Chapter 34 : Biomass-Converting Enzymes and Their Bioenergy Applications

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Biomass-Converting Enzymes and Their Bioenergy Applications, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap34-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap34-2.gif


In this chapter, the basic structure, property, and function of biomass active enzymes are introduced, with emphasis on those most relevant to the development of cellulosic bioenergy, e.g., major cellulases and hemicellulases. The most significant topological feature of cellobiohydrolase (CBH’s) catalytic module is the tunnel structure, which may cover the entirety or part of the active site. β-glucosidase BGs in general have a pocket-shaped active site, which allows them to bind to the nonreducing Glc unit and clip it from cellobiose or cellodextrin. Hemicellulases hydrolyze hemicellulose, a group of complex polysaccharides consists of different units, linkages, intramolecular architectures, or intermolecular interactions. Common hemicelluloses include β-glucan (not cellulose), xylan, xyloglucan, arabinoxylan, mannan, galactomannan, arabinan, galactan, polygalacturonan, which are degraded in nature by β-glucanase, xylanase, xyloglucanase, mannanase, arabinase, galactanase, polygalacturonase, glucuronidase, acetyl esterase, and other enzymes. Most cellulolytic microbes produce an array of hemicellulases along with cellulases. For enzymatic hydrolysis of complex biomass substrates, however, such side chain removal may have mixed effects, because “polished” homo-mannan may lose water solubility and stick to cellulose, thus impeding the action of cellulases. Pectic polysaccharides are complex plant cell wall components consisting of poly-α-galacturonic acids (GalU) or polyrhamnogalacturonic acids with variable methylation/ acetylation (on backbone GalU) and carbohydrate side chains (containing mainly Ara and Gal) linked to backbone rhamnosyl units. Seeking the best stoichiometry and synergism among different cellulases, hemicellulases, other enzymes, or accessory proteins is vital for the development of bioenergy enzymes.

Citation: Xu F. 2010. Biomass-Converting Enzymes and Their Bioenergy Applications, p 495-508. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch34
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Bayer, E. A.,, J. P. Belaich,, Y. Shoham, and, R. Lamed. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58: 521554.
2. Bendl, R. F.,, J. M. Kandel,, K. D. Amodeo,, A. M. Ryder, and, E. M. Woolridge. 2008. Characterization of the oxidative inactivation of xylanase by laccase and a redox mediator. Enzyme Microb. Technol. 43: 149156.
3. Benko, Z.,, M. Siika-aho,, L. Viikari, and, K. Reczey. 2008. Evaluation of the role of xyloglucanase in the enzymatic hydrolysis of lignocellulosic substrates. Enzyme Microb. Technol. 43: 109114.
4. Benoit, I.,, E. G. J. Danchin,, R. J. Bleichrodt, and, R. P. de Vries. 2008. Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnol. Lett. 30: 387396.
5. Berger, E.,, D. Zhang,, V. V. Zverlov, and, W. H. Schwarz. 2007. Two noncellulosomal cellulases of Clostridium ther-mocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol. Lett. 268: 194201.
6. Berlin, A.,, M. Balakshin,, N. Gilkes,, J. Kadla,, V. Maximenko,, S. Kubo, and, J. Saddler. 2006. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J. Biotechnol. 125: 198209.
7. Berlin, A.,, N. Gilkes,, D. Kilburn,, R. Bura,, A. Markov,, A. Skomarovsky,, O. Okunev,, A. Gusakov,, V. Maximenko,, D. Gregg,, A. Sinitsyn, and, J. Saddler. 2005. Evaluation of novel fungal cellulase preparations for ability to hydro-lyze softwood substrates—evidence for the role of accessory enzymes. Enzyme Microb. Technol. 37: 175184.
8. Berrin, J. G., and, N. Juge. 2008. Factors affecting xy-lanase functionality in the degradation of arabinoxylans. Biotechnol. Lett. 30: 11391150.
9. Beukes, N.,, H. Chan,, R. H. Doi, and, B. I. Pletschke. 2008. Synergistic associations between Clostridium cellulo-vorans enzymes XynA, ManA and EngE against sugarcane bagasse. Enzyme Microb. Technol. 42: 492498.
10. Blake, A. W.,, L. McCartney,, J. E. Flint,, D. N. Bolam,, A. B. Boraston,, H. J. Gilbert, and, J. P. Knox. 2006. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J. Biol. Chem. 281: 2932129329.
11. Bouzarelou, D.,, M. Billini,, K. Roumelioti, and, V. Sophianopoulou. 2008. EglD, a putative endoglucanase, with an expansin like domain is localized in the co-nidial cell wall of Aspergillus nidulans. Fungal Genet. Biol. 45: 839850.
12. Brown, K.,, P. Harris,, E. Zaretsky,, E. Re,, E. Vlasenko,, K. McFarland, and, A. Lopez de Leon. January, 2005. Polypeptide from a cellulolytic fungus having cellulolytic enhancing activity. U.S. patent 7,361,495.
13. Cantarel, B. L.,, P. M. Coutinho,, C. Rancurel,, T. Bernard,, V. Lombard, and, B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37: D233D238.
14. Caspi, J.,, D. Irwin,, R. Lamed,, Y. C. Li,, H. P. Fierobe,, D. B. Wilson, and, E. A. Bayer. 2008. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J. Biotechnol. 135: 351357.
15. Chang, A.,, M. Scheer,, A. Grote,, I. Schomburg, and, D. Schomburg. 2009. BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res. 37: D588D592.
16. Cohen, R.,, M. R. Suzuki, and, K. E. Hammel. 2005. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 71: 24122417.
17. Collins, T.,, C. Gerday, and, G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Mi-crobiol. Rev. 29: 323.
18. Cosgrove, D. 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell. Biol. 6: 850861.
19. Da Costa, A.,, P. Michaud,, E. Petit,, A. Heyraud,, P. Colin-Morel,, B. Courtois, and, J. Courtois. 2001. Purification and properties of a glucuronan lyase from Sinorhi-zobium meliloti M5N1CS (NCIMB 40472). Appl. Environ. Microbiol. 67: 51975203.
20. Desmet, T.,, T. Cantaert,, P. Gualfetti,, W. Nerinckx,, L. Gross,, C. Mitchinson, and, K. Piens. 2007. An investigation of the substrate specificity of the xyloglucanase Cel74A from Hypocrea jecorina. FEBS J. 274: 356363.
21. Dhawan, S., and, J. Kaur. 2007. Microbial mannanases: an overview of production and applications. Crit. Rev. Biotechnol. 27: 197216.
22. Ding, H., and, F. Xu, 2004. Productive cellulase adsorption on cellulose, p. 154169. In B. C. Saha (ed.), Lignocellulose Biodegradation (Symposium Series 889). American Chemical Society, Washington, DC.
23. Duranova, M.,, S. Spanikova,, H. A. Wosten,, P. Biely, and, R. P. de Vries. 2009. Two glucuronoyl esterases of Pha-nerochaete chrysosporium. Arch. Microbiol. 191: 133140.
24. Eijsink, V. G. H.,, G. Vaaje-Kolstad,, K. M. Varum, and, S. J. Horn. 2008. Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol. 26: 228235.
25. Eyzaguirre, J.,, M. Hidalgo, and, A. Leschot. 2005. Beta-glucosidases from filamentous fungi: properties, structure, and applications, p. 645685. In K. J. Yarema (ed.), Handbook of Carbohydrate Engineering. CRC Press, Boca Raton, FL.
26. Faulds, C. B.,, G. Mandalari,, R. B. Lo Curto,, G. Bisignano,, P. Christakopoulos, and, K. W. Waldron. 2006. Synergy between xylanases from glycoside hydro-lase family 10 and family 11 and a feruloyl esterase in the release of phenolic acids from cereal arabinoxylan. Appl. Microbiol. Biotechnol. 71: 622629.
27. Garcia-Aparicio, M. P.,, M. Ballesteros,, P. Manzanares,, I. Ballesteros,, A. Gonzalez, and, M. J. Negro. 2007. Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl. Biochem. Biotechnol. 137: 353365.
28. Gilbert, H. J. 2007. Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol. Microbiol. 63: 15681576.
29. Gunnarsson, L. C.,, Q. Zhou,, C. Montanier,, E. N. Karlsson,, H. Brumer, and, M. Ohlin. 2006. Engineered xyloglucan specificity in a carbohydrate-binding module. Glycobiology 16: 11711180.
30. Gupta, R.,, T. H. Kim, and, Y. Y. Lee. 2008. Substrate dependency and effect of xylanase supplementation on enzymatic hydrolysis of ammonia-treated biomass. Appl. Biochem. Biotechnol. 148: 5970.
31. Gusakov, A. V.,, T. N. Salanovich,, A. I. Antonov,, B. B. Ustinov,, O. N. Okunev,, R. Burlingame,, M. Emalfarb,, M. Baez, and, A. P. Sinitsyn. 2007. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 97: 10281038.
32. Hashimoto, H. 2006. Recent structural studies of carbohydrate-binding modules. Cell. Mol. Life Sci. 63: 29542967.
33. Henrissat, B.,, G. Sulzenbacher, and, Y. Bourne. 2008. Glycosyltransferases, glycoside hydrolases: surprise, surprise! Curr. Opin. Struct. Biol. 18: 527533.
34. Herpoel-Gimbert, I.,, A. Margeot,, A. Dolla,, G. Jan,, D. Molle,, S. Lignon,, H. Mathis,, J.-C. Sigoillot,, F. Monot, and, M. Asther. 2008. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecre-tory strains. Biotechnol. Biofuels 1: 18.
35. Hilden, L., and, G. Johansson. 2004. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol. Lett. 26: 16831693.
36. Hodge, D. B.,, M. N. Karim,, D. J. Schell, and, J. D. McMillan. 2008. Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour. Technol. 99: 89408948.
37. Ichinose, H.,, M. Yoshida,, Z. Fujimoto, and, S. Kaneko. 2008. Characterization of a modular enzyme of exo-1,5-alpha- l-arabinofuranosidase and arabinan binding module from Streptomyces avermitilis NBRC14893. Appl. Microbiol. Biotechnol. 80: 399408.
38. Ishida, T.,, K. Yaoi,, A. Hiyoshi,, K. Igarashi, and, M. Samejima. 2007. Substrate recognition by glycoside hy-drolase family 74 xyloglucanase from the basidiomycete Phanerochaete chrysosporium. FEBS J. 274: 57275736.
39. Jayani, R. S.,, S. Saxena, and, R. Gupta. 2005. Microbial pectinolytic enzymes: a review. Process Biochem. 40: 29312944.
40. Jordan, D. B., and, J. D. Braker. 2007. Inhibition of the two-subsite beta-D-xylosidase from Selenomonas ruminantium by sugars: competitive, noncompetitive, double binding, and slow binding modes. Arch. Biochem. Biophys. 465: 231246.
41. Jordan, D. B.,, X. L. Li,, C. A. Dunlap,, T. R. Whitehead, and, M. A. Cotta. 2007. Structure-function relationships of a catalytically efficient beta-D-xylosidase. Appl. Biochem. Biotechnol. 141: 5176.
42. Karkehabadi, S.,, H. Hansson,, S. Kim,, K. Piens,, C. Mitchinson, and, M. Sandgren. 2008. The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 angstrom resolution. J. Mol. Biol. 383: 144154.
43. Kim, E.,, H. Lee,, W. G. Bang,, I. G. Choi, and, K. H. Kim. 2009. Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 102: 13421353.
44. Kipper, K.,, P. Valjamae, and, G. Johansson. 2005. Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as “burst” kinetics on fluorescent polymeric model substrates. Biochem. J. 385: 527535.
45. Konno, N.,, T. Ishida,, K. Igarashi,, S. Fushinobu,, N. Habu,, M. Samejima, and, A. Isogai. 2009. Crystal structure of polysaccharide lyase family 20 endo- (3–1,4-glucuronan lyase from the filamentous fungus Trichoderma reesei. FEBS Lett. 583: 13231326.
46. Koseki, T.,, Y. Mese,, S. Fushinobu,, K. Masaki,, T. Fujii,, K. Ito,, Y. Shiono,, T. Murayama, and, H. Iefuji. 2008. Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Appl. Microbiol. Biotechnol. 77: 12791285.
47. Krusa, M.,, H. Lennholm, and, G. Henriksson. 2008. Pretreatment of cellulose by cellobiose dehydrogenase increases the degradation rate by hydrolytic cellulases. Cell Chem. Technol. 41: 105111.
48. Kumar, R.,, S. Singh, and, O. V. Singh. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35: 377391.
49. Langston, J.,, N. Sheehy, and, F. Xu, 2006. Substrate specificity of Aspergillus oryzae family 3 (β-glucosidase. Biochim. Biophys. Acta 1764: 972978.
50. Lawoko, M.,, A. Nutt,, H. Henriksson,, G. Gellerstedt, and, G. Henriksson. 2000. Hemicellulase activity of aerobic fungal cellulases. Holzforschung 54: 497500.
51. Lee, S. S.,, S. Yu, and, S. G. Withers. 2005. Mechanism of action of exo-acting α-1,4-glucan lyase: a glycoside hydrolase family 31 enzyme. Biologia (Bratislava) 60: 137148.
52. Levasseur, A.,, F. Piumi,, P. Coutinho,, C. Rancurel,, M. Asther,, M. Delattre,, B. Henrissat,, P. Pontarotti,, M. Asther, and, E. Record. 2008. FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet. Biol. 45: 638645.
53. Li, X.-L.,, S. Spanikova,, R. P. de Vries, and, P. Biely. 2007. Identification of genes encoding microbial gluc-uronoyl esterases. FEBS Lett. 581: 40294035.
54. Liu, Q. P.,, G. Sulzenbacher,, H. Yuan,, E. P. Bennett,, G. Pietz,, K. Saunders,, J. Spence,, E. Nudelman,, S. B. Levery,, T. White,, J. M. Neveu,, W. S. Lane,, Y. Bourne,, M. L. Olsson,, B. Henrissat, and, H. Clausen. 2007. Bacterial glycosidases for the production of universal red blood cells. Nat. Biotechnol. 25: 454464.
55. Lopez, G.,, C. Nugier-Chauvin,, C. Remond, and, M. O’Donohue. 2007. Investigation of the specificity of an alpha- l-arabinofuranosidase using C-2 and C-5 modified al-pha- l-arabinofuranosides. Carbohydr. Res. 342: 22022211.
56. Lynd, L. R.,, M. S. Laser,, D. Bransby,, B. E. Dale,, B. Davison,, R. Hamilton,, M. Himmel,, M. Keller,, J. D. McMillan,, J. Sheehan, and, C. E. Wyman. 2008. How bio-tech can transform biofuels. Nat. Biotechnol. 26: 169172.
57. MacGregor, E. A. 2005. An overview of clan GH-H and distantly-related families. Biologia (Bratislava) 60: 512.
58. Machovic, M., and, S. Janecek. 2007. Amylolytic enzymes: types, structures and specificities, p. 318. In J. Polaina and, A. P. MacCabe (ed.), Industrial Enzymes: Structure, Function and Applications. Springer, Dordrecht, The Netherlands.
59. Martinez, A. T.,, M. Speranza,, F. J. Ruiz-Dueñas,, P. Ferreira,, S. Camarero,, F. Guillen,, M. J. Martinez,, A. Gutierrez, and, J. C. del Rio. 2005. Biodegradation of lig-nocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8: 195204.
60. Matsuoka, S.,, H. Yukawa,, M. Inui, and, R. H. Doi. 2007. Synergistic interaction of Clostridium cellulovorans cellulo-somal cellulases and HbpA. J. Bacteriol. 189: 71907194.
61. Mejia-Castillo, T.,, M. E. Hidalgo-Lara,, L. G. Brieba, and, J. Ortega-Lopez. 2008. Purification, characterization and modular organization of a cellulose-binding protein, CBP105, a processive beta-1,4-endoglucanase from Cel-lulomonas flavigena. Biotechnol. Lett. 30: 681687.
62. Moreira, L., and, E. Filho. 2008. An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol. 79: 165178.
63. Niture, S. K. 2008. Comparative biochemical and structural characterizations of fungal polygalacturonases. Biologia (Bratislava) 63: 119.
64. Numan, M. T., and, N. B. Bhosle. 2006. a- l-Arabinofu-ranosidases: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247260.
65. O’Dwyer, J. P.,, L. Zhu,, C. B. Granda, and, M. T. Holtzapple. 2007. Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model. Bioresour. Technol. 98: 29692977.
66. Ogura, J.,, A. Toyoda,, T. Kurosawa,, A. L. Chong,, S. Chohnan, and, T. Masaki. 2006. Purification, characterization, and gene analysis of cellulase (Cel8A) from Lysobacter sp IB-9374. Biosci. Biotechnol. Biochem. 70: 24202428.
67. Pan, X. J. 2008. Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J. Biobased Mater. Bioenergy 2: 2532.
68. Parsiegla, G.,, C. Reverbel,, C. Tardif,, H. Driguez, and, R. Haser. 2008. Structures of mutants of cellulase Ce148F of Clostridium cellulolyticum in complex with long hemi-thiocellooligosaccharides give rise to a new view of the substrate pathway during processive action. J. Mol. Biol. 375: 499510.
69. Pastor, F. I. J.,, O. Gallardo,, J. Sanz-Aparicio, and, P. Diaz. 2007. Xylanases: molecular properties and applications, p. 6582. In J. Polaina and, A. P. MacCabe (ed.), Industrial Enzymes. Springer, Dordrecht, The Netherlands.
70. Pauly, M.,, L. N. Andersen,, S. Kauppinen,, L. V. Kofod,, W. S. York,, P. Albersheim, and, A. Darvill. 1999. A xyloglucan-specific endo-(3–1,4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characterization of the recombinant enzyme. Glycobiology 9: 93100.
71. Payasi, A.,, R. Sanwal, and, G. G. Sanwal. 2009. Microbial pectate lyases: characterization and enzymological properties. World J. Microbiol. Biotechnol. 25: 14.
72. Polizeli, M. L. T. M.,, A. C. S. Rizzatti,, R. Monti,, H. F. Terenzi,, J. A. Jorge, and, D. S. Amorim. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577591.
73. Prior, B. A., and, D. F. Day. 2008. Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, beta-glucosidase, and hemicellulase preparations. Appl. Biochem. Biotechnol. 146: 151164.
74. Rabinovich, M. L.,, M. S. Melnik, and, A. V. Bolobova. 2002. Microbial cellulases (review). J. Appl. Biochem. Microbiol. 38: 305322.
75. Raweesri, P.,, P. Riangrungrojana, and, P. Pinphanicha-karn. 2008. alpha- l-Arabinofuranosidase from Streptomyces sp PC22: purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. Bioresour. Technol. 99: 89818986.
76. Rodriguez-Sanoja, R.,, N. Oviedo, and, S. Sanchez. 2005. Microbial starch-binding domain. Curr. Opin. Microbiol. 8: 260267.
77. Rose, J. K. C.,, J. Braam,, S. C. Fry, and, K. Nishitani. 2002. The XTH family of enzymes involved in xyloglu-can endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol. 43: 14211435.
78. Rosgaard, L.,, S. Pedersen,, J. R. Cherry,, P. Harris, and, A. S. Meyer. 2006. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnol. Prog. 22: 493498.
79. Schagerlöf, U.,, H. Schagerlöf,, D. Momcilovic,, G. Brink-malm, and, F. Tjerneld. 2007. Endoglucanase sensitivity for substituents in methyl cellulose hydrolysis studied using MALDI-TOFMS for oligosaccharide analysis and structural analysis of enzyme active sites. Biomacromolecules 8: 23582365.
80. Seidle, H. F., and, R. E. Huber. 2005. Transglucosidic reactions of the Aspergillus niger family 3 beta-glucosidase: qualitative and quantitative analyses and evidence that the transglucosidic rate is independent of pH. Arch. Bio-chem. Biophys. 436: 254264.
81. Selig, M. J.,, E. P. Knoshaug,, W. S. Adney,, M. E. Himmel, and, S. R. Decker. 2008. Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour. Technol. 99: 49975005.
82. Shallom, D., and, Y. Shoham. 2003. Microbial hemicel-lulases. Curr. Opin. Microbiol. 6: 219228.
83. Shimokawa, T.,, H. Shibuya,, M. Nojiri,, S. Yoshida, and, M. Ishihara. 2008. Purification, molecular cloning, and enzymatic properties of a family 12 endoglucanase (EG-II) from Fomitopsis palustris: role of EG-II in larch holocellu-lose hydrolysis. Appl. Environ. Microbiol. 74: 58575861.
84. Shoseyov, O.,, Z. Shani, and, I. Levy. 2006. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol. Mol. Biol. Rev. 70: 283295.
85. Sorensen, H. R.,, C. T. Jorgensen,, C. H. Hansen,, C. I. Jorgensen,, S. Pedersen, and, A. S. Meyer. 2006. A novel GH43 alpha- l-arabinofuranosidase from Humicola insolens: mode of action and synergy with GH51 alpha- l-arabinofuranosidases on wheat arabinoxylan. Appl. Microbiol. Biotechnol. 73: 850861.
86. Sorensen, H. R.,, S. Pedersen,, C. T. Jorgensen, and, A. S. Meyer. 2007. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant “minimal” enzyme cocktail containing beta-xylosidase and novel endo-1,4-beta-xylanase and alpha-(L)-arabinofuranosidase activities. Biotechnol. Prog. 23: 100107.
87. Spanikova, S., and, P. Biely. 2006. Glucuronoyl ester-ase—novel carbohydrate esterase produced by Schizophyl-lum commune. FEBS Lett. 580: 45974601.
88. Sunna, A.,, M. D. Gibbs, and, P. L. Bergquist. 2000. The thermostabilizing domain, XynA, of Caldibacillus cel-lulovorans xylanase is a xylan binding domain. Biochem. J. 346: 583586.
89. Tabka, M. G.,, I. Herpoel-Gimbert,, F. Monod,, M. Asther, and, J. C. Sigoillot. 2006. Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb. Technol. 39: 897902.
90. Tewari, R.,, R. P. Tewari, and, G. S. Hoondal. 2005. Microbial pectinases, p. 191208. In J. L. Barredo (ed.), Microbial Enzymes and Biotransformations. Humana Press, Totowa, NJ.
91. Topakas, E.,, C. Vafiadi, and, P. Christakopoulos. 2007. Microbial production, characterization and applications of feruloyl esterases. Process Biochem. 42: 497509.
92. Ustinov, B. B.,, A. V. Gusakov,, A. I. Antonov, and, A. P. Sinitsyn. 2008. Comparison of properties and mode of action of six secreted xylanases from Chrysosporium luc-knowense. Enzyme Microb. Technol. 43: 5665.
93. Vihinen, M., and, P. Mäntsala. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24: 329418.
94. Vocadlo, D. J., and, G. J. Davies. 2008. Mechanistic insights into glycosidase chemistry. Curr. Opin. Chem. Biol. 12: 539555.
95. Vlasenko, E.,, M. Schülein,, J. Cherry, and, F. Xu, 2010. Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour. Technol. epub before print.
96. Wang, W., and, P. J. Gao. 2003. Function and mechanism of a low-molecular-weight peptide produced by Gloeophyllum trabeum in biodegradation of cellulose. J. Biotechnol. 101: 119130.
97. Wilson, D. B. 2008. Three microbial strategies for plant cell wall degradation. Ann. N. Y. Acad. Sci. 1125: 289297.
98. Wong, D. W. S. 2006. Feruloyl esterase—a key enzyme in biomass degradation. Appl. Biochem. Biotechnol. 133: 87112.
99. Xia, W. S.,, P. Liu, and, J. Liu. 2008. Advance in chi-tosan hydrolysis by non-specific cellulases. Bioresour. Technol. 99: 67516762.
100. Xu, F. 2004. Enhancing biomass conversion to fermentable sugars: a progress report of a joint government-industrial project, p. 793804. In K. Ohmiya,, K. Sakka,, S. Karita,, T. Kimura,, M. Sakka, and, Y. Onishi (ed.), Biotechnology of Lignocellulose Degradation and Biomass Utilization. Uni Publishers, Tokyo, Japan.
101. Xu, F., and, H. Ding. 2007. A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects. Appl. Catal. A Gen. 317: 7081.
102. Xu, F.,, H. Ding,, D. Osborn,, A. Tejirian,, K. Brown,, W. Albano,, N. Sheehy, and, J. Langston. 2007. Partition of enzymes between the solvent and insoluble substrate during the hydrolysis of lignocellulose by cellulases. J. Mol. Catal. B. Enzym. 51: 4248.
103. Xu, F.,, H. Ding, and, A. Tejirian. 2009. Detrimental effect of cellulose oxidation on cellulose hydrolysis by cellulase. Enzyme Microb. Technol. 45: 203209.
104. Yang, H.,, H. Ichinose,, M. Nakajima,, H. Kobayashi, and, S. Kaneko. 2006. Synergy between an alpha- l-arabinofuranosidase from Aspergillus oryzae and an endo-arabinanase from Streptomyces coelicolor for degradation of arabinan. Food Sci. Technol. Res. 12: 4349.
105. Yao, Q.,, T. T. Sun,, W. F. Liu, and, G. J. Chen. 2008. Gene cloning and heterologous expression of a novel en-doglucanase, swollenin, from Trichoderma pseudokoningii S38. Biosci. Biotechnol. Biochem. 72: 27992805.
106. Yaoi, K.,, H. Kondo,, A. Hiyoshi,, N. Noro,, H. Sugimoto,, S. Tsuda,, Y. Mitsuishi, and, K. Miyazaki. 2007. The structural basis for the exo-mode of action in GH74 oligoxyloglucan reducing end-specific cellobiohydrolase. J. Mol. Biol. 370: 5362.
107. Ye, X.,, Y. Wang,, R. C. Hopkins,, M. W. W. Adams,, B. R. Evans,, J. R. Mielenz, and, Y. H. P. Zhang. 2009. Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem 2: 149152.
108. Yip, V. L. Y., and, S. G. Withers. 2006. Family 4 glycoside hydrolases are special: the first-elimination mechanism amongst glycoside hydrolases. Biocat. Biotransform. 24: 167176.
109. Yuan, S.,, Y. Wu, and, D. J. Cosgrove. 2001. A fungal endoglucanase with plant cell wall extension activity. Plant Physiol. 127: 324333.
110. Zhou, Q.,, M. J. Baumann,, P. S. Piispanen,, T. T. Teeri, and, H. Brumer. 2006. Xyloglucan and xylu-glucan endo-transglycosylases (XET): tools for ex vivo cellulose surface modification. Biocatal. Biotransform. 24: 107120.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error