Chapter 37 : Enzyme Production in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Enzyme Production in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap37-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap37-2.gif


With the development of recombinant DNA technology, industrial enzymes are increasingly being produced in heterologous hosts, particularly in the bacterium and the yeasts and . Although mammalian cells are predominately used for the production of recombinant human enzymes, this chapter focuses on the use of as an alternative host for the production of recombinant enzymes. In designing the fermentation process, the preferred method is the use of high-cell-density fermentations in stirred-tank reactors. Many bacterial promoters also contain an operator that interacts with a cognate transcription factor. Because the number of gene transcripts is the strongest determinant of high-level protein production, transcriptional regulation is the most important consideration when developing protein production methods. Protein secretion to the periplasm, in contrast, has been used extensively to produce functional proteins, obtain authentic protein sequences, increase yields, and facilitate protein purification. It is known that the fine-tuning of gene expression rates is necessary to obtain increased secretion efficiency, because highly expressed proteins tend to overwhelm the secretion machinery, resulting in the formation of inclusion bodies. Inducible gene expression systems are commonly used in recombinant protein production. A strategy to implement autoinduction is based on the bacterial quorum-sensing mechanism. Limiting essential nutrient levels, and therefore cell growth rates, is an effective strategy to reduce acetate production. On the production side, achieving a balance between protein production levels and the metabolic burden on the cell is a time-consuming process.

Citation: Sayut D, Kambam P, Herrick W, Sun L. 2010. Enzyme Production in , p 539-548. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch37
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Aehle, W. 2004. Enzymes in Industry, 2nd ed. Wiley-VCH, Weinheim, Germany.
2. Akesson, M.,, P. Hagander, and, J. P. Axelsson. 2001. Probing control of fed-batch cultivations: analysis and tuning. Control Eng. Practice 9: 709723.
3. Baba, T.,, T. Ara,, M. Hasegawa,, Y. Takai,, Y. Okumura,, M. Baba,, K. A. Datsenko,, M. Tomita,, B. L. Wanner, and, H. Mori. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2: 111.
4. Babaeipour, V.,, S. A. Shojaosadati,, S. M. Robatjazi,, R. Khalilzadeh, and, N. Maghsoudi. 2007. Over-production of human interferon-gamma by HCDC of recombinant Escherichia coli. Process Biochem. 42: 112117.
5. Baneyx, F., and, M. Mujacic. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22: 13991408.
6. Berks, B. C.,, T. Palmer, and, F. Sargent. 2005. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr. Opin. Microbiol. 8: 174181.
7. Berks, B. C.,, F. Sargent, and, T. Palmer. 2000. The Tat protein export pathway. Mol. Microbiol. 35: 260274.
8. Boer, H. A. D.,, L. J. Comstock, and, M. Vasser. 1983. The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA 80: 2125.
9. Bouet, J. Y.,, K. Nordstrom, and, D. Lane. 2007. Plas-mid partition and incompatibility—the focus shifts. Mol. Microbiol. 65: 14051414.
10. Buts, L.,, J. Lah,, M.-H. Dao-Thi,, L. Wyns, and, R. Loris. 2005. Toxin-antitoxin modules as bacterial metabolic stress managers. Trends Biochem. Sci. 30: 672679.
11. Carrier, T. A., and, J. D. Keasling. 1999. Library of synthetic 59 secondary structures to manipulate mRNA stability in Escherichia coli. Biotechnol. Prog. 15: 5864.
12. Casali, N. 2003. E. coli plasmid vectors, p. 2748. In N. Casali and, A. Preston (ed.), Methods in Molecular Biology, vol. 235. Humana Press, Totowa, NJ.
13. Chatwin, H. M., and, D. K. Summers. 2001. Monomer-dimer control of the ColE1 P- cer promoter. Microbiology 147: 30713081.
14. Chen, C.,, B. Snedecor,, J. C. Nishihara,, J. C. Joly,, N. McFarland,, D. C. Andersen,, J. E. Battersby, and, K. M. Champion. 2004. High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant ( degP prc spr) host strain. Biotechnol. Bioeng. 85: 463474.
15. Cheng, L. C.,, J. Y. Wu, and, T. L. Chen. 2002. A pseudo-exponential feeding method for control of specific growth rate in fed-batch cultures. Biochem. Eng. J. 10: 227232.
16. Choi, J. H.,, K. J. Jeong,, S. C. Kim, and, S. Y. Lee. 2000. Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Escherichia coli using the Bacillus sp endoxylanase signal sequence. Appl. Microbiol. Biotechnol. 53: 640645.
17. Choi, J. H.,, K. C. Keum, and, S. Y. Lee. 2006. Production of recombinant proteins by high cell density culture of Escherichia coli. Chem. Eng. Sci. 61: 876885.
18. Choi, J. H., and, S. Y. Lee. 2004. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64: 625635.
19. Couturier, M.,, E. M. Bahassi, and, L. Van Melderen. 1998. Bacterial death by DNA gyrase poisoning. Trends Microbiol. 6: 269275.
20. Couturier, M.,, F. Bex,, P. L. Bergquist, and, W. K. Maas. 1988. Identification and classification of bacterial plas-mids. Microbiol. Rev. 52: 375395.
21. Cranenburgh, R. M.,, J. A. Hanak,, S. G. Williams, and, D. J. Sherratt. 2001. Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Res. 29: E26.
22. Dalbey, R. E., and, M. Chen. 2004. Sec-translocase mediated membrane protein biogenesis. Biochim. Biophys. Acta 1694: 3753.
23. del Solar, G.,, R. Giraldo,, M. J. Ruiz-Echevarria,, M. Espinosa, and, R. Diaz-Orejas. 1998. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62: 434464.
24. Desmit, M. H., and, J. Vanduin. 1994. Control of translation by messenger RNA secondary structure in Escherichia coli—a quantitative analysis of literature data. J. Mol. Biol. 244: 144150.
25. Drew, D.,, L. Froderberg,, L. Baars, and, J. W. de Gier. 2003. Assembly and overexpression of membrane proteins in Escherichia coli. Biochim. Biophys. Acta 1610: 310.
26. Dubendorf, J. W., and, F. W. Studier. 1991. Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J. Mol. Biol. 219: 4559.
27. Ebersbach, G., and, K. Gerdes. 2005. Plasmid segregation mechanisms. Annu. Rev. Genet. 39: 453479.
28. Economou, A. 1999. Following the leader: bacterial protein export through the Sec pathway. Trends Microbiol. 7: 315320.
29. Eiteman, M. A., and, E. Altman. 2006. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24: 530536.
30. Evan, G. I.,, G. K. Lewis,, G. Ramsay, and, J. M. Bishop. 1985. Isolation of monoclonal antibodies specific for human C-Myc Proto-oncogene product. Mol. Cell. Biol. 5: 36103616.
31. Farmer, W. R., and, J. C. Liao. 2000. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18: 533537.
32. Forster, A. C., and, G. M. Church. 2006. Towards synthesis of a minimal cell. Mol. Syst. Biol. 2: 210.
33. Fuqua, C., and, E. P. Greenberg. 2002. Listening in on bacteria: acyl-homoserine lactone signaling. Nat. Rev. Mol. Cell Biol. 3: 685695.
34. Georgiou, G., and, L. Segatori. 2005. Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr. Opin. Biotechnol. 16: 538545.
35. Gerdes, K.,, F. W. Bech,, S. T. Jorgensen,, A. Lobnerolesen,, P. B. Rasmussen,, T. Atlung,, L. Boe,, O. Karlstrom,, S. Molin, and, K. Vonmeyenburg. 1986. Mechanism of postsegregational killing by the hok gene-product of the parB system of plasmid R1 and its homology with the relF gene-product of the Escherichia coli relB operon. EMBO J. 5: 20232029.
36. Guzman, L. M.,, D. Belin,, M. J. Carson, and, J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose P- bad promoter. J. Bacteriol. 177: 41214130.
37. Harley, C. B., and, R. P. Reynolds. 1987. Analysis of E. coli promoter sequences. Nucleic Acids Res. 15: 23432361.
38. Herman-Antosiewicz, A.,, M. Obuchowski, and, G. Wegrzyn. 2001. A plasmid cloning vector with precisely regulatable copy number in Escherichia coli. Mol. Biotechnol. 17: 193.
39. Hershfield, V.,, H. W. Boyer,, C. Yanofsky,, M. A. Lovett, and, D. R. Helinski. 1974. Plasmid Cole1 as a molecular vehicle for cloning and amplification of DNA. Proc. Natl. Acad. Sci. USA 71: 34553459.
40. Herskovits, A. A.,, E. S. Bochkareva, and, E. Bibi. 2000. New prospects in studying the bacterial signal recognition particle pathway. Mol. Microbiol. 38: 927939.
41. Higgins, C. F.,, R. S. McLaren, and, S. F. Newbury. 1988. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? A review. Gene 72: 314.
42. Hiszczynska-Sawicka, E., and, J. Kur. 1997. Effect of Escherichia coli IHF mutations on plasmid p15A copy number. Plasmid 38: 174179.
43. Hochuli, E.,, W. Bannwarth,, H. Dobeli,, R. Gentz, and, D. Stuber. 1988. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. BioTechniques 6: 13211325.
44. Hochuli, E.,, H. Dobeli, and, A. Schacher. 1987. New metal chelate adsorbent selective for proteins and peptides containing neighboring histidine-residues. J. Chromatogr. 411: 177184.
45. Hoffman, B. J.,, J. A. Broadwater,, P. Johnson,, J. Harper,, B. G. Fox, and, W. R. Kenealy. 1995. Lactose fed-batch over-expression of recombinant metalloproteins in Escherichia coli Bl21(DE3)—process control yielding high-levels of metal-incorporated, soluble protein. Protein Expr. Purif. 6: 646654.
46. Holmes, W. M.,, T. Platt, and, M. Rosenberg. 1983. Termination of transcription in E. coli. Cell 32: 10291032.
47. Hu, S. Y.,, J. L. Wu, and, J. H. Huang. 2004. Production of tilapia insulin-like growth factor-2 in high cell density cultures of recombinant Escherichia coli. J. Biotechnol. 107: 161171.
48. Isaacs, F. J.,, D. J. Dwyer,, C. M. Ding,, D. D. Pervouchine,, C. R. Cantor, and, J. J. Collins. 2004. Engineered ri-boregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22: 841847.
49. Izard, J. W., and, D. A. Kendall. 1994. Signal peptides: exquisitely designed transport promoters. Mol. Microbiol. 13: 765773.
50. Jana, S., and, J. K. Deb. 2005. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl. Microbiol. Biotechnol. 67: 289298.
51. Jensen, P. R., and, K. Hammer. 1998. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64: 8287.
52. Joly, J. C.,, W. S. Leung, and, J. R. Swartz. 1998. Over-expression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc. Natl. Acad. Sci. USA 95: 27732777.
53. Kambam, P. K. R.,, D. T. Eriksen,, J. Lajoie,, D. J. Sayut, and, L. Sun. 2009. Altering the substrate specificity of RhlI by directed evolution. Chembiochem 10: 553558.
54. Kambam, P. K. R.,, D. J. Sayut,, Y. Niu,, D. T. Eriksen, and, L. Sun. 2008. Directed evolution of LuxI for enhanced OHHL production. Biotechnol. Bioeng. 101: 263272.
55. Khlebnikov, A., and, J. D. Keasling. 2002. Effect of lacY expression on homogeneity of induction from the P-tac and P- trc promoters by natural and synthetic inducers. Biotechnol. Progr. 18: 672674.
56. Kimura, S., and, T. Iyanagi. 2003. High-level expression of porcine liver cytochrome P-450 reductase catalytic domain in Escherichia coli by modulating the predicted local secondary structure of mRNA. J. Biochem. 134: 403413.
57. Labbe, G.,, J. Bezaire,, S. de Groot,, C. How,, T. Rasmusson,, J. Yaeck,, E. Jervis,, G. I. Dmitrienko, and, J. G. Guillemette. 2007. High level production of the Magnaporthe grisea fructose 1,6-bisphosphate aldolase enzyme in Escherichia coli using a small volume bench-top fermentor. Protein Expr. Purif. 51: 110119.
58. Leader, B.,, Q. J. Baca, and, D. E. Golan. 2008. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov. 7: 2139.
59. Lee, S. Y. 1996. High cell-density culture of Escherichia coli. Trends Biotechnol. 14: 98105.
60. Liese, A.,, K. Seelbach, and, C. Wandrey. 2000. Industrial Biotransformations. Wiley-VCH, Weinheim, Germany.
61. Luirink, J., and, I. Sinning. 2004. SRP-mediated protein targeting: structure and function revisited. Biochim. Bio-phys. Acta 1694: 1735.
62. Luo, Q. P.,, Y. L. Shen,, D. Z. Wei, and, W. Cao. 2006. Optimization of culture on the overproduction of TRAIL in high-cell-density culture by recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 71: 184191.
63. Lutz, R., and, H. Bujard. 1997. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I-1-I-2 regulatory elements. Nucleic Acids Res. 25: 12031210.
64. Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512538.
65. Martinez, E.,, B. Bartolome, and, F. Delacruz. 1988. pACYC184-derived cloning vectors containing the multiple cloning site and lacZa reporter gene of pUC8/9 and pUC18/19 plasmids. Gene 68: 159162.
66. Martinez-Martinez, I.,, C. Kaiser,, A. Rohde,, A. Ellert,, F. Garcia-Carmona,, A. Sanchez-Ferrer, and, R. Luttmann. 2007. High-level production of Bacillus subtilis glycine oxidase by fed-batch cultivation of recombinant Escherichia coli rosetta (DE3). Biotechnol. Prog. 23: 645651.
67. McCarthy, J. E.,, B. Gerstel,, B. Surin,, U. Wiedemann, and, P. Ziemke. 1991. Differential gene expression from the Escherichia coli atp operon mediated by segmen-tal differences in mRNA stability. Mol. Microbiol. 5: 24472458.
68. Mergulhao, F. J. M.,, G. A. Monteiro,, J. M. S Cabral, and, M. A. Taipa. 2004. Design of bacterial vector systems for the production of recombinant proteins in Escherichia coli. J., Microbiol. Biotechnol. 14: 114.
69. Mergulhao, F. J. M.,, D. K. Summers, and, G. A. Monteiro. 2005. Recombinant protein secretion in Escherichia coli. Biotechnol. Adv. 23: 177202.
70. Middelberg, A. P. J. 1996. Large-scale recovery of recombinant protein inclusion bodies expressed in Escherichia coli. J. Microbiol. Biotechnol. 6: 225231.
71. Morgan-Kiss, R. M.,, C. Wadler, and, J. E. Cronan. 2002. Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc. Natl. Acad. Sci. USA 99: 73737377.
72. Mori, H. 2004. From the sequence to cell modeling: comprehensive functional genomics in Escherichia coli. J. Biochem. Mol. Biol. 37: 8392.
73. Newbury, S. F.,, N. H. Smith, and, C. F. Higgins. 1987. Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51: 11311143.
74. Newbury, S. F.,, N. H. Smith,, E. C. Robinson,, I. D. Hiles, and, C. F. Higgins. 1987. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48: 297310.
75. Newman, J. R., and, C. Fuqua. 1999. Broad-host-range expression vectors that carry the l-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227: 197203.
76. Novick, R. P. 1987. Plasmid incompatibility. Microbiol. Rev. 51: 381395.
77. Nudler, E., and, M. E. Gottesman. 2002. Transcription termination and anti-termination in E. coli. Genes Cells 7: 755768.
78. Peredelchuk, M. Y., and, G. N. Bennett. 1997. A method for construction of E. coli strains with multiple DNA insertions in the chromosome. Gene 187: 231238.
79. Peterson, J., and, G. J. Phillips. 2008. New pSC101-derivative cloning vectors with elevated copy numbers. Plasmid 59: 193201.
80. Pfleger, B. F.,, N. J. Fawzi, and, J. D. Keasling. 2005. Optimization of DsRed production in Escherichia coli: effect of ribosome binding site sequestration on translation efficiency. Biotechnol. Bioeng. 92: 553558.
81. Pfleger, B. F.,, D. J. Pitera,, C. D. Smolke, and, J. D. Keasling. 2006. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24: 10271032.
82. Poole, E. S.,, C. M. Brown, and, W. P. Tate. 1995. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Esch-erichia coli. EMBO J. 14: 151158.
83. Qing, G. L.,, B. Xia, and, M. Inouye. 2003. Enhancement of translation initiation by A/T-rich sequences downstream of the initiation codon in Escherichia coli. J. Mol. Microbiol. Biotechnol. 6: 133144.
84. Riesenberg, D., and, R. Guthke. 1999. High-cell-density cultivation of microorganisms. Appl. Microbiol. Biotechnol. 51: 422430.
85. Ringquist, S.,, S. Shinedling,, D. Barrick,, L. Green,, J. Binkley,, G. D. Stormo, and, L. Gold. 1992. Translation initiation in Escherichia coli sequences within the ribosome binding site. Mol. Microbiol. 6: 12191229.
86. Ross, W.,, K. K. Gosink,, J. Salomon,, K. Igarashi,, C. Zou,, A. Ishihama,, K. Severinov, and, R. L. Gourse. 1993. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 262: 14071413.
87. Rowe, D. C. D., and, D. K. Summers. 1999. The quiescent-cell expression system for protein synthesis in Esch-erichia coli. Appl. Environ. Microbiol. 65: 27102715.
88. Saida, F.,, M. Uzan,, B. Odaert, and, F. Bontems. 2006. Expression of highly toxic genes in E. coli: special strategies and genetic tools. Curr. Protein Pept. Sci. 7: 4756.
89. Sayut, D. J.,, P. K. R. Kambam, and, L. Sun. 2007. Engineering and applications of genetic switches. Mol. Biosyst. 3: 835840.
90. Sayut, D. J.,, P. K. R. Kambam, and, L. Sun. 2008. Enzyme replacement therapy for lysosomal storage disorders. Recent Pat. Biomed. Eng. 1: 141147.
91. Sayut, D. J.,, Y. Niu, and, L. Sun. 2006. Construction and engineering of positive feedback loops. ACS Chem. Biol. 1: 692696.
92. Sayut, D. J.,, Y. Niu, and, L. Sun. 2009. Construction and enhancement of a minimal genetic AND logic gate. Appl. Environ. Microbiol. 75: 637642.
93. Schmidt, F. R. 2004. Recombinant expression systems in the pharmaceutical industry. Appl. Environ. Microbiol. 65: 363372.
94. Schulz, V. P., and, W. S. Reznikoff. 1991. Translation initiation of Is50r read-through transcripts. J. Mol. Biol. 221: 6580.
95. Sheps, J. A.,, I. Cheung, and, V. Ling. 1995. Hemo-lysin transport in Escherichia coli. J. Biol. Chem. 270: 1482914834.
96. Shiloach, J., and, R. Fass. 2005. Growing E.coli to high cell density—a historical perspective on method development. Biotechnol. Adv. 23: 345357.
97. Siegele, D. A., and, J. C. Hu. 1997. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc. Natl. Acad. Sci. USA 94: 81688172.
98. Smolke, C. D.,, T. A. Carrier, and, J. D. Keasling. 2000. Coordinated, differential expression of two genes through directed mRNA cleavage and stabilization by secondary structures. Appl. Environ. Microbiol. 66: 53995405.
99. Smolke, C. D., and, J. D. Keasling. 2002. Effect of copy number and mRNA processing and stabilization on transcript and protein levels from an engineered dual-gene operon. Biotechnol. Bioeng. 78: 412424.
100. Smolke, C. D., and, J. D. Keasling. 2002. Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnol. Bioeng. 80: 762776.
101. Srivastava, P.,, P. Bhattacharaya,, G. Pandey, and, K. J. Mukherjee. 2005. Overexpression and purification of re-combinant human interferon alpha2b in Escherichia coli. Protein Expr. Purif. 41: 313322.
102. Studier, F. W. 2005. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41: 207234.
103. Studier, F. W., and, B. A. Moffatt. 1986. Use of bacterio-phage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113130.
104. Summers, D. K., and, D. J. Sherratt. 1984. Multimer-ization of high copy number plasmids causes instabil-ity—Cole1 encodes a determinant essential for plasmid monomerization and stability. Cell 36: 10971103.
105. Suzuki, M.,, J. Zhang,, M. Liu,, N. A. Woychik, and, M. Inouye. 2005. Single protein production in living cells facilitated by an mRNA interferase. Mol. Cell 18: 253261.
106. Thomas, C. M., and, C. A. Smith. 1987. Incompatibility group-P plasmids—genetics, evolution, and use in genetic manipulation. Annu. Rev. Microbiol. 41: 77101.
107. Thomas, M. D., and, A. V. Tilburg. 2000. Overexpression of foreign proteins using the Vibrio fischeri lux control system. Method Enzymol. 305: 315329.
108. Trinh, C. T.,, P. Unrean, and, F. Srienc. 2008. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl. Environ. Microbiol. 74: 36343643.
109. Wagner, S.,, M. M. Klepsch,, S. Schlegel,, A. Appel,, R. Draheim,, M. Tarry,, M. Hogbom,, K. J. van Wijk,, D. J. Slotboom,, J. O. Persson, and, J. W. de Gier. 2008. Tuning Escherichia coli for membrane protein overexpression. Proc. Natl. Acad. Sci. USA 105: 1437114376.
110. Walsh, G. 2006. Biopharmaceutical benchmarks 2006. Nat. Biotechnol. 24: 769776.
111. Wong, H. C., and, S. Chang. 1986. Identification of a positive retroregulator that stabilizes messenger RNAs in bacteria. Proc. Natl. Acad. Sci. USA 83: 32333237.
112. Xie, L.,, D. Hall,, M. A. Eiteman, and, E. Altman. 2003. Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Appl. Microbiol. Biotechnol. 63: 267273.
113. Yanisch-Perron, C.,, J. Vieira, and, J. Messing. 1985. Improved M13 phage cloning vectors and host strains—nucleotide sequences of the M13mp18 and Puc19 vectors. Gene 33: 103119.


Generic image for table

Some recent examples of producing recombinant proteins in

Citation: Sayut D, Kambam P, Herrick W, Sun L. 2010. Enzyme Production in , p 539-548. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch37
Generic image for table

Genotypes and key features of common strains

Citation: Sayut D, Kambam P, Herrick W, Sun L. 2010. Enzyme Production in , p 539-548. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch37
Generic image for table

Genetic elements that determine gene expression in a typical plasmid

Citation: Sayut D, Kambam P, Herrick W, Sun L. 2010. Enzyme Production in , p 539-548. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch37
Generic image for table

Secretory systems used in for recombinant protein production

Citation: Sayut D, Kambam P, Herrick W, Sun L. 2010. Enzyme Production in , p 539-548. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch37

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error