Chapter 16 : Of Bacteria and Bile

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Of Bacteria and Bile, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816810/9781555815387_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555816810/9781555815387_Chap16-2.gif


The antibacterial activities of bile salts include detergent activity on cell membranes, protein denaturation, and DNA damage. However, many bacterial species are resistant to the antibacterial activity of bile salts. Bile salts may thus be viewed both as antibacterial compounds and as signals used by bacteria to identify bile-containing animal environments. This chapter reviews the mechanisms employed by , , and other intestinal bacteria to respond to bile salts, with emphasis on their relevance for pathogenesis. The reader is also referred to two comprehensive, insightful reviews on bacterial responses to bile. Unconjugated forms of bile salts are amphipatic molecules that can enter the bacterial cell by crossing membrane bilayers. Furthermore, in the outer membrane of gram-negative bacteria, porins provide passage to both unconjugated and conjugated bile salts. Bile salts, especially if unconjugated, may easily reach the bacterial ctyoplasm by diffusion. Bile salts may also bind to specific receptors in the bacterial surface, activating signal transduction pathways that change gene expression patterns. Bile extract or individual bile salts can be added to microbiological media, thus permitting reductionist studies of bacterial bile resistance in the laboratory. It is hypothesized that nonmutational, reversible resistance may involve stochastic activation of one or more efflux systems that transport bile outside the cell.

Citation: Casadesús J, Hernández S, Cota I, Ramos-Morales F. 2011. Of Bacteria and Bile, p 153-162. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch16
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Bile salts can enter the bacterial cell either by diffusion or by passage through outer membrane pores, and subsequent diffusion through the cytoplasmic membrane. Bile salt influx is reduced by envelope structures such as LPS and ECA. Certain envelope alterations (e.g., LPS or ECA defects, reduced association of Braun lipoprotein to peptidoglycan) cause bile sensitivity, whereas others (e.g., lack of AsmA protein in the outer membrane) increase bile resistance.

Citation: Casadesús J, Hernández S, Cota I, Ramos-Morales F. 2011. Of Bacteria and Bile, p 153-162. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Model for bile-induced DNA damage and subsequent repair of bile-induced DNA lesions, based on studies with Primary lesions (perhaps oxidized cytosines) may be directly caused by bile salts or by reactive oxygen species generated in the presence of bile salts. Primary lesions are repaired by Dam-directed mismatch repair and by BER. Either process generates single-stranded DNA intermediates that can induce the SOS response. Direct SOS induction can also occur if bile-induced primary lesions impair DNA replication. Single-strand breaks generated by DNA repair can give rise to double-strand breaks upon DNA replication. SOS induction may permit translesion DNA replication by the DinB polymerase, thus helping to overcome DNA replication blockage. In turn, RecBCD may rescue arrested replication forks by either degradation of double-stranded DNA ends or recombinational repair.

Citation: Casadesús J, Hernández S, Cota I, Ramos-Morales F. 2011. Of Bacteria and Bile, p 153-162. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Simplified diagrams of two screens for genetic analysis of bile resistance in using Roth’s T-POP transposon. An additional screen, not included in the diagram, can select isolates with increased resistance to bile. Such a screen is analogous to the search for suppressors, except that the selective agar plates contain a concentration of bile above the wild-type MIC.

Citation: Casadesús J, Hernández S, Cota I, Ramos-Morales F. 2011. Of Bacteria and Bile, p 153-162. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alekshun, M. N., and, S. B. Levy. 1999. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol. 7: 410413.
2. Anderson, R. P., and, J. R. Roth. 1977. Tandem genetic duplications in phage and bacteria. Annu. Rev. Microbiol. 31: 473505.
3. Begley, M.,, C. G. Gahan, and, C. Hill. 2005. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29: 625651.
4. Begley, M.,, R. D. Sleator,, C. G. Gahan, and, C. Hill. 2005. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect. Immun. 73: 894904.
5. Bernstein, C.,, H. Bernstein,, C. M. Payne,, S. E. Beard, and, J. Schneider. 1999. Bile salt activation of stress response promoters in Escherichia coli. Curr. Microbiol. 39: 6872.
6. Bernstein, H.,, C. Bernstein,, C. M. Payne,, K. Dvorakova, and, H. Garewal. 2005. Bile acids as carcinogens in human gastrointestinal cancers. Mutat. Res. 589: 4765.
7. Bernstein, H.,, C. M. Payne,, C. Bernstein,, J. Schneider,, S. E. Beard, and, C. L. Crowley. 1999. Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycho-late. Toxicol. Lett. 108: 3746.
8. Bina, J. E., and, J. J. Mekalanos. 2001. Vibrio cholerae tolC is required for bile resistance and colonization. Infect. Immun. 69: 46814685.
9. Coleman, R.,, P. J. Lowe, and, D. Billington. 1980. Membrane lipid composition and susceptibility to bile salt damage. Biochim. Biophys. Acta 599: 294300.
10. Crawford, R. W.,, D. L. Gibson,, W. W. Kay, and, J. S. Gunn. 2008. Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces. Infect. Immun. 76: 53415349.
11. Dolg, P.,, R. Yao,, D. H. Burr,, P. Guerry, and, T. J. Trust. 1996. An environmentally regulated pilus-like appendage involved in Campylobacter pathogenesis. Mol. Microbiol. 20: 885894.
12. Dutta, U.,, P. K. Garg,, R. Kumar, and, R. K. Tandon. 2000. Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am.J. Gastroenterol. 95: 784787.
13. Echeita, M. A., and, M. A. Usera. 1998. Chromosomal rearrangements in Salmonella enterica serovar Typhi affecting molecular typing in outbreak investigations. J. Clin. Microbiol. 36: 21232126.
14. Flahaut, S.,, J. Frere,, P. Boutibonnes, and, Y. Auffray. 1996. Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis. Appl. Environ. Microbiol. 62: 24162420.
15. Froelich, J. M.,, K. Tran, and, D. Wall. 2006. A pmrA constitutive mutant sensitizes Escherichia coli to deoxycholic acid. J. Bacteriol. 188: 11801183.
16. Garcia-Quintanilla, M.,, A. I. Prieto,, L. Barnes,, F. Ramos-Morales, and, J. Casadesús. 2006. Bile-induced curing of the virulence plasmid in Salmonella enterica serovar Typhimurium. J. Bacteriol. 188: 79637965.
17. Gunn, J. S. 2000. Mechanisms of bacterial resistance and response to bile. Microbes Infect. 2: 907913.
18. Gupta, S., and, R. Chowdhury. 1997. Bile affects production of virulence factors and motility of Vibrio cholerae. Infect. Immun. 65: 11311134.
19. Hendrickson, H.,, E. S. Slechta,, U. Bergthorsson,, D. I. Andersson, and, J. R. Roth. 2002. Amplification-mutagenesis: evidence that “directed” adaptive mutation and general hyper-mutability result from growth with a selected gene amplification. Proc. Natl. Acad. Sci. USA 99: 21642169.
20. Hofmann, A. F. 1999. Bile acids: the good, the bad, and the ugly. News Physiol. Sci. 14: 2429.
21. Hofmann, A. F. 1998. Bile secretion and entero-hepatic circulation of bile acids, p. 937948. In M. Feldman,, B. F. Scharschmidt, and, W. B. Sleisenger (ed.), Sleisenger and Fordtran’s Gastrointestinal Disease, 6th. ed. W. B. Saunders & Co., Philadelphia, PA.
22. Hofmann, A. F. 2001. Bile secretion in mice and men. Hepatology 34: 848850.
23. Hofmann, A. F., and, L. R. Hagey. 2008. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci. 65: 24612483.
24. Hung, D. T., and, J. J. Mekalanos. 2005. Bile acids induce cholera toxin expression in Vibrio cholerae in a ToxT-independent manner. Proc. Natl. Acad. Sci. USA 102: 30283033.
25. Hung, D. T.,, J. Zhu,, D. Sturtevant, and, J. J. Mekalanos. 2006. Bile acids stimulate biofilm formation in Vibrio cholerae. Mol. Microbiol. 59: 193201.
26. Jimenez-Sanchez, A., and, E. Cerda-Olmedo. 1975. Mutation and DNA replication in Escherichia coli treated with low concentrations of N-methyl- N′-nitro- N-nitrosoguanidine. Mutat. Res. 28: 337345.
27. Kothapalli, S.,, S. Nair,, S. Alokam,, T. Pang,, R. Khakhria,, D. Woodward,, W. Johnson,, B. A. D. Stocker,, K. E. Sanderson, and, L. ShuLin. 2005. Diversity of genome structure in Salmonella enterica serovar Typhi populations. J. Bacteriol. 187: 26382650.
28. Kreutzer, D. A., and, J. M. Essigmann. 1998. Oxidized, deaminated cytosines are a source of C-T transitions in vivo. Proc. Natl. Acad. Sci. USA 95: 35783582.
29. Lee, C.,, C. Wozniak,, J. E. Karlinsey, and, K. T. Hughes. 2007. Genomic screening for regulatory genes using the T-POP transposon. Methods Enzymol. 421: 159167.
30. Lefebvre, P.,, B. Cariou,, F. Lien,, F. Kuipers, and, B. Staels. 2009. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89: 147191.
31. Michel, B.,, S. D. Ehrlich, and, M. Uzest. 1997. DNA double-strand breaks caused by replication arrest. EMBO J. 17: 430438.
32. Murata, T.,, W. Tseng,, T. Guina,, S. I. Miller, and, H. Nikaido. 2007. PhoPQ-mediated regulation produces a more robust permeability barrier in the outer membrane of Salmonella enterica serovar Typhimurium. J. Bacteriol. 189: 72137222.
33. Ng, I.,, L. Shu-Lin, and, K. E. Sanderson. 1999. Role of genomic rearrangements in producing new ribotypes of Salmonella typhi. J. Bacteriol. 181: 35363541.
34. Nishino, K.,, T. Latifi, and, E. A. Groisman. 2006. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 59: 126141.
35. Picken, R. N., and, I. R. Beacham. 1977. Bacteriophage-resistant mutants of Escherichia coli K12. Location of receptors within the lipopolysaccharide. J. Gen. Microbiol. 102: 305318.
36. Piddock, L. J. 2006. Multidrug-resistance efflux pumps—not just for resistance. Nat. Rev. Microbiol. 4: 629636.
37. Pope, L. M.,, K. E. Reed, and, S. M. Payne. 1995. Increased protein secretion and adherence to HeLa cells by Shigella spp. following growth in the presence of bile salts. Infect. Immun. 63: 36423648.
38. Prieto, A. I.,, S. B. Hernández,, I. Cota,, M. G. Pucciarelli,, Y. Orlov,, F. Ramos-Morales,, F. García-del Portillo, and, J. Casadesús. 2009. Roles of the outer membrane protein AsmA of Salmonella enterica in the control of marRAB expression and invasion of epithelial cells. J. Bacteriol. 191: 36153622.
39. Prieto, A. I.,, F. Ramos-Morales, and, J. Casadesus. 2004. Bile-induced DNA damage in Salmonella enterica. Genetics 168: 17871794.
40. Prieto, A. I.,, F. Ramos-Morales, and, J. Casadesus. 2006. Repair of DNA damage induced by bile salts in Salmonella enterica. Genetics 174: 575584.
41. Prouty, A. M., and, J. S. Gunn. 2000. Salmonella enterica serovar Typhimurium invasion is repressed in the presence of bile. Infect. Immun. 68: 67636769.
42. Prouty, A. M.,, W. H. Schwesinger, and, J. S. Gunn. 2002. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect. Immun. 70: 26402649.
43. Prouty, A. M.,, J. C. van Velkinburgh, and, J. S. Gunn. 2002. Salmonella enterica serovar Typhimurium resistance to bile: identification and characterization of the tolQRA cluster. J. Bacteriol. 184: 12701276.
44. Pucciarelli, M. G.,, A. I. Prieto,, J. Casadesus, and, F. García-del Portillo. 2002. Envelope instability in DNA adenine methylase mutants of Salmonella enterica. Microbiology 148: 11711182.
45. Rajagopalan, N., and, S. Lindenbaum. 1982. The binding of Ca2 + to taurine and glycine-conjugated bile salt micelles. Biochim. Biophys. Acta 711: 6674.
46. Ramos-Morales, F.,, A. I. Prieto,, C. R. Beuzón,, D. W. Holden, and, J. Casadesús. 2003. Role for Salmonella enterica enterobacterial common antigen in bile resistance and virulence. J. Bacteriol. 185: 53285332.
47. Rappleye, C. A., and, J. R. Roth. 1997. A Tn10 derivative (T-POP) for isolation of insertions with conditional (tetracycline-dependent) phenotypes. J. Bacteriol. 179: 58275834.
48. Redinger, R. N. 2003. The coming of age of our understanding of the enterohepatic circulation of bile salts. Am.J. Surg. 185: 168172.
49. Redinger, R. N. 2003. The role of the enterohepatic circulation of bile salts and nuclear hormone receptors in the regulation of cholesterol homeostasis: bile salts as ligands for nuclear hormone receptors. Can.J. Gastroenterol. 17: 265271.
50. Roncero, M. I.,, C. Zabala, and, E. Cerda-Olmedo. 1984. Mutagenesis in multinucleate cells: the effects of N-methyl- N’-nitro- N-nitrosoguanidine on Phycomyces spores. Mutat. Res. 125: 195204.
51. Rosenberg, S. M., and, P. J. Hastings. 2003. Modulating mutation rates in the wild. Science 300: 13821383.
52. Saint-Ruf, C., and, I. Matic. 2006. Environmental tuning of mutation rates. Environ. Microbiol. 8: 193199.
53. Seigneur, M.,, V. Bidnenko,, S. D. Ehrlich, and, B. Michel. 1998. RuvA acts at arrested replication forks. Cell 95: 419430.
54. Sokol, R. J.,, B. M. Winklhofer-Roob,, M. W. Devereaux, and, J. M. McKim, Jr. 1995. Generation of hydroperoxides in isolated rat hepatocytes and hepatic mitochondria exposed to hydrophobic bile acids. Gastroenterology 109: 12491256.
55. Solheim, M.,, A. Aakra,, H. Vebo,, L. Snipen, and, I. F. Nes. 2007. Transcriptional responses of Enterococcus faecalis V583 to bovine bile and sodium dodecyl sulfate. Appl. Environ. Microbiol. 73: 57675774.
56. Sonti, R. V., and, J. R. Roth. 1989. Role of gene duplications in the adaptation of Salmonella typhimurium to growth on limiting carbon sources. Genetics 123: 1928.
57. Stocker, R.,, Y. Yamamoto,, A. F. McDonagh,, A. N. Glazer, and, B. N. Ames. 1987. Bilirubin is an antioxidant of possible physiological importance. Science 235: 10431046.
58. Thanassi, D. G.,, L. W. Cheng, and, H. Nikaido. 1997. Active efflux of bile salts by Escherichia coli. J. Bacteriol. 179: 25122518.
59. Uzest, M.,, S. D. Ehrlich, and, B. Michel. 1995. Lethality of rep recB and rep recC double mutants in Escherichia coli. Mol. Microbiol. 17: 11771188.
60. van Velkinburgh, J. C., and, J. S. Gunn. 1999. PhoP-PhoQ-regulated loci are required for enhanced bile resistance in Salmonella spp. Infect. Immun. 67: 16141622.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error