Chapter 31 : Broad-Range PCR for Detection and Identification of Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Broad-Range PCR for Detection and Identification of Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap31-1.gif /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap31-2.gif


The two main molecules that are suitable for bacterial broad-range PCR are the 16S rRNA gene, consisting of approximately 1,540 bp (in , 1,542 bp), and the 23S rRNA gene, consisting of approximately 2,900 bp (in , 2,904 bp). While the impact of this appears to be somewhat smaller for diagnostic broad-range PCR in cases of suspected monomicrobial infections, it can be dramatic for polymicrobial infections, microbial flora studies, or environmental studies, where certain bacterial taxa may become significantly over- or under-represented after PCR amplification. In addition, the inherent nonselective nature of broad-range PCR makes it susceptible to minute amounts of any bacterial DNA that might be encountered along the various steps of testing. The classical way to detect and identify bacteria by broad-range PCR is via visualization of PCR products by standard gel electrophoresis, followed by sequencing, preferably for both DNA strands of the products. Broad-range PCR offers two potential benefits: it lacks selectivity for particular groups of bacteria, and it can detect as well as identify culture-resistant, fastidious, damaged, and slow-growing microorganisms. Bacterial broad-range PCR has also attracted interest in transfusion medicine, in order to assess blood products for bacterial contamination. Conducting broad-range PCR analysis at a level of high analytical and clinical sensitivity is a complex task and remains one of the most difficult and challenging PCR applications. Sequence-based identification of positive diagnostic broad-range PCR products is generally advisable, even when real-time technology is used.

Citation: Maiwald M. 2011. Broad-Range PCR for Detection and Identification of Bacteria, p 491-505. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch31
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

(A) Schematic drawing of the bacterial 16S rRNA gene, with conserved (open bars) and variable (shaded bars) regions. The location of broad-range primers ( Table 1 ) is shown. Modified from reference , with permission from the American Society for Microbiology. (B) Conservation profile of 16S rRNA across the domain , constructed with the software package ARB ( ) and the SILVA ( ) data set. The graph shows the relative frequency ( axis) of the most common nucleotide for each position ( axis) in 16S rRNA. Courtesy of Frank Oliver Glöckner and Elmar Pruesse (Max Planck Institute for Marine Microbiology, Bremen, Germany).

Citation: Maiwald M. 2011. Broad-Range PCR for Detection and Identification of Bacteria, p 491-505. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Logarithmic amplification plot of a broad-range bacterial 16S rRNA gene PCR in real-time format. This amplification pattern has arisen in a study in which blood from healthy subjects was compared with negative controls ( ). Samples were analyzed in triplicate and for 40 cycles. The value is derived from the number of cycles needed for the amplified DNA to reach the quantification cycle (threshold). ΔRn, relative fluorescence. Reprinted from reference , with permission from the American Society for Microbiology.

Citation: Maiwald M. 2011. Broad-Range PCR for Detection and Identification of Bacteria, p 491-505. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Achenbach, L.,, and C. R. Woese. 1995. 16S and 23S rRNA-like primers, p. 521–523. In K. R. Sowers and, H. J. Schreier (ed.), Archaea—A Laboratory Manual: Methanogens. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
2. Altwegg, M.,, A. Fleisch-Marx,, D. Goldenberger,, S. Hailemariam,, A. Schaffner, and, R. Kissling. 1996. Spondylodiscitis caused by Tropheryma whippelii. Schweiz. Med. Wochenschr. 126: 14951499.
3. Amann, R. I.,, L. Krumholz, and, D. A. Stahl. 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172: 762770.
4. Amann, R. I.,, W. Ludwig, and, K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143169.
5. Anderson, B. E.,, J. E. Dawson,, D. C. Jones, and, K. H. Wilson. 1991. Ehrlichia chaffeensis, a new species associated with human ehrlichiosis. J. Clin. Microbiol. 29: 28382842.
6. Anthony, R. M.,, T. J. Brown, and, G. L. French. 2000. Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array. J. Clin. Microbiol. 38: 781788.
7. Ashelford, K. E.,, N. A. Chuzhanova,, J. C. Fry,, A. J. Jones, and, A. J. Weightman. 2005. At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl. Environ. Microbiol. 71: 77247736.
8. Ashelford, K. E.,, A. J. Weightman, and, J. C. Fry. 2002. PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res. 30: 34813489.
9. Baker, G. C.,, J. J. Smith, and, D. A. Cowan. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55: 541555.
10. Barns, S. M.,, R. E. Fundyga,, M. W. Jeffries, and, N. R. Pace. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91: 16091613.
11. Ben-Dov, E.,, O. H. Shapiro,, N. Siboni, and, A. Kushmaro. 2006. Advantage of using inosine at the 3′ termini of 16S rRNA gene universal primers for the study of microbial diversity. Appl. Environ. Microbiol. 72: 69026906.
12. Berger, S. A.,, S. Weitzman,, S. C. Edberg, and, J. I. Casey. 1974. Bacteremia after the use of an oral irrigation device. A controlled study in subjects with normalappearing gingiva: comparison with use of toothbrush. Ann. Intern. Med. 80: 510511.
13. Bergmans, A. M.,, J. W. Groothedde,, J. F. Schellekens,, J. D. van Embden,, J. M. Ossewaarde, and, L. M. Schouls. 1995. Etiology of cat scratch disease: comparison of polymerase chain reaction detection of Bartonella (formerly Rochalimaea) and Afipia felis DNA with serology and skin tests. J. Infect. Dis. 171: 916923.
14. Böttger, E. C. 1990. Frequent contamination of Taq polymerase with DNA. Clin. Chem. 36: 12581259.
15. Böttger, E. C.,, A. Teske,, P. Kirschner,, S. Bost,, H. R. Chang,, V. Beer, and, B. Hirschel. 1992. Disseminated “Mycobacterium genavense” infection in patients with AIDS. Lancet 340: 7680.
16. Breitkopf, C.,, D. Hammel,, H. H. Scheld,, G. Peters, and, K. Becker. 2005. Impact of a molecular approach to improve the microbiological diagnosis of infective heart valve endocarditis. Circulation 111: 14151421.
17. Brenner, D. J.,, S. P. O’Connor,, H. H. Winkler, and, A. G. Steigerwalt. 1993. Proposals to unify the genera Bartonella and Rochalimaea, with descriptions of Bartonella quintana comb. nov., Bartonella vinsonii comb. nov., Bartonella henselae comb. nov., and Bartonella elizabethae comb. nov., and to remove the family Bartonellaceae from the order Rickettsiales. Int. J. Syst. Bacteriol. 43: 777786.
18. Brodie, E. L.,, T. Z. Desantis,, D. C. Joyner,, S. M. Baek,, J. T. Larsen,, G. L. Andersen,, T. C. Hazen,, P. M. Richardson,, D. J. Herman,, T. K. Tokunaga,, J. M. Wan, and, M. K. Firestone. 2006. Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl. Environ. Microbiol. 72: 62886298.
19. Brodie, E. L.,, T. Z. DeSantis,, J. P. Parker,, I. X. Zubietta,, Y. M. Piceno, and, G. L. Andersen. 2007. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. USA 104: 299304.
20. Carroll, N. M.,, P. Adamson, and, N. Okhravi. 1999. Elimination of bacterial DNA from Taq DNA polymerases by restriction endonuclease digestion. J. Clin. Microbiol. 37: 34023404.
21. Casalta, J. P.,, F. Gouriet,, V. Roux,, F. Thuny,, G. Habib, and, D. Raoult. 2009. Evaluation of the LightCycler(R) SeptiFast test in the rapid etiologic diagnostic of infectious endocarditis. Eur. J. Clin. Microbiol. Infect. Dis. 28: 569573.
22. Casalta, J. P.,, G. Habib,, B. La Scola,, M. Drancourt,, T. Caus, and, D. Raoult. 2002. Molecular diagnosis of Granulicatella elegans on the cardiac valve of a patient with culture-negative endocarditis. J. Clin. Microbiol. 40: 18451847.
23. Chen, K.,, H. Neimark,, P. Rumore, and, C. R. Steinman. 1989. Broad range DNA probes for detecting and amplifying eubacterial nucleic acids. FEMS Microbiol. Lett. 48: 1924.
24. Cheng, J. C.,, C. L. Huang,, C. C. Lin,, C. C. Chen,, Y. C. Chang,, S. S. Chang, and, C. P. Tseng. 2006. Rapid detection and identification of clinically important bacteria by high-resolution melting analysis after broad-range ribosomal RNA real-time PCR. Clin. Chem. 52: 19972004.
25. Choi, B. K.,, B. J. Paster,, F. E. Dewhirst, and, U. B. Göbel. 1994. Diversity of cultivable and uncultivable oral spirochetes from a patient with severe destructive periodontitis. Infect. Immun. 62: 18891895.
26. Clarridge, J. E., III. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17: 840862.
27. Cole, J. R.,, Q. Wang,, E. Cardenas,, J. Fish,, B. Chai,, R. J. Farris,, A. S. Kulam-Syed-Mohideen,, D. M. McGarrell,, T. Marsh,, G. M. Garrity, and, J. M. Tiedje. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: D141D145.
28. Corless, C. E.,, M. Guiver,, R. Borrow,, V. Edwards-Jones,, E. B. Kaczmarski, and, A. J. Fox. 2000. Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J. Clin. Microbiol. 38: 17471752.
29. Dagan, R.,, O. Shriker,, I. Hazan,, E. Leibovitz,, D. Greenberg,, F. Schlaeffer, and, R. Levy. 1998. Prospective study to determine clinical relevance of detection of pneumococcal DNA in sera of children by PCR. J. Clin. Microbiol. 36: 669673.
30. Daims, H.,, A. Brühl,, R. Amann,, K. H. Schleifer, and, M. Wagner. 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22: 434444.
31. DeSantis, T. Z.,, P. Hugenholtz,, N. Larsen,, M. Rojas,, E. L. Brodie,, K. Keller,, T. Huber,, D. Dalevi,, P. Hu, and, G. L. Andersen. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 50695072.
32. Deutch, S.,, D. Dahlberg,, J. Hedegaard,, M. B. Schmidt,, J. K. Moller, and, L. Ostergaard. 2007. Diagnosis of ventricular drainage-related bacterial meningitis by broad-range real-time polymerase chain reaction. Neurosurgery 61: 306312.
33. Devulder, G.,, G. Perriere,, F. Baty, and, J. P. Flandrois. 2003. BIBI, a bioinformatics bacterial identification tool. J. Clin. Microbiol. 41: 17851787.
34. DiGiulio, D. B.,, R. Romero,, H. P. Amogan,, J. P. Kusanovic,, E. M. Bik,, F. Gotsch,, C. J. Kim,, O. Erez,, S. Edwin, and, D. A. Relman. 2008. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS ONE 3: e3056.
35. Dreier, J.,, M. Störmer, and, K. Kleesiek. 2007. Real-time polymerase chain reaction in transfusion medicine: applications for detection of bacterial contamination in blood products. Transfus. Med. Rev. 21: 237254.
36. Dreier, J.,, M. Störmer, and, K. Kleesiek. 2004. Two novel real-time reverse transcriptase PCR assays for rapid detection of bacterial contamination in platelet concentrates. J. Clin. Microbiol. 42: 47594764.
37. Eden, P. A.,, T. M. Schmidt,, R. P. Blakemore, and, N. R. Pace. 1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int. J. Syst. Bacteriol. 41: 324325.
38. Edwards, U.,, T. Rogall,, H. Blöcker,, M. Emde, and, E. C. Böttger. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 78437853.
39. Farris, M. H.,, and J. B. Olson. 2007. Detection of Actinobacteria cultivated from environmental samples reveals bias in universal primers. Lett. Appl. Microbiol. 45: 376381.
40. Fenollar, F.,, P. Y. Levy, and, D. Raoult. 2008. Usefulness of broad-range PCR for the diagnosis of osteoarticular infections. Curr. Opin. Rheumatol. 20: 463470.
41. Fenollar, F.,, V. Roux,, A. Stein,, M. Drancourt, and, D. Raoult. 2006. Analysis of 525 samples to determine the usefulness of PCR amplification and sequencing of the 16S rRNA gene for diagnosis of bone and joint infections. J. Clin. Microbiol. 44: 10181028.
42. Frank, J. A.,, C. I. Reich,, S. Sharma,, J. S. Weisbaum,, B. A. Wilson, and, G. J. Olsen. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74: 24612470.
43. Fredricks, D. N.,, T. L. Fiedler, and, J. M. Marrazzo. 2005. Molecular identification of bacteria associated with bacterial vaginosis. N. Engl. J. Med. 353: 18991911.
44. Fredricks, D. N.,, J. A. Jolley,, P. W. Lepp,, J. C. Kosek, and, D. A. Relman. 2000. Rhinosporidium seeberi: a human pathogen from a novel group of aquatic protistan parasites. Emerg. Infect. Dis. 6: 273282.
45. Fredricks, D. N.,, and D. A. Relman. 1999. Application of polymerase chain reaction to the diagnosis of infectious diseases. Clin. Infect. Dis. 29: 475486.
46. Fredricks, D. N.,, and D. A. Relman. 1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin. Microbiol. Rev. 9: 1833.
47. Frothingham, R.,, R. B. Blitchington,, D. H. Lee,, R. C. Greene, and, K. H. Wilson. 1992. UV absorption complicates PCR decontamination. BioTechniques 13: 208210.
48. Giovannoni, S. J.,, T. B. Britschgi,, C. L. Moyer, and, K. G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 6063.
49. Goldenberger, D.,, and M. Altwegg. 1995. Eubacterial PCR: contaminating DNA in primer preparations and its elimination by UV light. J. Microbiol. Methods 21: 2732.
50. Goldenberger, D.,, A. Künzli,, P. Vogt,, R. Zbinden, and, M. Altwegg. 1997. Molecular diagnosis of bacterial endocarditis by broad-range PCR amplification and direct sequencing. J. Clin. Microbiol. 35: 27332739.
51. Gubler, J. G. H.,, M. Kuster,, F. Dutly,, F. Bannwart,, M. Krause,, H. P. Vogelin,, G. Garzoli, and, M. Altwegg. 1999. Whipple endocarditis without overt gastrointestinal disease: report of four cases. Ann. Intern. Med. 131: 112116.
52. Hajjeh, R. A.,, D. Relman,, P. R. Cieslak,, A. N. Sofair,, D. Passaro,, J. Flood,, J. Johnson,, J. K. Hacker,, W. J. Shieh,, R. M. Hendry,, S. Nikkari,, S. Ladd-Wilson,, J. Hadler,, J. Rainbow,, J. W. Tappero,, C. W. Woods,, L. Conn,, S. Reagan,, S. Zaki, and, B. A. Perkins. 2002. Surveillance for unexplained deaths and critical illnesses due to possibly infectious causes, United States, 1995–1998. Emerg. Infect. Dis. 8: 145153.
53. Hansen, M. C.,, T. Tolker-Nielsen,, M. Givskov, and, S. Molin. 1998. Biased 16S rDNA PCR amplification caused by interference from DNA flanking the template region. FEMS Microbiol. Ecol. 26: 141149.
54. Harris, K. A.,, and J. C. Hartley. 2003. Development of broad-range 16S rDNA PCR for use in the routine diagnostic clinical microbiology service. J. Med. Microbiol. 52: 685691.
55. Hein, I.,, W. Schneeweiss,, C. Stanek, and, M. Wagner. 2007. Ethidium monoazide and propidium monoazide for elimination of unspecific DNA background in quantitative universal real-time PCR. J. Microbiol. Methods 71: 336339.
56. Heininger, A.,, M. Binder,, A. Ellinger,, K. Botzenhart,, K. Unertl, and, G. Döring. 2003. DNase pretreatment of master mix reagents improves the validity of universal 16S rRNA gene PCR results. J. Clin. Microbiol. 41: 17631765.
57. Hilali, F.,, P. Saulnier,, E. Chachaty, and, A. Andremont. 1997. Decontamination of polymerase chain reaction reagents for detection of low concentrations of 16S rRNA genes. Mol. Biotechnol. 7: 207216.
58. Hitti, J.,, D. E. Riley,, M. A. Krohn,, S. L. Hillier,, K. J. Agnew,, J. N. Krieger, and, D. A. Eschenbach. 1997. Broad-spectrum bacterial rDNA polymerase chain reaction assay for detecting amniotic fluid infection among women in premature labor. Clin. Infect. Dis. 24: 12281232.
59. Hongoh, Y.,, H. Yuzawa,, M. Ohkuma, and, T. Kudo. 2003. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol. Lett. 221: 299304.
60. Huber, T.,, G. Faulkner, and, P. Hugenholtz. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 23172319.
61. Hugenholtz, P.,, and B. M. Goebel. 2001. The polymerase chain reaction as a tool to investigate microbial diversity in environmental samples, p. 31–42. In P. A. Rochelle (ed.), Environmental Molecular Microbiology: Protocols and Applications. Horizon Scientific Press, Wymondham, UK.
62. Hughes, M. S.,, L. A. Beck, and, R. A. Skuce. 1994. Identification and elimination of DNA sequences in Taq DNA polymerase. J. Clin. Microbiol. 32: 20072008.
63. Hunt, D. E.,, V. Klepac-Ceraj,, S. G. Acinas,, C. Gautier,, S. Bertilsson, and, M. F. Polz. 2006. Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. Appl. Environ. Microbiol. 72: 22212225.
64. Huse, S. M.,, L. Dethlefsen,, J. A. Huber,, D. M. Welch,, D. A. Relman, and, M. L. Sogin. 2008. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 4: e1000255.
65. Jalava, J.,, P. Kotilainen,, S. Nikkari,, M. Skurnik,, E. Vanttinen,, O. P. Lehtonen,, E. Eerola, and, P. Toivanen. 1995. Use of the polymerase chain reaction and DNA sequencing for detection of Bartonella quintana in the aortic valve of a patient with culture-negative infective endocarditis. Clin. Infect. Dis. 21: 891896.
66. Janda, J. M.,, and S. L. Abbott. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45: 27612764.
67. Jordan, J. A.,, A. R. Butchko, and, M. B. Durso. 2005. Use of pyrosequencing of 16S rRNA fragments to differentiate between bacteria responsible for neonatal sepsis. J. Mol. Diagn. 7: 105110.
68. Jordan, J. A.,, and M. B. Durso. 2005. Real-time polymerase chain reaction for detecting bacterial DNA directly from blood of neonates being evaluated for sepsis. J. Mol. Diagn. 7: 575581.
69. Jordan, J. A.,, M. B. Durso,, A. R. Butchko,, J. G. Jones, and, B. S. Brozanski. 2006. Evaluating the near-term infant for early onset sepsis: progress and challenges to consider with 16S rDNA polymerase chain reaction testing. J. Mol. Diagn. 8: 357363.
70. Kappe, R.,, C. N. Okeke,, C. Fauser,, M. Maiwald, and, H. G. Sonntag. 1998. Molecular probes for the detection of pathogenic fungi in the presence of human tissue. J. Med. Microbiol. 47: 811820.
71. Klaschik, S.,, L. E. Lehmann,, A. Raadts,, A. Hoeft, and, F. Stuber. 2002. Comparison of different decontamination methods for reagents to detect low concentrations of bacterial 16S DNA by real-time-PCR. Mol. Biotechnol. 22: 231242.
72. Kobayashi, N.,, T. W. Bauer,, D. Togawa,, I. H. Lieberman,, H. Sakai,, T. Fujishiro,, M. J. Tuohy, and, G. W. Procop. 2005. A molecular gram stain using broad range PCR and pyrosequencing technology: a potentially useful tool for diagnosing orthopaedic infections. Diagn. Mol. Pathol. 14: 8389.
73. Kotilainen, P.,, J. Jalava,, O. Meurman,, O. P. Lehtonen,, E. Rintala,, O. P. Seppala,, E. Eerola, and, S. Nikkari. 1998. Diagnosis of meningococcal meningitis by broad-range bacterial PCR with cerebrospinal fluid. J. Clin. Microbiol. 36: 22052209.
74. Kroes, I.,, P. W. Lepp, and, D. A. Relman. 1999. Bacterial diversity within the human subgingival crevice. Proc. Natl. Acad. Sci. USA 96: 1454714552.
75. Kupila, L.,, K. Rantakokko-Jalava,, J. Jalava,, S. Nikkari,, R. Peltonen,, O. Meurman,, R. J. Marttila,, E. Kotilainen, and, P. Kotilainen. 2003. Aetiological diagnosis of brain abscesses and spinal infections: application of broad range bacterial polymerase chain reaction analysis. J. Neurol. Neurosurg. Psychiatry 74: 728733.
76. Lane, D. J. 1991. 16S/23S rRNA sequencing, p. 115–175. In E. Stackebrandt and, M. Goodfellow (ed.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester, United Kingdom.
77. Lane, D. J.,, B. Pace,, G. J. Olsen,, D. A. Stahl,, M. L. Sogin, and, N. R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82: 69556959.
78. La Scola, B.,, G. Michel, and, D. Raoult. 1997. Use of amplification and sequencing of the 16S rRNA gene to diagnose Mycoplasma pneumoniae osteomyelitis in a patient with hypogammaglobulinemia. Clin. Infect. Dis. 24: 11611163.
79. Lehtiniemi, J.,, P. J. Karhunen,, S. Goebeler,, S. Nikkari, and, S. T. Nikkari. 2005. Identification of different bacterial DNAs in human coronary arteries. Eur. J. Clin. Investig. 35: 1316.
80. Ley, B. E.,, C. J. Linton,, D. M. Bennett,, H. Jalal,, A. B. Foot, and, M. R. Millar. 1998. Detection of bacteraemia in patients with fever and neutropenia using 16S rRNA gene amplification by polymerase chain reaction. Eur. J. Clin. Microbiol. Infect. Dis. 17: 247253.
81. Ley, R. E.,, P. J. Turnbaugh,, S. Klein, and, J. I. Gordon. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444: 10221023.
82. Liu, Z.,, T. Z. DeSantis,, G. L. Andersen, and, R. Knight. 2008. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res. 36: e120.
83. Loy, A.,, R. Arnold,, P. Tischler,, T. Rattei,, M. Wagner, and, M. Horn. 2008. probeCheck—a central resource for evaluating oligonucleotide probe coverage and specificity. Environ. Microbiol. 10: 28942898.
84. Loy, A.,, F. Maixner,, M. Wagner, and, M. Horn. 2007. probeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res. 35: D800D804.
85. Ludwig, W.,, O. Strunk,, R. Westram,, L. Richter,, H. Meier,, Yadhukumar,, A. Buchner,, T. Lai,, S. Steppi,, G. Jobb,, W. Förster,, I. Brettske,, S. Gerber,, A. W. Ginhart,, O. Gross,, S. Grumann,, S. Hermann,, R. Jost,, A. König,, T. Liss,, R. Lüssmann,, M. May,, B. Nonhoff,, B. Reichel,, R. Strehlow,, A. Stamatakis,, N. Stuckmann,, A. Vilbig,, M. Lenke,, T. Ludwig,, A. Bode, and, K. H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 13631371.
86. Maiwald, M.,, H. J. Ditton,, H. G. Sonntag, and, M. von Knebel Doeberitz. 1994. Characterization of contaminating DNA in Taq polymerase which occurs during amplification with a primer set for Legionella 5S ribosomal RNA. Mol. Cell. Probes 8: 1114.
87. Maiwald, M.,, K. Kissel,, S. Srimuang,, M. von Knebel Doeberitz, and, H. G. Sonntag. 1994. Comparison of polymerase chain reaction and conventional culture for the detection of legionellas in hospital water samples. J. Appl. Bacteriol. 76: 216225.
88. Marchesi, J. R.,, T. Sato,, A. J. Weightman,, T. A. Martin,, J. C. Fry,, S. J. Hiom,, D. Dymock, and, W. G. Wade. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795799.
89. Marin, M.,, P. Munoz,, M. Sanchez,, M. del Rosal,, L. Alcala,, M. Rodriguez-Creixems, and, E. Bouza. 2007. Molecular diagnosis of infective endocarditis by real-time broad-range polymerase chain reaction (PCR) and sequencing directly from heart valve tissue. Medicine (Baltimore) 86: 195202.
90. McLaughlin, R. W.,, H. Vali,, P. C. Lau,, R. G. Palfree,, A. De Ciccio,, M. Sirois,, D. Ahmad,, R. Villemur,, M. Desrosiers, and, E. C. Chan. 2002. Are there naturally occurring pleomorphic bacteria in the blood of healthy humans? J. Clin. Microbiol. 40: 47714775.
91. Medlin, L.,, H. J. Elwood,, S. Stickel, and, M. L. Sogin. 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491499.
92. Meier, A.,, D. H. Persing,, M. Finken, and, E. C. Böttger. 1993. Elimination of contaminating DNA within polymerase chain reaction reagents: implications for a general approach to detection of uncultured pathogens. J. Clin. Microbiol. 31: 646652.
93. Millar, B. C.,, X. Jiru,, J. E. Moore, and, J. A. Earle. 2000. A simple and sensitive method to extract bacterial, yeast and fungal DNA from blood culture material. J. Microbiol. Methods 42: 139147.
94. Millar, B. C.,, and J. E. Moore. 2004. Current trends in the molecular diagnosis of infective endocarditis. Eur. J. Clin. Microbiol. Infect. Dis. 23: 353365.
95. Millar, B. C.,, J. Xu, and, J. E. Moore. 2002. Risk assessment models and contamination management: implications for broad-range ribosomal DNA PCR as a diagnostic tool in medical bacteriology. J. Clin. Microbiol. 40: 15751580.
96. Mitterer, G.,, M. Huber,, E. Leidinger,, C. Kirisits,, W. Lubitz,, M. W. Mueller, and, W. M. Schmidt. 2004. Microarray-based identification of bacteria in clinical samples by solid-phase PCR amplification of 23S ribosomal DNA sequences. J. Clin. Microbiol. 42: 10481057.
97. Mohammadi, T.,, R. N. Pietersz,, C. M. Vandenbroucke-Grauls,, P. H. Savelkoul, and, H. W. Reesink. 2005. Detection of bacteria in platelet concentrates: comparison of broad-range real-time 16S rDNA polymerase chain reaction and automated culturing. Transfusion 45: 731736.
98. Mohammadi, T.,, H. W. Reesink,, C. M. Vandenbroucke-Grauls, and, P. H. Savelkoul. 2005. Removal of contaminating DNA from commercial nucleic acid extraction kit reagents. J. Microbiol. Methods 61: 285288.
99. Mollet, C.,, M. Drancourt, and, D. Raoult. 1997. rpoB sequence analysis as a novel basis for bacterial identification. Mol. Microbiol. 26: 10051011.
100. Nadkarni, M. A.,, F. E. Martin,, N. A. Jacques, and, N. Hunter. 2002. Determination of bacterial load by realtime PCR using a broad-range (universal) probe and primers set. Microbiology 148: 257266.
101. Nikkari, S.,, F. A. Lopez,, P. W. Lepp,, P. R. Cieslak,, S. Ladd-Wilson,, D. Passaro,, R. Danila, and, D. A. Relman. 2002. Broad-range bacterial detection and the analysis of unexplained death and critical illness. Emerg. Infect. Dis. 8: 188194.
102. Nikkari, S.,, I. J. McLaughlin,, W. Bi,, D. E. Dodge, and, D. A. Relman. 2001. Does blood of healthy subjects contain bacterial ribosomal DNA? J. Clin. Microbiol. 39: 19561959.
103. Ohlin, A.,, A. Bäckman,, M. Björkqvist,, P. Mölling,, M. Jurstrand, and, J. Schollin. 2008. Real-time PCR of the 16S-rRNA gene in the diagnosis of neonatal bacteraemia. Acta Paediatr. 97: 13761380.
104. Olsen, G. J.,, and C. R. Woese. 1993. Ribosomal RNA: a key to phylogeny. FASEB J. 7: 113123.
105. Ou, C. Y.,, J. L. Moore, and, G. Schochetman. 1991. Use of UV irradiation to reduce false positivity in polymerase chain reaction. BioTechniques 10: 442, 444, 446.
106. Palacios, G.,, J. Druce,, L. Du,, T. Tran,, C. Birch,, T. Briese,, S. Conlan,, P. L. Quan,, J. Hui,, J. Marshall,, J. F. Simons,, M. Egholm,, C. D. Paddock,, W. J. Shieh,, C. S. Goldsmith,, S. R. Zaki,, M. Catton, and, W. I. Lipkin. 2008. A new arenavirus in a cluster of fatal transplant-associated diseases. N. Engl. J. Med. 358: 991998.
107. Palmer, C.,, E. M. Bik,, D. B. Digiulio,, D. A. Relman, and, P. O. Brown. 2007. Development of the human infant intestinal microbiota. PLoS Biol. 5: e177.
108. Paster, B. J.,, S. K. Boches,, J. L. Galvin,, R. E. Ericson,, C. N. Lau,, V. A. Levanos,, A. Sahasrabudhe, and, F. E. Dewhirst. 2001. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183: 37703783.
109. Peters, R. P.,, T. Mohammadi,, C. M. Vandenbroucke-Grauls,, S. A. Danner,, M. A. van Agtmael, and, P. H. Savelkoul. 2004. Detection of bacterial DNA in blood samples from febrile patients: underestimated infection or emerging contamination? FEMS Immunol. Med. Microbiol. 42: 249253.
110. Peters, R. P.,, M. A. van Agtmael,, S. A. Danner,, P. H. Savelkoul, and, C. M. Vandenbroucke-Grauls. 2004. New developments in the diagnosis of bloodstream infections. Lancet Infect. Dis. 4: 751760.
111. Pruesse, E.,, C. Quast,, K. Knittel,, B. M. Fuchs,, W. Ludwig,, J. Peplies, and, F. O. Glöckner. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35: 71887196.
112. Qin, X.,, and K. B. Urdahl. 2001. PCR and sequencing of independent genetic targets for the diagnosis of culture negative bacterial endocarditis. Diagn. Microbiol. Infect. Dis. 40: 145149.
113. Rand, K. H.,, and H. Houck. 1990. Taq polymerase contains bacterial DNA of unknown origin. Mol. Cell. Probes 4: 445450.
114. Rantakokko-Jalava, K.,, and J. Jalava. 2002. Optimal DNA isolation method for detection of bacteria in clinical specimens by broad-range PCR. J. Clin. Microbiol. 40: 42114217.
115. Rantakokko-Jalava, K.,, S. Nikkari,, J. Jalava,, E. Eerola,, M. Skurnik,, O. Meurman,, O. Ruuskanen,, A. Alanen,, E. Kotilainen,, P. Toivanen, and, P. Kotilainen. 2000. Direct amplification of rRNA genes in diagnosis of bacterial infections. J. Clin. Microbiol. 38: 3239.
116. Relman, D. A. 1993. The identification of uncultured microbial pathogens. J. Infect. Dis. 168: 18.
117. Relman, D. A. 1993. Universal bacterial 16S rDNA amplification and sequencing, p. 489–495. In D. H. Persing,, T. F. Smith,, F. C. Tenover, and, T. J. White (ed.), Diagnostic Molecular Microbiology: Principles and Applications. American Society for Microbiology, Washington, DC.
118. Relman, D. A.,, J. S. Loutit,, T. M. Schmidt,, S. Falkow, and, L. S. Tompkins. 1990. The agent of bacillary angiomatosis. An approach to the identification of uncultured pathogens. N. Engl. J. Med. 323: 15731580.
119. Relman, D. A.,, T. M. Schmidt,, A. Gajadhar,, M. Sogin,, J. Cross,, K. Yoder,, O. Sethabutr, and, P. Echeverria. 1996. Molecular phylogenetic analysis of Cyclospora, the human intestinal pathogen, suggests that it is closely related to Eimeria species. J. Infect. Dis. 173: 440445.
120. Relman, D. A.,, T. M. Schmidt,, R. P. MacDermott, and, S. Falkow. 1992. Identification of the uncultured bacillus of Whipple’s disease. N. Engl. J. Med. 327: 293301.
121. Renko, J.,, P. W. Lepp,, N. Oksala,, S. Nikkari, and, S. T. Nikkari. 2008. Bacterial signatures in atherosclerotic lesions represent human commensals and pathogens. Atherosclerosis 201: 192197.
122. Rimek, D.,, A. P. Garg,, W. H. Haas, and, R. Kappe. 1999. Identification of contaminating fungal DNA sequences in Zymolyase. J. Clin. Microbiol. 37: 830831.
123. Rivas, R.,, E. Velazquez,, J. L. Zurdo-Pineiro,, P. F. Mateos, and, E. Martinez Molina. 2004. Identification of microorganisms by PCR amplification and sequencing of a universal amplified ribosomal region present in both prokaryotes and eukaryotes. J. Microbiol. Methods 56: 413426.
124. Rochelle, P. A.,, A. J. Weightman, and, J. C. Fry. 1992. DNase I treatment of Taq DNA polymerase for complete PCR decontamination. BioTechniques 13: 520.
125. Rolph, H. J.,, A. Lennon,, M. P. Riggio,, W. P. Saunders,, D. MacKenzie,, L. Coldero, and, J. Bagg. 2001. Molecular identification of microorganisms from endodontic infections. J. Clin. Microbiol. 39: 32823289.
126. Rood, I. G.,, M. H. Koppelman,, A. Pettersson, and, P. H. Savelkoul. 2008. Development of an internally controlled PCR assay for broad range detection of bacteria in platelet concentrates. J. Microbiol. Methods 75: 6469.
127. Rosey, A. L.,, E. Abachin,, G. Quesnes,, C. Cadilhac,, Z. Pejin,, C. Glorion,, P. Berche, and, A. Ferroni. 2007. Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children. J. Microbiol. Methods 68: 8893.
128. Rowther, F. B.,, C. Rodrigues,, A. P. Mehta,, M. S. Deshmukh,, F. N. Kapadia,, A. Hegde, and, V. R. Joshi. 2005. An improved method of elimination of DNA from PCR reagents. Mol. Diagn. 9: 5357.
129. Rueckert, A.,, and H. W. Morgan. 2007. Removal of contaminating DNA from polymerase chain reaction using ethidium monoazide. J. Microbiol. Methods 68: 596600.
130. Sandhu, G. S.,, B. C. Kline,, L. Stockman, and, G. D. Roberts. 1995. Molecular probes for diagnosis of fungal infections. J. Clin. Microbiol. 33: 29132919.
131. Schabereiter-Gurtner, C.,, S. Maca,, S. Kaminsky,, S. Rolleke,, W. Lubitz, and, T. Barisani-Asenbauer. 2002. Investigation of an anaerobic microbial community associated with a corneal ulcer by denaturing gradient gel electrophoresis and 16S rDNA sequence analysis. Diagn. Microbiol. Infect. Dis. 43: 193199.
132. Schmidt, T. M.,, B. Pace, and, N. R. Pace. 1991. Detection of DNA contamination in Taq polymerase. BioTechniques 11: 176177.
133. Schmidt, T. M.,, and D. A. Relman. 1994. Phylogenetic identification of uncultured pathogens using ribosomal RNA sequences. Methods Enzymol. 235: 205222.
134. Schuurman, T.,, R. F. de Boer,, A. M. Kooistra-Smid, and, A. A. van Zwet. 2004. Prospective study of use of PCR amplification and sequencing of 16S ribosomal DNA from cerebrospinal fluid for diagnosis of bacterial meningitis in a clinical setting. J. Clin. Microbiol. 42: 734740.
135. Sefers, S.,, Z. H. Pei, and, Y. W. Tang. 2005. False positives and false negatives encountered in diagnostic molecular microbiology. Rev. Med. Microbiol. 16: 5967.
136. Silkie, S. S.,, M. P. Tolcher, and, K. L. Nelson. 2008. Reagent decontamination to eliminate false-positives in Escherichia coli qPCR. J. Microbiol. Methods 72: 275282.
137. Sipos, R.,, A. J. Szekely,, M. Palatinszky,, S. Revesz,, K. Marialigeti, and, M. Nikolausz. 2007. Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiol. Ecol. 60: 341350.
138. Sleigh, J.,, R. Cursons, and, M. La Pine. 2001. Detection of bacteraemia in critically ill patients using 16S rDNA polymerase chain reaction and DNA sequencing. Intensive Care Med. 27: 12691273.
139. Steinman, C. R.,, B. Muralidhar,, G. J. Nuovo,, P. M. Rumore,, D. Yu, and, M. Mukai. 1997. Domain-directed polymerase chain reaction capable of distinguishing bacterial from host DNA at the single-cell level: characterization of a systematic method to investigate putative bacterial infection in idiopathic disease. Anal. Biochem. 244: 328339.
140. Störmer, M.,, K. Kleesiek, and, J. Dreier. 2007. High-volume extraction of nucleic acids by magnetic bead technology for ultrasensitive detection of bacteria in blood components. Clin. Chem. 53: 104110.
141. Suau, A.,, R. Bonnet,, M. Sutren,, J. J. Godon,, G. R. Gibson,, M. D. Collins, and, J. Doré. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65: 47994807.
142. Suzuki, M. T.,, and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625630.
143. Takai, K.,, D. P. Moser,, M. DeFlaun,, T. C. Onstott, and, J. K. Fredrickson. 2001. Archaeal diversity in waters from deep South African gold mines. Appl. Environ. Microbiol. 67: 57505760.
144. Tanner, M. A.,, B. M. Goebel,, M. A. Dojka, and, N. R. Pace. 1998. Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. Appl. Environ. Microbiol. 64: 31103113.
145. Tanner, M. A.,, D. Shoskes,, A. Shahed, and, N. R. Pace. 1999. Prevalence of corynebacterial 16S rRNA sequences in patients with bacterial and “nonbacterial” prostatitis. J. Clin. Microbiol. 37: 18631870.
146. Taranger, J.,, B. Trollfors,, L. Lind,, G. Zackrisson, and, K. Beling-Holmquist. 1994. Environmental contamination leading to false-positive polymerase chain reaction for pertussis. Pediatr. Infect. Dis. J. 13: 936937.
147. Tondeur, S.,, O. Agbulut,, M. L. Menot,, J. Larghero,, D. Paulin,, P. Menasche,, J. L. Samuel,, C. Chomienne, and, B. Cassinat. 2004. Overcoming bacterial DNA contamination in real-time PCR and RT-PCR reactions for LacZ detection in cell therapy monitoring. Mol. Cell. Probes 18: 437441.
148. Tseng, C. P.,, J. C. Cheng,, C. C. Tseng,, C. Wang,, Y. L. Chen,, D. T. Chiu,, H. C. Liao, and, S. S. Chang. 2003. Broad-range ribosomal RNA real-time PCR after removal of DNA from reagents: melting profiles for clinically important bacteria. Clin. Chem. 49: 306309.
149. Ugahary, L.,, W. van de Sande,, J. C. van Meurs, and, A. van Belkum. 2004. An unexpected experimental pitfall in the molecular diagnosis of bacterial endophthalmitis. J. Clin. Microbiol. 42: 54035405.
150. Van Camp, G.,, S. Chapelle, and, R. De Wachter. 1993. Amplification and sequencing of variable regions in bacterial 23S ribosomal RNA genes with conserved primer sequences. Curr. Microbiol. 27: 147151.
151. van der Zee, A.,, M. Peeters,, C. de Jong,, H. Verbakel,, J. W. Crielaard,, E. C. Claas, and, K. E. Templeton. 2002. Qiagen DNA extraction kits for sample preparation for legionella PCR are not suitable for diagnostic purposes. J. Clin. Microbiol. 40: 1126.
152. Varghese, B.,, C. Rodrigues,, M. Deshmukh,, S. Natarajan,, P. Kamdar, and, A. Mehta. 2006. Broad-range bacterial and fungal DNA amplification on vitreous humor from suspected endophthalmitis patients. Mol. Diagn. Ther. 10: 319326.
153. Voldstedlund, M.,, L. Norum Pedersen,, U. Baandrup,, K. E. Klaaborg, and, K. Fuursted. 2008. Broad-range PCR and sequencing in routine diagnosis of infective endocarditis. APMIS 116: 190198.
154. von Wintzingerode, F.,, U. B. Göbel, and, E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213229.
155. Watanabe, K.,, Y. Kodama, and, S. Harayama. 2001. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Methods 44: 253262.
156. Weisburg, W. G.,, S. M. Barns,, D. A. Pelletier, and, D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697703.
157. Welch, D. F.,, D. A. Pickett,, L. N. Slater,, A. G. Steigerwalt, and, D. J. Brenner. 1992. Rochalimaea henselae sp. nov., a cause of septicemia, bacillary angiomatosis, and parenchymal bacillary peliosis. J. Clin. Microbiol. 30: 275280.
158. Welinder-Olsson, C.,, L. Dotevall,, H. Hogevik,, R. Jungnelius,, B. Trollfors,, M. Wahl, and, P. Larsson. 2007. Comparison of broad-range bacterial PCR and culture of cerebrospinal fluid for diagnosis of community-acquired bacterial meningitis. Clin. Microbiol. Infect. 13: 879886.
159. White, T. J.,, T. Bruns,, S. Lee, and, J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p. 315–322. In M. A. Innis,, D. H. Gelfand,, J. J. Sninsky, and, T. J. White (ed.), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA.
160. Wilson, K. H.,, R. Blitchington,, R. Frothingham, and, J. A. Wilson. 1991. Phylogeny of the Whipple’s-disease-associated bacterium. Lancet 338: 474475.
161. Wilson, K. H.,, and R. B. Blitchington. 1996. Human colonic biota studied by ribosomal DNA sequence analysis. Appl. Environ. Microbiol. 62: 22732278.
162. Wilson, K. H.,, R. B. Blitchington, and, R. C. Greene. 1990. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J. Clin. Microbiol. 28: 19421946.
163. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221271.
164. Woo, P. C.,, L. M. Chung,, J. L. Teng,, H. Tse,, S. S. Pang,, V. Y. Lau,, V. W. Wong,, K. L. Kam,, S. K. Lau, and, K. Y. Yuen. 2007. In silico analysis of 16S ribosomal RNA gene sequencing-based methods for identification of medically important anaerobic bacteria. J. Clin. Pathol. 60: 576579.
165. Woo, P. C.,, S. K. Lau,, J. L. Teng,, H. Tse, and, K. Y. Yuen. 2008. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 14: 908934.
166. Wuyts, J.,, G. Perriere, and, Y. Van De Peer. 2004. The European ribosomal RNA database. Nucleic Acids Res. 32: D101D103.
167. Xu, J.,, J. E. Moore,, B. C. Millar,, H. Webb,, M. D. Shields, and, C. E. Goldsmith. 2005. Employment of broad range 16S rDNA PCR and sequencing in the detection of aetiological agents of meningitis. New Microbiol. 28: 135143.
168. Zucol, F.,, R. A. Ammann,, C. Berger,, C. Aebi,, M. Altwegg,, F. K. Niggli, and, D. Nadal. 2006. Real-time quantitative broad-range PCR assay for detection of the 16S rRNA gene followed by sequencing for species identification. J. Clin. Microbiol. 44: 27502759.


Generic image for table

Commonly used primers and probes for broad-range PCR with bacterial 16S and 23S rRNA genes

Citation: Maiwald M. 2011. Broad-Range PCR for Detection and Identification of Bacteria, p 491-505. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch31
Generic image for table

Methods to reduce bacterial background DNA in PCR reagents

Citation: Maiwald M. 2011. Broad-Range PCR for Detection and Identification of Bacteria, p 491-505. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch31

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error