimicrobials: general concepts and applications, p. 1 22. In C. H. Nightingale,, T. Murakawa,, and P. G. Ambrose (ed.), Antimicrobial Pharmacodynamics in Theory and Clinical Practice. Marcel Dekker, New York, NY.
18. Craig, W. A. 1998. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin. Infect. Dis. 26: 1 10.
19. Cunney, R. J.,, and E. G. Smyth. 2000. The impact of laboratory reporting practices on antibiotic utilisation. Int. J. Antimicrob. Agents 14: 13 19.
20. Dellit, T. H.,, R. C. Owens,, J. E. McGowan, Jr.,, D. N. Gerding,, R. A. Weinstein,, J. P. Burke,, W. C. Huskins,, D. L. Paterson,, N. O. Fishman,, C. F. Carpenter,, P. J. Brennan,, M. Billeter,, and T. M. Hooton. 2007. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin. Infect. Dis. 44: 159 177.
21. Doern, G. V.,, R. Vautour,, M. Gaudet,, and B. Levy. 1994. Clinical impact of rapid in vitro antimicrobial susceptibility testing and bacterial identification. J. Clin. Microbiol. 32: 1757 1762.
22. International Organization for Standardization. 2006. Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Devices. Part 1. Reference Method for Testing the In Vitro Activity of Antimicrobial Agents against Bacteria Involved in Infectious Diseases. ISO/ DIS 20776-1. International Organization for Standardization, Geneva, Switzerland.
23. Jett, B.,, L. Free,, and D. F. Sahm. 1996. Factors influencing the Vitek gram-positive susceptibility system’s detection of vanB-encoded vancomycin resistance among enterococci. J. Clin. Microbiol. 34: 701 706.
24. Jorgensen, J. H. 1993. Selection criteria for an antimicrobial susceptibility testing system. J. Clin. Microbiol. 31: 2841 2844.
25. Jorgensen, J. H. 1993. Selection of antimicrobial agents for routine testing in a clinical microbiology laboratory. Diagn. Microbiol. Infect. Dis. 16: 245 249.
26. Jorgensen, J. H. 2000. Rapid automated antimicrobial susceptibility testing of Streptococcus pneumoniae by use of the bioMerieux VITEK 2. J. Clin. Microbiol. 38: 2814 2818.
27. Jorgensen, J. H.,, M. J. Ferraro,, M. L. McElmeel,, J. Spargo,, J. M. Swenson,, and F. C. Tenover. 1994. Detection of penicillin and extended-spectrum cephalosporin resistance among Streptococcus pneumoniae clinical isolates by use of the E test. J. Clin. Microbiol. 32: 159 163.
28. Kahlmeter, G.,, D. F. J. Brown,, F. W. Goldstein,, A. P. MacGowan,, J. W. Mouton,, A. Österland,, A. Rodloff,, M. Steinbakk,, P. Urbanskova,, and A. Vatopoulos. 2003. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J. Antimicrob. Chemother. 52: 145 148.
29. Katsanis, G. P.,, J. Spargo,, M. J. Ferraro,, L. Sutton,, and G. A. Jacoby. 1994. Detection of Klebsiella pneumoniae and Escherichia coli strains producing extended-spectrum b-lactamases. J. Clin. Microbiol. 32: 691 696.
30. Kerremans, J. J.,, P. Verboom,, T. Stijnen,, L. Hakkart-van Roijen,, W. Goessens,, H. A. Verbrugh,, and M. C. Vos. 2008. Rapid identification and antimicrobial susceptibility testing reduce antibiotic use and accelerate pathogen-directed antibiotic use. J. Antimicrob. Chemother. 61: 428 435.
31. Kolbert, M.,, F. Chegani,, and P. M. Shah. 2004. Evaluation of the OSIRIS video reader as an automated measurement system for the agar disk diffusion technique. Clin. Microbiol. Infect. 10: 416 420.
32. Korgenski, E. K.,, and J. A. Daly. 1998. Evaluation of the BIOMIC video reader system for determining interpretive categories of isolates on the basis of disk diffusion susceptibility results. J. Clin. Microbiol. 36: 302 304.
33. Lestari, E. S.,, J. A. Severin,, P. M. Filius,, K. Kuntaman,, D. Offra Duerink,, U. Hadi,, H. Wahjono,, H. A. Verbrugh, and Antimicrobial Resistance in Indonesia: Prevalence and Prevention (AMRIN). 2008. Comparison of the accuracy of disk diffusion diameters obtained by manual zone measurements to that by automated zone measurements to determine antimicrobial susceptibility. J. Microbiol. Methods 75: 177 181.
34. Ling, T. K. W.,, P. C. Tam,, Z. K. Liu,, and A. F. B. Cheng. 2001. Evaluation of VITEK 2 rapid identification and susceptibility testing system against gram-negative clinical isolates. J. Clin. Microbiol. 39: 2964 2966.
35. Louie, L.,, S. O. Matsumura,, E. Choi,, M. Louie,, and A. E. Simor. 2000. Evaluation of three rapid methods for detection of methicillin resistance in Staphylococcus aureus. J. Clin. Microbiol. 38: 2170 2173.
36. MacGowan, A. P.,, and R. Wise. 2001. Establishing MIC breakpoints and the interpretation of in vitro susceptibility tests. J. Antimicrob. Chemother 48 Su-ppl. S1): 17 28.
37. Martineau, F.,, F. J. Picard,, L. Grenier,, P. H. Roy,, M. Ouellette,, and M. G. Bergeron. 2000. Multiplex PCR assays for the detection of clinically relevant antibiotic resistance genes in staphylococci isolated from patients infected after cardiac surgery. The ESPRIT trial. J. Antimicrob. Chemother. 46: 527 534.
38. Metzler, D. M.,, and R. M. DeHaan. 1974. Susceptibility tests of anaerobic bacteria: statistical and clinical considerations. J. Infect. Dis. 130: 588 594.
39. Mittman, S. A.,, R. C. Huard,, P. Della-Latta,, and S. Whittier. 2009. Comparison of BD phoenix to Vitek 2, MicroScan MICroSTREP, and Etest for antimicrobial susceptibility testing of Streptococcus pneumoniae. J. Clin. Microbiol. 47: 3557 3561.
40. Nadler, H. L.,, C. Dolan,, L. Mele,, and S. R. Kurtz. 1985. Accuracy and reproducibility of the AutoMicrobic System Gram-Negative General Susceptibility-Plus Card for testing selected challenge organisms. J. Clin. Microbiol. 22: 355 360.
41. Rex, J. H.,, and M. A. Pfaller. 2002. Has antifungal susceptibility testing come of age? Clin. Infect. Dis. 35: 982 989.
42. Sahm, D. F.,, J. A. Karlowsky,, L. J. Kelly,, I. A. Critchley,, M. E. Jones,, C. Thornsberry,, Y. Mauriz,, and J. Kahn. 2001. Need for annual surveillance of antimicrobial resistance in Streptococcus pneumoniae in the United States: 2-year longitudinal analysis. Antimicrob. Agents Chemother. 45: 1037 1042.
43. Sahm, D. F.,, and F. C. Tenover. 1997. Surveillance for the emergence and dissemination of antimicrobial resistance in bacteria. Infect. Dis. Clin. N. Am. 11: 767 785.
44. Sanders, C. C.,, M. Peyret,, E. S. Moland,, S. J. Cavalieri,, C. Shubert,, K. S. Thomson,, J.-M. Boeufgras,, and W. E. Sanders, Jr. 2001. Potential impact of the VITEK 2 System and the Advanced Expert System on the clinical laboratory of a university-based hospital. J. Clin. Microbiol. 39: 2379 2385.
45. Strahilevitz, J.,, G. A. Jacoby,, D. C. Hooper,, and A. Robicsek. 2009. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 22: 664 689.
46. Tan, T. Y.,, C. McNulty,, A. Charlett,, N. Nessa,, C. Kelly,, and T. Beswick. 2003. Laboratory antibiotic susceptibility reporting and antibiotic prescribing in general practice. J. Antimicrob. Chemother. 51: 379 384.
47. Tenover, F. C. 2001. Development and spread of bacterial resistance to antimicrobial agents. An overview. Clin. Infect. Dis. 15( Suppl.): S108 S115.
48. Tenover, F. C. 2007. Rapid detection and identification of bacterial pathogens using novel molecular technologies: infection control and beyond. Clin. Infect. Dis. 44: 418 423.
49. Tenover, F. C.,, J. M. Swenson,, C. O’Hara,, and S. A. Stocker. 1995. Ability of commercial and reference antimicrobial susceptibility testing methods to detect vancomycin resistance in enterococci. J. Clin. Microbiol. 33: 1524 1527.
50. Tenover, F. C.,, J. Tokars,, J. Swenson,, S. Paul,, K. Splitalny,, and W. Jarvis. 1993. Ability of clinical laboratories to detect antimicrobial- resistant enterococci. J. Clin. Microbiol. 31: 1695 1699.
51. Trenholme, G. M.,, R. L. Kaplan,, P. H. Karahusis,, T. Stine,, J. Fuhrer,, W. Landau,, and S. Levin. 1989. Clinical impact of rapid identification and susceptibility testing of bacterial blood culture isolates. J. Clin. Microbiol. 27: 1342 1345.
52. Turnidge, J. D.,, and D. L. Paterson. 2007. Setting and revising antibacterial susceptibility breakpoints. Clin. Microbiol. Rev. 20: 391 408.
53. Walsh, T. R. 2008. Clinically significant carbapenemases: an update. Curr. Opin. Infect. Dis. 21: 367 371.
54. Washington, J. A.,, C. C. Knapp,, and C. C. Sanders. 1988. Accuracy of microdilution and the AutoMicrobic System in detection of β-lactam resistance in gram-negative bacterial mutants with derepressed β-lactamase. Rev. Infect. Dis. 10: 824 829.
55. Williams, R. M. 2001. Globalization of antimicrobial resistance: epidemiological challenges. Clin. Infect. Dis. 15:( Suppl. 1) S116 S117.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error