Chapter 15 : Insect Cell Culture

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Insect Cell Culture, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap15-2.gif


The insect cell-baculovirus expression vector system (IC-BEVS) is a highly versatile system because it can express gene products of practically any origin (from bacteria to human tissue), and in contrast to most industrial mammalian cell culture systems, it is based on engineering only the vector and not the host cell line. As a result, the development time needed to progress from gene cloning to protein overproduction is much shorter. Compared to other biomanufacturing platforms, the IC-BEVS offers other significant advantages, including typically high product titers, a range of posttranslational modifications, and the possibility to express multimeric proteins or even several distinct proteins using the same vector. The Sf lines are adapted to suspension cultivation and are easily detached from T-flask (or other recipient) surfaces by gentle agitation without trypsinization. Small bench-scale culture involves volumes ranging from a total of a few milliliters in wells of multiple-well plates or T-flasks for adherent culture to shake flasks or spinners up to 250 ml for suspension culture. A number of bioreactor systems have been investigated and proven merits of bioreactors in terms of robustness and scalability. Batch culture remains the most common method for large scale IC-BEVS processing because of its inherent simplicity and flexibility in bioreactor equipment. The practice of insect cell culture is becoming more and more widespread as an essential component of the IC-BEVS, perhaps one of the most successful and far-reaching expression systems available today for the production of recombinant proteins and viral particles.

Citation: Agathos S. 2010. Insect Cell Culture, p 212-222. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Agathos, S. N. 1991. Production scale insect cell culture. Biotechnol. Adv. 9: 5168.
2. Agathos, S. N. 1996. Insect cell bioreactors. Cytotechnology 20: 173189.
3. Agathos, S. N. 2007. Development of serum-free media for lepidopteran insect cell lines, p. 155-185. In D. W. Murhammer (ed.), Baculovirus Expression Protocols, 2nd ed. Humana Press, Totowa, NJ.
4. Airenne, K. J.,, E. Peltomaa,, V. P. Hytonen,, O. H. Laitinen, and , S. Ylä-Herttuala. 2003. Improved generation of recombinant baculovirus genomes in Escherichia coli. Nucleic Acids Res. 31: e101.
5. Archambault, J.,, J. Robert, and, L. Tom. 1994. Culture of immobilized insect cells. Bioprocess Eng. 11: 189197.
6. Bédard, C,, A. Kamen,, R. Tom, and, B. Massie. 1994. Maximization of recombinant protein yield in the insect cell/baculovirus system by one-time addition of nutrients to high-density batch cultures. Cytotechnology 15: 129138.
7. Bédard, C,, S. Perret, and, A. A. Kamen. 1997. Fed-batch culture of Sf-9 cells supports 3 × 10 7 cells per ml and improves baculovirus-expressed recombinant protein yields. Biotechnol. Lett. 19: 629632.
8. Berger, I.,, D. J. Fitzgerald, and, T. J. Richmond. 2004. Baculovirus expression system for heterologous multiprotein complexes. Nat. Biotechnol. 22: 15831587.
9. Betenbaugh, M. J.,, E. Ailor,, E. Whiteley,, P. Hinderliter, and , T.-A. Hsu. 2001. Chaperone and foldase coexpression in the baculovirus-insect cell expression system. Cytotechnology 20: 149156.
10. Bienossek, C,, T. J. Richmond, and, I. Berger. 2008. Multi-Bac: multigene baculovirus-based eukaryotic protein complex production. Curr. Protoc. Protein Sci. 51:
11. Calles, K.,, I. Svensson,, E. Lindskog, and , L. Häggström. 2001. Effects of conditioned medium factors and passage number on Sf9 cell physiology and productivity. Biotechnol. Prog. 22: 394400.
12. Calles, K.,, U. Eriksson, and , L. Häggström. 2001. Effect of conditioned medium factors on productivity and cell physiology in Trichoplusia ni insect cell cultures. Biotechnol. Prog. 22: 653659.
13. Cavegn, C,, H. D. Blasey,, M. A. Payton,, B. Allet,, J. Li, and, A. R. Bernard. 1992. Expression of recombinant protein in high density insect cell cultures, p. 569-578. In R. E. Spier,, J. B. Griffiths, and , C. MacDonald (ed.), Animal Cell Technology: Developments, Processes and Products. But-terworth-Heinemann, Oxford, United Kingdom.
14. Chalmers, J. J. 1996. Shear sensitivity of insect cells. Cytotechnology 20: 163171.
15. Chan, L. C. L.,, P. F. Greenfield, and, S. Reid. 1998. Optimising fed-batch production of recombinant proteins using the baculovirus expression vector system. Biotechnol. Bioeng. 59: 178188.
16. Chico, E., and , V. Jäger. 2000. Perfusion culture of baculovirus-infected BTI-Tn-5B1-4 insect cells: a method to restore cell-specific (β-trace glycoprotein productivity at high cell density. Biotechnol. Bioeng. 70: 574586.
17. Chiou, T.-W.,, Y.-C. Wang, and, H.-S. Liu. 2001. Utilizing the macroporous media for insect cell/baculovirus expression. Part 1: the entrapment kinetics of insect cells within porous packed bed. Bioprocess Eng. 18: 4553.
18. Chiou, T.-W.,, Y.-C. Wang, and, H.-S. Liu. 2001. Utilizing the macroporous media for insect cell/baculovirus expression. Part 2: the production of human interleukin-5 in polyurethane foam and cellulose foam packed bed bio-reactors. Bioprocess Eng. 18: 91100.
19. Dalal, N. G.,, W. E. Bentley, and, H. J. Cha. 2005. Facile monitoring of baculovirus infection for foreign protein expression under very late polyhedron promoter using green fluorescent protein reporter under early-to-late promoter. Biochem. Eng. J. 24: 2730.
20. Davis, T. R.,, M. L. Shuler,, R. R. Granados, and, H. A. Wood. 1993. Comparison of oligosaccharide processing among various insect cell lines expressing a secreted glycoprotein. In Vitro Cell. Dev. Biol. Anim. 29A: 842846.
21. Dee, K. U.,, M. L. Shuler, and, H. A. Wood. 1997. Inducing single-cell suspension of BRI-TnB1-4 insect cells. 1. The use of sulfated polyanions to prevent cell aggregation and enhance recombinant protein production. Biotechnol. Bioeng. 54: 191205.
22. Deutschmann, S. M., and , V. Jäger. 1994. Optimization of the growth conditions of Sf21 insect cells for high-density perfusion culture in stirred-tank bioreactors. Enzyme Microb. Technol. 16: 506512.
23. Donaldson, M. S., and , M. L. Shuler. 1998. Effects of long-term passaging of BTI-Tn5B1-4 insect cells on growth and recombinant protein production. Biotechnol. Prog. 14: 543547.
24. Doverskog, M.,, J. Ljunggren,, L. Öhman, and, L. Häggström. 1997. Physiology of cultured animal cells. J. Biotechnol. 59: 103115.
25. Doverskog, M.,, E. Bertram,, J. Ljunggren,, L. Öhman,, R. Sennerstam, and , L. Häggström. 2000. Cell cycle progression in serum-free cultures of Sf9 insect cells: modulation by conditioned medium factors and implication for proliferation and productivity. Biotechnol. Prog. 16: 837846.
26. Drews, M.,, T. Paalme, and, R. Vilu. 1995. The growth and nutrient utilization of the insect cell line Spodoptera frugiperda Sf9 in batch and continuous culture. J. Biotechnol. 40: 187198.
27. Elias, C. B.,, A. Zeiser,, C. Bédard, and, A. A. Kamen. 2000. Enhanced growth of Sf-9 cells to a maximum density of 5.2 × 10 7 cells per mL and production of β-galactosidase at high cell density by fed batch culture. Biotechnol. Bioeng. 68: 381388.
28. Elias, C. B.,, B. Jardin, and, A. Kamen. 2007. Recombinant protein production in large-scale agitated bioreactors using the baculovirus expression vector system, p. 225-245. In D. W. Murhammer (ed.), Baculovirus Expression Protocols, 2nd ed. Humana Press, Totowa, NJ.
29. Gerbal, M.,, P. Fournier,, P. Barry,, M. Mariller,, F. Odier,, G. Devauchelle, and , M. Duonor-Cerutti. 2000. Adaptation of an insect cell line of Spodoptera frugiperda to growth at 37°C: characterization of an endodiploid clone. In Vitro Cell. Dev. Biol. Anim. 36: 117124.
30. Goosen, M. F. A. 2001. Insect cell immobilization, p. 69-104. In M. F. A. Goosen,, A. J. Daugulis, and, P. Faulkner (ed.), Insect Cell Culture Engineering. Marcel Dekker, New York, NY.
31. Granados, R. R. April, 1994. Trichoplusia ni cell line which supports replication of baculoviruses. U.S. patent 5,300,435. Boyce Thompson Institute for Plant Research, Ithaca, NY.
32. Hink, W. F. 1970. Established insect cell line from the cabbage looper, Trichoplusia ni. Nature 226: 466467.
33. Hollister, J. R.,, E. Grabenhorst,, M. Nimtz,, H. O. Conradt, and, D. L. Jarvis. 2002. Engineering the protein N-glycosylation pathway in insect cells for production of biantennary, complex N-glycans. Biochemistry 41: 1509315104.
34. Ikonomou, L.,, G. Bastin,, Y.-J. Schneider, and, S. N. Agathos. 2001. Design of an efficient medium for insect cell culture and recombinant protein production. In Vitro Cell. Dev. Biol. Anim. 37: 549559.
35. Ikonomou, L.,, J.-C. Drugmand,, G. Bastin,, Y.-J. Schneider, and, S. N. Agathos. 2002. Microcarrier culture of lepidopteran cell lines: implications for growth and recombinant protein production. Biotechnol. Prog. 18: 13451355.
36. Ikonomou, L.,, C. Peeters-Joris,, Y.-J. Schneider, and, S. N. Agathos. 2002. Supernatant proteolytic activities of High-Five insect cells grown in serum-free culture. Biotechnol. Lett. 24: 965969.
37. Ikonomou, L.,, Y.-J. Schneider, and, S. N. Agathos. 2003. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 62: 120.
38. Ikonomou, L.,, G. Bastin,, Y.-J. Schneider, and, S. N. Agathos. 2004. Effect of partial medium replacement on cell growth and protein production for the High Five TM insect cell line. Cytotechnology 44: 6776.
39. Jäger, V. 2001. Perfusion bioreactors for the production of recombinant proteins in insect cells. Cytotechnology 20: 191198.
40. Joosten, C. E., and , M. L. Shuler. 2003. Production of a sialylated N-linked glycoprotein in insect cells: role of glycosidase and effect of harvest time on glycosylation. Biotechnol. Prog. 19: 193201.
41. Joshi, L.,, T. R. Davis,, T. S. Mattu,, P. M. Rudd,, R. A. Dwek,, M. L. Shuler, and, H. A. Wood. 2000. Influence of baculovirus-host cell interactions on complex glycosylation of a recombinant human protein. Biotechnol. Prog. 16: 650656.
42. Kaba, S. A.,, A. M. Salcedo,, P. O. Wafula,, J. M. Vlak, and , M. M. van Oers. 2001. Development of a chitinase and v-cathepsin negative bacmid for improved integrity of secreted recombinant proteins. J. Virol. Methods 122: 113118.
43. Kadwell, S. H., and , P. I. Hardwicke. 2007. Production of baculovirus-expressed recombinant proteins in Wave bioreactors, p. 247–266. In D. W. Murhammer (ed.), Baculovirus Expression Protocols, 2nd ed. Humana Press, Totowa, NJ.
44. Kioukia, N.,, A. W. Nienow,, A. N. Emery, and , M. Al-Rubeai. 2001. Physiological and environmental factors affecting the growth of insect cells and infection with baculovirus. J. Biotechnol. 38: 243251.
45. Kool, M.,, J.-W. Voncken,, F. L. van Lier,, J. Tramper, and, J. M. Vlak. 1991. Detection and analysis of Autographa californica nuclear polyhedrosis virus mutants with defective interfering properties. Virology 183: 739746.
46. Kost, T. A.,, J. P. Condreay, and, D. L. Jarvis. 2005. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23: 567575.
47. Krell, P. J. 1996. Passage effect of virus infection in insect cells. Cytotechnology 20: 125137.
48. Licari, P., and, J. E. Bailey. 1992. Modelling the population dynamics of baculovirus-infected insect cells: optimizing infection strategies for enhanced recombinant protein yields. Biotechnol. Bioeng. 39: 432441.
49. Lindsay, D. A., and , M. J. Betenbaugh. 1992. Quantification of cell culture factors affecting recombinant protein yield in baculovirus-infected insect cells. Biotechnol. Bioeng. 39: 614618.
50. Lindskog, E.,, I. Svensson, and , L. Häggström. 2001. A homologue of cathepsin L identified in conditioned medium from Sf9 insect cells. Appl. Microbiol. Biotechnol. 71: 444449.
51. Lloyd, D. R.,, P. Holmes,, L. P. Jackson,, A. N. Emery, and , M. Al-Rubeai. 2000. Relationship between cell size, cell cycle and specific recombinant protein productivity. Cytotechnology 34: 5970.
52. Lynn, D. E. 2001. Novel techniques to establish new insect cell lines. In Vitro Cell. Dev. Biol. Anim. 37: 319321.
53. Maiorella, B.,, D. Inlow,, A. Shauger, and, D. Harano. 1988. Large-scale insect cell-culture for recombinant protein production. Bio/Technology 6: 14061410.
54. Marteijn, R. C. L.,, O. Jurrius,, J. Dhont,, C. D. de Gooijer,, J. Tramper, and, D. E. Martens. 2003. Optimization of a feed medium for fed-batch culture of insect cells using a genetic algorithm. Biotechnol. Bioeng. 81: 269278.
55. Merrington, C. L.,, J. E. Bailey, and, R. D. Possee. 1997. Protocol: manipulation of baculovirus vectors. Mol. Biotechnol. 8: 283297.
56. Montgomery, D. C., and , G. C. Runger. 2006. Applied Statistics and Probability for Engineers, 4th ed. John Wiley & Sons, Inc., New York, NY.
57. Murhammer, D. W. (ed.). 2001. Baculovirus and Insect Cell Expression Protocols, 2nd ed. Humana Press, Totowa, NJ.
58. Ohashi, R.,, V. Singh, and , J.-F. P. Hamel. 2001. Perfusion cell culture in disposable bioreactors, p. 403–409. In E. Lindner-Olsson,, N. Chatzissavidou, and , E. Lüllau (ed.), Animal Cell Technology: from Target to Market. Kluwer Academic, Dordrecht, The Netherlands.
59. O’Reilly, D. R.,, L. K. Miller, and, V. A. Luckow. 1992. Baculovirus Expression Vectors: a Laboratory Manual. W. H. Freeman & Co., New York, NY.
60. Palomares, L. A.,, J. C. Pedroza, and, O. T. Ramirez. 2001. Cell size as a tool to predict the production of recombinant protein by the insect-cell baculovirus expression system. Biotechnol. Lett. 23: 359364.
61. Palomares, L. A.,, C. E. Joosten,, P. R. Hughes,, R. R. Granados, and, M. L. Shuler. 2003. Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins. Biotechnol. Prog. 19: 185192.
62. Palomares, L. A.,, S. Estrada, and, O. T. Ramirez. 2006. Principles and applications of the insect cell-baculovirus expression vector system, p. 627–692. In S. S. Ozturk and, W.-S. Hu (ed.), Cell Culture Technology for Pharmaceutical and Cell-Based Therapies. Taylor & Francis, New York, NY.
63. Pijlman, G. P.,, E. van den Born,, D. E. Martens, and, J. M. Vlak. 2001. Autographa californica baculoviruses with large genomic deletions are rapidly generated in infected insect cells. Virology 283: 132138.
64. Possee, R. D. 1997. Baculoviruses as expression vectors. Curr. Opin. Biotechnol. 8: 569572.
65. Rhiel, M.,, C. M. Mitchell-Logean, and, D. W. Murhammer. 2001. Comparison of Trichoplusia ni BTI-Tn-5B1-4 (High Five TM) and Spodoptera frugiperda Sf-9 insect cell line metabolism in suspension cultures. Biotechnol. Bioeng. 55: 909920.
66. Rhodes, D. J. 1996. Economics of baculovirus-insect cell production systems. Cytotechnology 20: 291297.
67. Rice, J. W.,, N. B. Rankl,, T. M. Gurganus,, C. M. Marr,, J. B. Barna,, M. M. Walters, and, D. J. Burns. 1993. A comparison of large-scale Sf9 insect cell growth and protein production: stirred vessel vs. airlift. BioTechniques 15:1052.
68. Saarinen, M. A.,, K. A. Troutner,, S. G. Gladden,, C. M. Mitchell-Logean, and, D. W. Murhammer. 1999. Recombinant protein synthesis in Trichoplusia ni BTI-TN-5B1-4 insect cell aggregates. Biotechnol. Bioeng. 63: 612617.
69. Singh, V. 1999. Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30: 149158.
70. Smith, G. E.,, M. D. Summers, and, M. J. Fraser. 1983. Production of human interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3: 21562165.
71. van Lier, F. L.,, J. P. van den Hombergh,, C. D. de Gooijer,, M. M. den Boer,, J. M. Vlak, and , J. Tramper. 1996. Long-term semi-continuous production of recombinant baculovirus protein in a repeated (fed-)batch two-stage reactor system. Enzyme Microb. Technol. 18: 460466.
72. Wang, M.-Y., and, S.-R. Doong. 2000. A pH-based fed-batch process for the production of a chimeric recombinant infectious bursal disease virus (IBDV) structural protein (rVP2H) in insect cells. Process Biochem. 35: 877884.
73. Weber, W.,, E. Weber,, S. Geisse, and , K. Memmert. 2001. Catching the Wave: the BEVS and the Biowave, p. 335–337. In E. Lindner-Olsson,, N. Chatzissavidou, and , E. Lüllau (ed.), Animal Cell Technology: from Target to Market. Kluwer Academic, Dordrecht, The Netherlands.
74. Weiss, S.A.,, G. C. Smith,, S. S. Kalter, and, J. L. Vaughn. 1981. Improved method for the production of insect cell cultures in large volume. In Vitro 17: 495502.
75. Wong, K. T. K.,, C. H. Peter,, P. F. Greenfield,, S. Reid, and, L. K. Nielsen. 1996. Low multiplicity infection of insect cells with a recombinant baculovirus: the cell yield concept. Biotechnol. Bioeng. 49: 659666.
76. Wu, J.-Y., and, M. F. A. Goosen. 1996. Immobilization of insect cells. Cytotechnology 20: 199208.
77. Wu, J.,, Q. Ruan, and, H. Y. P. Lam. 1998. Evaluation of spent medium recycle and nutrient feeding strategies for recombinant protein production in the insect cell-baculovirus process. J. Biotechnol. 66: 109116.
78. Zavodszky, P., and , S. Cseh. 1996. Production of multi-domain complement glycoproteins in insect cells. Cyto-technology 20: 279288.
79. Zhang, J.,, N. Kalogerakis, and, K. Iatrou. 1993. A two stage bioreactor system for the production of recombinant proteins using a genetically engineered baculovirus/insect cell system. Biotechnol. Bioeng. 42: 357366.


Generic image for table

Formulation of YSD, a generic all-purpose serum-free medium for insect cell culture

Citation: Agathos S. 2010. Insect Cell Culture, p 212-222. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error